An EM Algorithm for Asynchronous Input/Output Hidden
Markov Models

Samy Bengiot, Yoshua Bengiof
t INRS-Tlcommunications,
16, Place du Commerce, Ile-des-Soeurs, Qc, H3E 1H6, CANADA
1 Dept. IRO, Universit de Montral,
Montral, Qc, H3C 3J7, CANADA

Abstract— In learning tasks in which input sequences are mapped to output sequences, it
is often the case that the input and output sequences are not synchronous. For example, in
speech recognition, acoustic sequences are longer than phoneme sequences. Input/Output
Hidden Markov Models have already been proposed to represent the distribution of an
output sequence given an input sequence of the same length. We extend here this model
to the case of asynchronous sequences, and show an Expectation-Maximization algorithm
for training such models.

1 Introduction

Supervised learning algorithms for sequential data minimize a training criterion that depends on pairs
of input and output sequences. It is often assumed that input and output sequences are synchronized,
i.e., that each input sequence has the same length as the corresponding output sequence. For instance,
recurrent networks [Rumelhart et al., 1986] can be used to map input sequences to output sequences,
for example minimizing at each time step the squared difference between the actual output and the
desired output. Another example is a recently proposed recurrent mixture of experts connectionist ar-
chitecture which has an interpretation as a probabilistic model, called Input/Output Hidden Markov
Model (IOHMM) [Bengio and Frasconi, 1996, Bengio and Frasconi, 1995]. This model represents the dis-
tribution of an output sequence when given an input sequence of the same length, using a hidden state vari-
able and a Markovian independence assumption, as in Hidden Markov Models (HMMs) [Rabiner, 1989, in
order to simplify the distribution. IOHMMs are a form of probabilistic transducers [Pereira et al., 1994,
Singer, 1996], with input and output variables which can be discrete as well as continuous-valued.

However, in many sequential problems where one tries to map an input sequence to an output sequence,
the length of the input and output sequences may not be equal. Input and output sequences could behave
at different time scales. For example, in a speech recognition problem where one wants to map an acoustic
signal to a phoneme sequence, each phoneme approximately corresponds to a subsequence of the acoustic
signal, therefore the input acoustic sequence is generally longer than the output phoneme sequence, and
the alignment between inputs and outputs is often not available.

In comparison with HMMs, emission and transition probabilities in IOHMMs vary with time as a function
of an input sequence. Unlike HMMs, IOHMMSs with discrete outputs are discriminant models. Further-
more, the transition probabilities and emission probabilities are generally better matched, which reduces
a problem observed in speech recognition HMMs: because outputs are in a much higher dimensional
space than transitions in HMMs, the dynamic range of transition probabilities is much less than that
of emission probabilities. Therefore the choice between different paths (during recognition) is mostly
influenced by emission rather than transition probabilities.

In this paper, we present an extension of IOHMMs to the asynchronous case. We first present the proba-
bilistic model, then derive an exact Expectation-Maximization (EM) algorithm for training asynchronous
IOHMMs. For complex distributions (e.g., using artificial neural networks to represent transition and
emission distributions), a Generalized EM algorithm or gradient ascent in likelihood can be used. Finally,
a recognition algorithm similar to the Viterbi algorithm is presented, to map given input sequences to
likely output sequences.

2 The Model

Let us note wlT for an input sequence zi,%2,...,%T, and similarly yf for an output sequence
Y1,Y2,---,Ys. In this paper we consider the case in which the output sequences are shorter than the

input sequences. The more general case is a straightforward extension of this model (using “empty”
transitions that do not “take” any time) and will be discussed elsewhere. As in HMMs and IOHMMs, we

introduce a discrete hidden state variable, g;, which will allow us to simplify the distribution P(y7|z{)
by using Markovian independence assumptions. The state sequence ¢{ is taken to be synchronous with

the input sequence ;clT

In order to produce output sequences shorter than input sequences, states may sometimes not emit an
output symbol, but instead would “emit” a null symbol €. Therefore, there exist many sequences of states
corresponding to the same output sequence, and a given sequence of states can correspond to output
sequences of different lengths.

