
LEARNING THE DECISION FUNCTION FOR SPEAKER VERIFICATION

Samy Bengio Johnny Mariéthoz

IDIAP
CP 592, rue du Simplon 4,
1920 Martigny, Switzerland

{bengio,marietho}@idiap.ch

ABSTRACT

This paper explores the possibility to replace the usual thresh-
olding decision rule of log likelihood ratios used in speaker
verification systems by more complex and discriminant de-
cision functions based for instance on Linear Regression
models or Support Vector Machines. Current speaker verifi-
cation systems, based on generative models such as HMMs
or GMMs, can indeed easily be adapted to use such decision
functions. Experiments on both text dependent and text in-
dependent tasks always yielded performance improvements
and sometimes significantly.

1. INTRODUCTION

The goal of speaker verification is to decide whether a given
speech utterance has been pronounced by a claimed client
or by an impostor. A good introduction to the field can
be found in [1]. Different scenarios can take place in this
framework: in text dependentapplications, the machine
knows the lexical content of the utterance used for verifica-
tion, while in text independent, the machine does not know
what the client will say.

In any case, most state-of-the-art methods start by creat-
ing a generative model for each client as well as a generative
model for impostors (this will be explained in section 2).
Every time a client tries to access the system, the decision is
then based on a ratio between the probability that the client
has pronounced the sentence and the probability that any-
body else has pronounced it. When this ratio is higher than
a given threshold, the access is permitted, otherwise it is
refused.

In this paper, we propose to enhance the decision pro-
cess, replacing this thresholding rule by a more powerful
decision function, based for instance on Support Vector Ma-
chines. In the next section, we give an overview of the main
steps of speaker verification. Then, we explain how the de-
cision function could be modified into a more general func-
tion and propose two different forms of functions, namely
Linear Regression and Support Vector Machines. Finally,

in the experiment section, we show that these decision func-
tions always yield better verification performance than the
simple thresholding rule and sometimes significantly.

2. BASELINE SPEAKER VERIFICATION SYSTEM

Classical speaker verification models are based on statistical
models. We are interested inP (SijX) the probability that
a speakerSi has pronounced the sentenceX . Using Bayes
theorem, we can write it as follows:

P (SijX) =
P (X jSi)P (Si)

P (X)
: (1)

To decide whether or not a speakerSi has pronounced a
given sentenceX , we compareP (SijX) to the probability
that any other speaker has pronouncedX , which we write
P ( �SijX). WhenP ( �SijX) is the same for all clientsSi,
which is the case in this paper, we replace it by a speaker
independent modelP (
jX) where
 represents theworld
of all the speakers. The decision rule is then:

if P (SijX) > P (
jX) thenX was generated bySi: (2)

Using equation (1), inequality (2) can then be rewritten as:

P (X jSi)

P (X j
)
>

P (
)

P (Si)
= Æi (3)

where the ratio of the prior probabilities is usually replaced
by a thresholdÆi since it does not depend onX . Taking the
logarithm of (3) leads to thelog likelihood ratio:

logP (X jSi)� logP (X j
) > log Æi = �i: (4)

To implement this, we need to create a model ofP (X jSi)
for every potential speakerSi, as well as aworld model
P (X j
), and then we need to estimate the threshold�i

for each clientSi. Alternatively, it is often more convenient
(because of a lack of data available for each client) to search
for a unique threshold� that would be client independent.
This is the approach taken in this paper. Other researchers



have proposed othera priori methods to select�i (see [2]
for a comparison) or adaptive methods in order to account
for the long-term variability of people’s voice [3].

Depending on the task, the models can be estimated
using different statistical tools. When we know the sen-
tence that each speaker is supposed to pronounce, we can
use a specific Hidden Markov Model (HMM) tailored to the
given sentence. When we know nothing about the sentence
pronounced by the speakers, we can use either an ergodic
HMM or a Gaussian Mixture Model (GMM) to represent
P (X jSi) andP (X j
).

In any case, we have to decide the correct architecture
(number of Gaussians for GMMs, number of states, topol-
ogy, and number of Gaussians per state for HMMs) using
methods such as cross-validation.

Finally, when all the client models and the world model
are created, we still need to find the threshold�i of the
decision rule (4).

