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ABSTRACT
Assessing whether two models arestatistically significantly
different from each other is a very important step in re-
search, although it has unfortunately not received enough at-
tention in the field of person authentication. Several perfor-
mance measures are often used to compare models, such as
half total error rates(HTERs) andequal error rates(EERs),
but most being aggregates of two measures (such as thefalse
acceptance rateand thefalse rejection rate), simple statisti-
cal tests cannot be used as is. We show in this paper how to
adapt one of these tests in order to compute a confidence in-
terval around one HTER measure or to assess the statistical
significantness of the difference between two HTER mea-
sures. We also compare our technique with other solutions
that are sometimes used in the literature and show why they
yield often too optimistic results (resulting in false state-
ments about statistical significantness).

1. INTRODUCTION

The general field of biometric person authentication is con-
cerned with the use of several biometric traits such as the
voice, the face, the signature, or the fingerprints of persons
in order to assess their identity [1]. In all these cases, re-
searchers tend to use the same performance measures to es-
timate and compare their models. Most of them, such as the
half total error rate(HTER) or thedetection cost function
(DCF) are in fact aggregates of other measures such asfalse
acceptance rates(FARs) andfalse rejection rates(FRRs).
However, when it is time to compare a novel model to ex-
isting solutions on the same problem, a quick review of the
current literature in person authentication shows that either
no statistical test is used to assess the difference between
models, or, worse, statistical tests are wrongly used, which
often ends up in over-optimistic results, tending to show,
for instance, that the new model is indeed statistically sig-
nificantly better than the state-of-the-art while it might not
be the case in fact.

In this paper, we present a proper method to compute a
simple statistical test, known as thetest of two proportions,

or z-test, adapted to the problem of aggregate measures such
as HTER and DCF.

In section 2, we first review the main performance mea-
sures used in verification tasks, then in section 3 we recall
the purpose of thez-test, based on the Binomial distribu-
tion, and some of its variants. In section 4, we extend this
test to the case of aggregate measures such as HTER, while
in section 5, we present other possible solutions, which, as
explained, can lead to improper results. In fact, section 6
compares our solution to these other methods and show why
they yield over-optimistic results. Section 7 concludes this
paper with some proposed future work.

2. PERSON AUTHENTICATION MEASURES

A verification system has to deal with two kinds of events:
either the person claiming a given identity is the one who
he claims to be (in which case, he is called aclient), or he is
not (in which case, he is called animpostor). Moreover, the
system may generally take two decisions: eitheracceptthe
clientor rejecthim and decide he is animpostor.

Thus, the system may make two types of errors: afalse
acceptance, when the system accepts animpostor, and a
false rejection, when the system rejects aclient.

Let FA be the total number offalse acceptancesmade
by the system, FR be the total number offalse rejections,
NC be the number of client accesses, and NI be the number
of impostor accesses.

In order to be independent on the specific dataset distri-
bution, the performance of the system is often measured in
terms of rates of these two different errors, as follows:

FAR =
FA
NI

, FRR=
FR
NC

. (1)

A unique measure often used combines these two ratios
into the so-calleddetection cost function(DCF) [2] as fol-
lows:

DCF =
{

Cost(FR)· P (client) · FRR+
Cost(FA)· P (impostor) · FAR

(2)



whereP (client) is the prior probability that a client will
use the system,P (impostor) is the prior probability that an
impostor will use the system, Cost(FR) is the cost of a false
rejection, and Cost(FA) is the cost of a false acceptance.

A particular case of the DCF is known as thehalf total
error rate (HTER) where the costs are equal to 1 and the
probabilities are 0.5 each:

HTER =
FAR + FRR

2
. (3)

Most authentication systems are measured and com-
pared using HTERs or variations of it. The main question
we address in this paper is thus:how can we compute a con-
fidence interval around an HTER or assess the difference
between two systems yielding different HTERs.

Note that in most benchmark databases used in the au-
thentication literature, there is a significant unbalance be-
tween the number of client accesses and the number of im-
postor accesses. This is probably due to the relatively higher
cost of obtaining the former with respect to the latter. This
unbalance is the main reason why people use HTER to com-
pare models and not the usual classification error used in the
machine learning literature.

3. THE Z-TEST ON PROPORTIONS

Several statistical tests are available in the literature. For
standard classification tasks, a simple yet often used test is
known as thez-test, or test between two proportions. The
rationale of this test is the following: given a set ofn exam-
ples, each drawn independently and identically distributed
(i.i.d.) from an unknown distribution, our system is going
to take a decision for each example, and this decision will
be correct or not. Let us now look at the distribution of the
number of errors that will be made by our classification sys-
tem. Since each decision is independent from the others and
is binary, it is reasonable to assume that the random variable
X representing1 the number of errors should follow aBino-
mial distributionB(n, p) wheren is the number of examples
andp is the percentage of errors.