When conceived as a generative model of the output (given the input), an asynchronous IOHMM works
as follows. At time ¢t = 0, an initial state go is chosen according to the distribution P(gg), and the
length of the output sequence s is initialized to 0. At other time steps ¢ > 0, a state ¢ is first picked
according to the transition distribution P(q¢|q:—1,%:), using the state at the previous time step g;—; and
the current input z;. A decision is then taken as to wether or not an output y, will be produced at time
t or not, according to the emit-or-not distribution. In the positive case, An output y, is then produced
according to the emission distribution P(ys|q:,x¢). The length of the output sequence is increased from
s—1+to s, and the s'® output y, is emitted with probability P(ys|q;, ;). The parameters of the model are
thus the initial state probabilities, 7 (i) = P(go = ¢), and the parameters of the emit-or-not, emission and
transition conditional distribution models, P(emit — or —not|q:,), P(ys|q:, ¢) and P(q¢|q:—1,x¢). Since
the input and output sequences are of different lengths, we will introduce another hidden variable, 73,
specifically to represent the alignment between inputs and outputs, with 73 = s meaning that s outputs
have been emitted at time £.

Let us first formalize the independence assumptions and the form of the conditional distribution rep-
resented by the model. The conditional probability P(y7|zT) can be written as a sum of terms
P(y?,ql, 7L |zT) over all possible state sequences gl such that the number of emitting states in each
of these sequences is S (the length of the output sequence):

PyPlz{)= Y Pi.a.m i) 1)
97 ;Tr=S

All S outputs must have been emitted by time T', so 7 = S. The hidden state q; takes discrete values
in a finite set. Each of the terms P(y{, ¢l , 7 |zT) corresponds to a particular sequence of states, and a
corresponding alignment.

We summarize in table 1 the notation we have introduced and define additional notation used in this
paper.

The Markovian conditional independence assumptions in this model mean that the state variable ¢,
summarizes sufficiently the past of the sequence, so

P(atlgi™", #1) = P(gslge—1, 1) (2)
and

P(yslai, 2}) = P(yslae, zv). 3)

These assumptions are analogous to the Markovian independence assumptions used in HMMs and are
essentially the same as in synchronous IOHMMs. Based on these two assumptions, the conditional
probability can be efficiently represented and computed recursively, using an intermediate variable
. def .
Oé(Z,S,t)ép(thZ,TtZS,yﬂZ’i). (4)
The conditional probability of an output sequence, can be expressed in terms of this variable:
def .
LEP@y;le]) =) a(i, S, T) (5)
ieF
where F' is a set of final states. These a’s can be computed recursively in a way that is analogous to the
forward pass of the Baum-Welsh algorithm for HMMs:

Oé(i,S,t) = b(i,ys,t)(l—(e(i,t)) Z a(i7j7t)a(jas_17t_]-)
jEpred(i)

+e(i,t) > a(i,j,t)a(j,s,t—1) (6)

jEpred(i)

Table 1: Notation used in the paper

e S = size of the output sequence.

e T = size of the input sequence.

e N = number of states in the IOHMM.

e a(i, j,t) = output of the module that computes P(g:=i|q:—1=j, z+)

e b(i,1,t) = output of the module that computes P(ys = l|g¢=i, x¢, 7t = 8, 7¢—1 = s — 1), the
probability to emit the symbol [at time ¢ in state ¢ given that state ¢ emits at time ¢.

e ¢(i,t) = output of the module that computes P(r; = s|v—1 = s,q: = i), the probability not
to emit at time ¢ in state <.

e 7(i) = P(qo=t), initial probability of state i.
o 2+ = 1if ¢4 =14; z;; = 0 otherwise. These indicator variables give the state sequence.

e m,,; = 1 if the system emits the s** output at time ¢, m,; = 0 otherwise. These indicator
variables give the input/output alignment.

® ¢;;+ = 1 means that state ¢ did not emit at time ¢.

e 7, = s means that the first s first outputs have been emitted at time ¢.
e 0.1 = 1 if the t*® input symbol is k, o, = 0 otherwise.

o 7,1 = 1 if the s*® output symbol is k, 7, = 0 otherwise.

e pred(i) is the set of all the predecessors states of state i.

e succ(i) is the set of all the successors states of state i.

where a(iaj7t) = P(qt:ilqt—lzja Z't), b(i7ysat) = P(y5|Qt:i,$t,Tt:8,Tt_1:S - 1)7 G(Z,t) =
P(ry=s|1s_1=5,q:=i,x) and pred(i) is the set of states with an outgoing transition to state . The deriva-
tion of this recursion using the independence assumptions can be found in [Bengio and Bengio, 1996].