3. LEARNING THE DECISION FUNCTION

Even if most state-of-the-art methods for speaker verifica-
tion are based on generative models (such as HMMs or
GMMs), a better solution should in theory be to use adis-
criminant framework (see [4] for a discussion on discrimi-
nant versus generative models). A simple way to add some
discriminant power to these generative models is to use dis-
criminant decision rules. Let us rewrite (4) as follows:

y = log P̂ (X jSi)� log P̂ (X j
)��i (5)

such thatthe sign of y gives the decision. Note thatP̂ ()
means that we are using the estimates ofP () obtained by
our models. The goal is thus to find a value of�i that opti-
mizes a given criterion over the decision. If the probabilities
are perfectly estimated (which is usually not the case), then
the Bayes Decision is the optimal decision.

3.1. Bayes Decision Rule and HTER Cost Function

In classical speaker verification systems, when no prior in-
formation is given on the cost of the different kinds of er-
rors, the Bayes Decision rule is applied by selecting the
value of�i in (5) that minimizes theHalf Total Error Rate:

HTER=
1

2
(%FA+ %FR) (6)

where%FA is the rate of false acceptances and%FR is the
rate of false rejects. Note that this cost function changes the
relative weight of client and impostor accesses in order to
give them equal weight, instead of the one induced by the
training data.

In this paper, we are interested in the case where the
probabilities are not perfectly estimated and where the Bayes

Decision might not be the optimal solution. We thus pro-
pose to explore other forms of decisions, based either on
linear functions or on more complex functions such as Sup-
port Vector Machines.

3.2. Linear Regression

A general linear decision rule could be:

y = ai log P̂ (X jSi) + bi log P̂ (X j
) + ci (7)

where parametersai, bi, andci are learned by minimizing
the Mean Squared Error (MSE) over a training set where we
tagy = 1 for clients and�1 for impostors. In fact, in order
to optimize the HTER cost, we used a weighted MSE cost to
give the same relative weight between the set of clients and
the set of impostors. The decision is then to accept clients if

log P̂ (X jSi) +
bi

ai

log P̂ (X j
) > �
ci

ai

: (8)

3.3. Support Vector Machines

In the following, we propose to further enhance the decision
function using more powerful models, such as the recently
proposed Support Vector Machines (SVMs) [4]. These have
been applied to many problems in classification and regres-
sion tasks, generally yielding good performance compared
to other algorithms. The resulting function is of the form

y =

lX
j=1

yj�jK(x; xj) + b (9)

wherex would be the two-dimensional vector containing
log P̂ (X jSi) andlog P̂ (X j
)), the client and world model
scores, andxj the corresponding vector for sentenceXj .
yj = 1 whenXj was pronounced bySi and�1 otherwise.
l is the number of training sentences, the�j andb are the
parameters of the model, andK(x; xj) is a kernel function
that can have different forms; the simplest is the dot product
kernel:

K(x; xj) = x xj (10)

which leads to a Linear SVM, while a more general kernel
is the Radial Basis Function (RBF) kernel:

K(x; xj) = exp

�
�kx� xjk

2

�2

�
(11)

with � being a parameter that needs to be selected (by cross-
validation for instance) and that determines the complexity
of the function.

Without going into details on the specific method to train
SVMs1, it is important to note that the training criterion

1See [5] for a good introduction on SVMs.



used in SVMs is related to the number of classification er-
rors, as opposed to the MSE used in Linear Regression mod-
els. Moreover we had to change the normal SVM formula-
tion in order to optimize the HTER cost (6) by changing the
relative weight of each example [6]. Note that in the result-
ing solution (9), most�j are equal to 0, and the examples
with non-zero�j are calledsupport vectors. Note however
that the training complexity of SVMs is quadratic on the
numberl of examples, which makes the use of SVMs for
large datasets difficult.

4. EXPERIMENTAL RESULTS

4.1. Settings

In order to compare different decision functions, we have
used thePolyVar telephone database [7, 8], that contains
two sets (called hereafterdata1 and data2) of 19 clients
(12 men and 7 women) as well as another population of
56 speakers (28 men and 28 women) used for the world
model. For each client, a training set contains 5 repeti-
tions of 17 words (composed of 3 to 12 phonemes each),
while a separate test set contains on average 18 repetitions
of the same 17 words, for a total of 6000 utterances, as well
as on average 12000 impostor utterances. Each sentence
was parameterized using 12 LPCC coefficients of order 16
as well as the energy, complemented by their first (delta)
and second (delta-delta) derivatives, for a total of 39 co-
efficients. A simple silence detector based on an unsuper-
vised bi-Gaussian model was also used to remove all silence
frames.

Two different kinds of generative models for clients and
world were created: one using GMMs, used for text inde-
pendent experiments, and one using HMMs, used for text
dependent experiments. All models were trained using the
Maximum Likelihood criterion with the EM algorithm.

4.2. Text Independent Experiments

To determine the number of Gaussians for the world model,
we used a simple validation technique, training on 90% of
the available training set for the world model and selecting
the model with the highest likelihood over the remaining
10%. This led us to a GMM with 1000 Gaussians.

To determine the number of Gaussians for the client
models, we used a 10-fold cross-validation technique: ev-
ery client model is trained with a given number of Gaussians
on nine tenths of the training set, and the test likelihood is
computed on the rest of the data, and this is done for all
10 partitions of the training set. The model that gave the
highest overall test likelihood had 200 Gaussians.

Having fixed the client and world models, we trained
different decision rules using test data of every client in
data1and recorded their performances over every client in

data2. We also did the converse (train withdata2and test
with data1) and computed the average. This is thus a 2-fold
cross-validation technique.

Table 1 gives the results of these experiments. We com-
pared a Linear SVM as well as an SVM with an RBF kernel
using�=50. Note that this value of� was found by cross-
validation, although it was observed that its actual value
(ranging from 1 to 100) did not yield significant differences.
These two SVM models were compared to a Linear Regres-
sion model as well as the classical Bayes Decision rule. We
can see that usual Bayes Decision rule yielded the worst
results, while both SVM gave similar but significantly bet-
ter results. The relative improvement between SVM with
RBF(�=50) and Bayes Decision is equal to14:8%, which
is particularly significant.

Figure 1 shows the different decision rules trained on
data1 (the lines or curves) as well as the scores of clients
and world model (the big and small dots) fordata2(hence
we see the test performance of each decision rule). We can
see that the SVM with RBF(�=50) found a slightly non-
linear solution that gives it a small but significant advantage
with respect to the Bayes Decision.

Model # params HTER Error (%)
Train Test

SVM with RBF(�=50) 2204 4.77 4.73
Linear SVM 2 4.78 4.75
Linear Regression 2 5.04 5.28
Bayes Decision 1 5.17 5.55

Table 1. Results for a text independent task. With 95% con-
fidence, the SVM with RBF(�=50) and the Linear SVM are
significantly better than Bayes Decision (over 36186 tests).

4.3. Text Dependent Experiments

For text dependent experiments, we used HMMs with the
same topology for the world and the client models. This
topology was based on previous experiments on another
dataset,CAVE[9], and was thus not optimized forPolyVar.
The resulting architecture is an HMM for each word with 2
states per phoneme and 3 Gaussians per state.

Having trained the client and world models, we used
the same protocol as for the text independent experiments
to train different decision rules: the 2-fold cross-validation
technique previously described.

Table 2 gives the results of these experiments. We com-
pared the same models as for text independent experiments.
This time, Bayes Decision yielded competitive results, and
both SVM gave similar results, but the difference between
all models shrinked: the relative improvement between SVM
with RBF(�=50) and Bayes Decision is only2:70%. This
is probably due to the fact that HMMs are better generative
models that GMMs for this dataset. Indeed, if the models
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Fig. 1. Different models to separate clients and impostors,
in a text independent task.

were perfectly estimated, the Bayes Decision with a thresh-
old seta posteriori should give the optimal solution, but
this is not a realistic scenario as it is in general impossible
to estimate perfectly the models and the threshold given the
available data.

Model # params HTER Error (%)
Train Test

SVM with RBF(�=50) 1750 3.28 3.34
Linear SVM 2 3.34 3.33
Linear Regression 2 3.59 3.60
Bayes Decision 1 3.38 3.42

Table 2. Results for a text dependent task. With 95% con-
fidence, there was no significant difference between Bayes
Decision and the other models (over 36186 tests).

5. CONCLUSION

In this paper, we have presented a simple technique to re-
place the classical thresholding rule used to accept or re-
ject a speaker by a more powerful decision function, based
on Linear Regression models or Support Vector Machines.
Such functions are trained in a discriminative way, using
as inputs the scores of client and world models previously
trained using classical generative models such as GMMs
and HMMs. Experiments on both text dependent and text
independent tasks always yielded performance improvements
and they were significant in text independent. Further ex-

periments using additional inputs, or using client dependent
discriminative models, are currently under investigation and
already gave very promising results.
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