3 An EM Algorithm for Asynchronous IOHMMs

The learning algorithm we propose is based on the maximum likelihood principle, i.e., here, maximizing
the conditional likelihood of the training data. The algorithm could be generalized to one for maximizing
the likelihood of the parameters given the data, by taking into account priors on those parameters.
Let the training data, D, be a set of P input/output sequences independently sampled from the same
distribution. Let T, and S, be the lengths of the p*® input and output sequence respectively:

DE{(21” (), ;" (P));p=1... P} "

Let © be the set of all the parameters of the model. Because each sequence is sampled independently,
we can write the likelihood function as follows, omitting sequence indexes to simplify:

P
L(©; D) = [[P(y;"|z"; ©) ®8)
p=1

According to the maximum likelihood principle, the optimal parameters © are obtained when L(©; D) is
maximized. We will show here how an iterative optimization to a local maximum can be achieved using
the Expectation-Maximization (EM) algorithm.

EM is an iterative procedure for maximum likelihood estimation, originally formalized
in [Dempster et al., 1977]. Each iteration is composed of two steps: an estimation step and a maxi-
mization step. The basic idea is to introduce an additional variable, ¢, which, if it were known, would
greatly simplify the optimization problem. This additional variable is known as the missing or hidden
data. A joint model of ¢ with the observed variables must be set up. The set D, which includes the data
set D and values of the variable ¢ for each of the examples, is known as the complete data set. Corre-
spondingly, L.(©;D,) is referred as the complete data likelihood. Since q is not observed, L. is a random

variable and cannot be maximized directly. The EM algorithm is based on averaging log L.(©; D.) over
the distribution of ¢, given the known data D and the previous value of the parameters ©. This expected
log likelihood is called the auxiliary function:

Q(6;0) = E, [log L.(6; D.)|D, 6] (9)

In short, for each EM iteration, one first computes @) (E-step), then updates © such that it maximizes
Q (M-step).

To apply EM to asynchronous IOHMMSs, we need to choose hidden variables such that the knowledge of
these variables would simplify the learning problem. Let ¢ be a hidden variable representing the hidden
state of the Markov model (such that ¢ = ¢ means the system is in state ¢ at time ¢). Knowledge of
the state sequence ¢f would make the estimation of parameters trivial (simple counting would suffice).
Because states sometimes emit and sometime do not, we introduce an additional hidden variable, 7,
representing the alignment between inputs (and states) and outputs, such that v = s implies that s
outputs have been emitted at time ¢.

Here, the complete data can be written as follows:

D {(«* (), 41" (), 41" (p), 71 (9)); p=1. .. P} (10)

The corresponding complete data likelihood is (again dropping (p) indices):

P
Le(0; D) = [[Py, ai", 71" |217; ©) (11)
p=1
Let z;; be an indicator variable such that z;; = 1 if ¢ = 4, and z;; = 0 otherwise. Let m,; be an
indicator variable such that ms; = 1 if the st" output is emitted at time ¢, and mg; = 0 otherwise.
Let €;; = 1 if state 4 do not emit at time ¢, and €;; = 0 otherwise. Using these indicator variables and
factorizing the likelihood equation, we obtain:

P 1T, N Sp

Le(= TIIII I Pwsla=i, 2, me=s, 71 =s— 1)75emes(1=eie)

p=1t=1¢=1 \s=1

Sp

H P(r=s|gs=i, 34, 7y =5— 1)+ Mo (17 c0)

s=1

Sp N

H P(T:S|qt:i,$t,Tt_lzs)zi’tms’tei’t H P(Qt=i|C1t—1:j; ;L't)zi’tzj’t_l (12)
s=1 j=1

Taking the logarithm we obtain the following expression for the complete data log likelihood:

TP P

P N
log L¢(©; D.) Z Z Zzztmst — €it) log P(ys|q:=i, 24, =5, _1=5—1) | +

p=11t=1 ¢=1 s=1

Z zi,tms,t(l - fi,t) log P(Tt:S|qt:i, T, Tt_lzs—l) +

S, N
D zigms eilog P(ri=s|qi=i, zs, 71=5) | + | Y 2iu2j,0-1 108 P(qe=ilgi—1=j,z:) | (13)
s=1 j=1

3.1 The Estimation Step

Let us define the auxiliary function Q(©;©) as the expected value of log L.(©; D) with respect to the
hidden variables ¢ and 7, given the data D and the previous set of parameters ©:

Q(6;0) = Ey - [log Le(6; D.) D, O] (14)

Ty

P N
= >3 Zgi,s,t10gP(ys|Qt=i,$t,Tt=S,Tt—1=S—1) +
=

1t=1 i1 \s=1
SP

> Gislog P(re=s|qu=i, x4, 7_1=5—1) | +

s=1

Sy N
Zﬁ,s,thgP(Tt=S|Qt=i,l‘t,Tt—l— Z ijt log P(qt=ilqi—1=j,2¢) | (15)
s=1 j=1

where, by definition,

. def)
Gisit = Eq =i, 7i=8|m_1=s—1,27 ,y7; O] (16)
~ def)
fispt éEq,-r[(ItzlaTt=3|7—t—1:57$’{7yls; 9] (17)
and
& def
hi 4+ = Eqlge=i, qt—1=34|21 ,y;; ©] (18)

The * on f, g and h denote that these expectations are computed using the previous value of the
parameters, ©. In order to compute f,-ys,t, Gi st and Bi,j,t, we will use the already defined a(i,s,t)
(equations 4 and 6), and introduce a new variable, 3(3, s, t), borrowing the notation from the HMM and
IOHMM literature:

. def .
B, 5,8)= P(ygialae=i, 71=3, z{}1) (19)
Like a, 8 can be computed recursively, but going backwards in time:
B(iasat) = Z a(.77Z7t+1)b(]7ys+17t+1)(1_6(27t+1))ﬁ(378+17t+1)
jEsuce(i)
+ Y a(,, t+1)e(d, t+1)B(j, s, t+1) (20)
j€Esucc(z)

where pred(i) is the set of predecessor states of state ¢ and succ(z) is the set of successor states of state
i, a(j,4,t) is the conditional transition probability from state i to state j at time ¢, b(,ys,t) is the
conditional probability to emit the s** output at time ¢ in state 4 given that this state emits at time ¢,
and €(7,t) is the probability not to emit at time ¢ in state i. The proof of correctness of this recursion
(using the Markovian independence assumptions) is given in [Bengio and Bengio, 1996].

Let a°(i, s,t) be the part of a(i, s,t) computed when state i emits at time #:
O‘O(ia‘S:t) = b(i7ysat)(1_€(i7t)) . Z a(i7j7t) a(jas_Lt_l) (21)
jEpred(i)
Similarly, a!(i, s, t) is the part of a(i, s, t) computed when state i does not emit at time ¢:

a'(iys,t) = e(i,t)- > ali,j,t)a(j,s,t—1) (22)

jEpred(i)

We can now express g; ¢, fi,s,t and h; ;¢ in terms of a°(i, s,t), &' (i, s,t) and B8(i, s, t) (see derivations in
[Bengio and Bengio, 1996]):

S
i) ;a(j,s—l,t—l)b(i,ys,t)(l — €(i,t))B(i, 5,t)

hi e i s (23)
+ a(j,s,t—l)e(i,t)ﬂ(i,s,t)
s=0
0 .7 7t " ’t
P CL %ﬂ (i,5,1) (24)
and
ol (i, s, t)B(i,s,t

L

3.2 The Maximization Step

After each estimation step, one has to maximize Q(O; (:)) If the conditional probability distributions (for
transitions as well as emissions) have a simple enough form (e.g. multinomial, generalized linear models,
or mixtures of these) then one can maximize analytically @, i.e., solve

0Q(0:0) _ -
00
for ©. Otherwise, if for instance conditional probabilities are implemented using non-linear systems (such
as a neural network), then maximization of () cannot be done in one step. In this case, we can apply a
Generalized EM (GEM) algorithm, that simply requires an increase in) at each optimization step, for
example using gradient ascent in @), or directly perform gradient ascent in L(©; D).

3.3 Multinomial Distributions

We describe here the maximization procedure for multinomial conditional probabilities (for transitions
and emissions), i.e., which can be implemented as lookup tables. This applies to problems with discrete
inputs and outputs. Let M; be the number of input symbols, M, the number of output classes, oy =1
when the #*" input symbol is &, and o, = 0 otherwise. Also, let v, = 1 when the stP output symbol is
k, and s, = 0 otherwise.

For transition probabilities, let w; jr = P(g:=i|g:—1=J, zx,t=1). The solution of equation (26) for w; ; ,
with the constraints that transition probabilities must sum to 1, yields the following reestimation formula:

T

E o khi e
=1

Wik = —~ 7 (27)

E ogkhy e

1t=1

M=

l

For emission probabilities, let w;;r = P(y=l|g:=1%, xx=1), with the constraint w; . + Zl# Wik = 1,
then the reestimation formulae are the following:

T S

E E Otk Vs,10is,t

wi,l’k — MOt:l s:lS (28)

T
E E Jt,k75,mgi,s,t

m=1 t=1 s=1

For emit-or-not probabilities, let ;0 = P(n=sln_1=s — Lg=t,x44=1) and ;15 =
P(1=s|T—1=$, q:=1%, Tr=1), with the constraint that ;0 + i1k = 1.

T S
Z Z Otk (1 — €i,t)Gi,s,t

Yiok = e (29)

Z Z 0tk (Giot + fis)

t=1 s=1

T S
E E Ot k€it fis,t

Vit ke = t:SI =1 (30)

Z Z Ut,k(gi,s,t + fi,s,t)

t=1 s=1

3.4 Neural Networks or Other Complex Distributions

In the more general case where one cannot maximize analytically (), we can compute the gradient for
each parameter and apply gradient ascent in @, yielding a GEM algorithm (or alternatively, directly

maximize L by gradient ascent). For transition probability models a(j,4,t) = P(q:=7|qt—1=1, z¢; w;) for
state ¢, with parameters w;, the gradient of @) with respect to w; is

8Q®® T hjie dalj,i,t)
I i @)

t=1 jesucc(i)

where Mw’t) can be computed by back-propagation.
Similarly, for emission probability models b(¢, ys,t) = P(ys|q:=t, z¢, :=5, Tt—1=5s—1; w;) with parameters
wj, the gradient is
8Q(;6) o (Gt Ob(i,ys,t)
MO~ 3 (i) @)
Wi t=1 s=1 b(i,ys,t) Owi

M can be computed by back-propagation.

where, again,
Finally, for emit-or-not probability models €(i,t) = P(r=s|q=1,z, Ts—1=8;1);) with parameters ¢;, the

gradient is

0Q0:0) NN Frar 0elit)) | e Gise O —e(i,t))
o Zz(e(i,tt) 90,)*;Z((l—e(; 5) 39)

s=1

Table 2: Overview of the learning algorithm for asynchronous IOHMMs

1. Estimation Step: for each training sequence (z],4;) do

(a) for each state j < 1...n do
e compute a(z,j,t), b(4,ys,t) and €(j,t) according to the chosen distribution models.
(b) for each state i < 1...n do

N

e compute a;s,t, Bis,t, and L using the current value of the parameters © (equa-
tions 6, 5 and 20).

e compute the posterior probabilities il@',j,t, §i,s,+ and ﬁ-,s,t (equations 24, 23 and 25).

2. Maximization Step: for each state j + 1...n do
(a) Adjust the transition probability parameters of state j using reestimation formulae such
as equation 27 (or gradient ascent for non-linear modules, equation 31).
(b) Adjust the emission probability parameters of state j using reestimation formulae such
as equation 28 (or gradient ascent for non-linear modules, equation 32).
(c) Adjust the emit-or-not probability parameters of state j using reestimation formulae such
as equations 29 and 30 (or gradient ascent for non-linear modules, equation 33).

4 A Recognition Algorithm for Asynchronous IOHMMs

Given a trained asynchronous IOHMM, we want to recognize new sequences, i.e., given an input sequence,
choose an output sequence according to the model. Ideally, we would like to pick the output sequence
that is most likely, given the input sequence. However, this would require an exponential number of
computations (with respect to sequence length). Instead, like in the Viterbi algorithm for HMMs, we
will consider the complete data model, and look for the joint values of states and outputs that is most
likely. Thanks to a dynamic programming recurrence, we can compute the most likely state and output
sequence in time that is proportional to the sequence length times the number of transitions (even though
the number of such sequences is exponential in the sequence length).

Let us define V' (4,t) as the probability of the best state and output subsequence ending up in state 4 at
time ¢:
Vi, t) = max 1P(yf,q‘{*1,qt:7j,7't=s|xt1) (34)
8,7y Y1,q7
where the maximum is taken over all possible lengths s of output sequences y;. This variable can be
computed recursively by dynamic programming (the derivation is given in [Bengio and Bengio, 1996]):

V(@i,t) = max(e(z’,t),(l—e(i,t)mlaxb(i,l,t)))mJax(a(z’,j,t)V(j,t—l)) (35)

At the end of the sequence, the best final state i* which maximizes V (i, T') is picked within the set of final
states F. If the argmax in the above recurrence is kept, than the best predecessor j and best output (ys
or the empty symbol €) for each (i,¢) can be used to trace back the optimal state and output sequence
from *, like in the Viterbi algorithm.

5 Conclusion

We have presented a novel model and training algorithm for representing conditional distributions of
output sequences given input sequences of a different length. The distribution is simplified by introducing
hidden variables for the state and the alignment of inputs and outputs, similarly to HMMs. The output
sequence distribution is decomposed into conditional emission distributions for individual outputs (given
a state and an input at time ¢) and conditional transition distributions (given a previous state and an
input at time ¢). This is an extension of the already proposed IOHMMs [Bengio and Frasconi, 1996,
Bengio and Frasconi, 1995] that allows input and output sequences to be asynchronous.

The parameters of the model can be estimated with an EM or GEM algorithm (depending on the form of
the emission and transition distributions). Both the E-step and the M-step can be performed in time at
worst proportional to the product of the lengths of the input and output sequences, times the number of
transitions. A recognition algorithm similar to the Viterbi algorithm for HMMSs has also been presented,
which takes in the worse case time proportional to the length of the input sequence times the number of
transitions.

In practice (especially when the number of states is large), both training and recognition can be sped up
by using search algorithms (such as beam search) in the space of state sequences.

References

[Bengio and Bengio, 1996] Bengio, Y. and Bengio, S. (1996). Training asynchronous input/output hidden
markov models. Technical Report #1013, Dpartement d’Informatique et de Recherche Oprationnelle,
Universit de Montral, Montral (QC) Canada.

[Bengio and Frasconi, 1995] Bengio, Y. and Frasconi, P. (1995). An input/output HMM architecture. In
Tesauro, G., Touretzky, D., and Leen, T., editors, Advances in Neural Information Processing Systems
7, pages 427-434. MIT Press, Cambridge, MA.

[Bengio and Frasconi, 1996] Bengio, Y. and Frasconi, P. (1996). Input/Output HMMs for sequence pro-
cessing. to appear in IEEE Transactions on Neural Networks.

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum-likelihood
from incomplete data via the EM algorithm. Journal of Royal Statistical Society B, 39:1-38.

[Pereira et al., 1994] Pereira, F., Riley, M., and Sproat, R. (1994). Weighted rational transductions and
their application to human language processing. In ARPA Natural Language Processing Workshop.

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, T7(2):257-286.

[Rumelhart et al., 1986] Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning internal repre-
sentations by error propagation. In Rumelhart, D. and McClelland, J., editors, Parallel Distributed
Processing, volume 1, chapter 8, pages 318-362. MIT Press, Cambridge.

[Singer, 1996] Singer, Y. (1996). Adaptive mixtures of probabilistic transducers. In Mozer, M., Touret-
zky, D., and Perrone, M., editors, Advances in Neural Information Processing Systems 8. MIT Press,
Cambridge, MA.