Moreover, it is known that a BinomialB(n, p) can be
approximated by a Normal distributionN (µ, σ2) with

µ = np and σ2 = np(1− p)

whenn is large enough2.
Finally, if X ∼ N (np, np(1− p)), then the distribution

of the proportion of errorsY = X
n ∼ N

(
p, p(1−p)

n

)
.

1In this paper we use the following notation: bold letters such asFA
represent random variables, while normal letters such as FA represent a
particular value of the underlying random variable.

2A rule of thumb often used is to havenp(1− p) larger than 10.
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Fig. 1. Confidence intervals are computed using the area
under the Normal curve.

3.1. Confidence Intervals

In order to compute a confidence interval aroundp, we can
search for bounds{p− β, p + β} such that

P (p− β < Y < p + β) = δ (4)

whereδ represents our confidence. This is called atwo-
sided test since we are searching for two bounds around
p. Fortunately, findingβ in (4) for a givenδ can be done
efficiently for the Normal distribution. Figure 1 illustrates
graphically the problem and Figure 2 summarizes the pro-
cedure to obtain the confidence interval.

3.2. Difference Between Proportions

Alternatively, if one wants to verify whether a given propor-
tion of errorspA is statistically significantly different from
another proportionpB , a similar test can be performed. In
the case where we already know thatpA cannot be lower
thanpB , a one-sidedtest is used, otherwise we use atwo-
sided test. Noting respectivelyYA and YB the random
variables representing the distribution ofpA and pB , the
one-sidedtest is based on

P (YA −YB < pA − pB) = δ (5)

while thetwo-sidedtest is based on

P (|YA −YB | < |pA − pB |) = δ (6)

which can be solved using the fact that the difference be-
tween two independent Normal distributions is a Normal



distribution where the mean is the difference between the
two Normal means and the variance is the sum of the two
Normal variances, hence, ifYA is not statistically different
from YB , then

YA −YB ∼ N
(

0,
pA(1− pA) + pB(1− pB)

n

)
(7)

and ifδ is higher than a predefined value (such as 95%), then
one can state thatpA is significantly different frompB . Note
that a better estimate of the variance of (7) can be obtained
when assumingpA = pB (which should be the case if they
are not significantly different). In that case, equation (7)
becomes

YA −YB ∼ N
(

0,
2p(1− p)

n

)
(8)

with

p =
pA + pB

2
.

Note however that using this test to verify whether two
models give statistically significantly different results on the
same test database makes a wrong hypothesis, sinceYA

andYB are not really independent as they correspond to
decisions taken onthe same test set.

3.3. Dependent Case

One possible solution proposed in [3] is to only take into
account the examples for which the two models disagree.
Let pAB be the proportion of examples correctly classified
by modelA and incorrectly classified by modelB, and sim-
ilarly pBA be the proportion of examples correctly classi-
fied by modelB and incorrectly classified by modelA. In
that case, the distributionYAB of the difference between
the proportions of errors committed by each model is still
Normal distributed and, assuming the two models are not
different from each other, should follow

YAB ∼ N
(

0,
pAB + pBA

n

)
(9)

with the corresponding two-sided test

P (YAB < |pAB − pBA|) = δ . (10)

This test is in fact very similar to the well-known Mc-
Nemar test, based on aχ2 distribution.

In the literature, most people adopt equation (8) and
some adopt equation (9); remember that in order to use
equation (9), one needs to have access to all the scores of
both models, and not just the numbers of errors. When pos-
sible, we will look at both solutions here, for the case of
person authentication.

4. A STATISTICAL TEST FOR HTERS

HTERs are not proportions, but they are an average of two
well-defined proportions (FAR and FRR). Given this, and
assuming some hypotheses regarding FAR and FRR3, we
propose here to extend the test between two proportions for
the case of HTERsas follows.

4.1. Confidence Intervals

Let the random variableFA represent the number of false
acceptances. We can model it by a Binomial, and hence by
a Normal, as follows:

FA ∼ B
(

NI,
FA
NI

)

∼ N
(

NI · FA
NI

, NI · FA
NI

·
(

1− FA
NI

))

∼ N (FA, FA · (1− FAR)) . (11)

The random variableFR can be modeled accordingly. We
can now write the distribution of the random variableFAR
representing the ratio of false acceptances:

FAR ∼ N
(

FA
NI

,
FA (1− FAR)

NI · NI

)

∼ N
(

FAR,
FAR(1− FAR)

NI

)
(12)

and similarly for the random variableFRR. Given the dis-
tribution ofFAR andFRR, we can estimate the distribution
of the random variableHTER as follows:

FAR+FRR ∼ N
ţ

FAR+FRR,
FAR(1− FAR)

NI
+

FRR(1− FRR)

NC

ű

FAR+FRR
2

∼ N
ţ

FAR+FRR
2

,
FAR(1− FAR)

4 · NI
+

FRR(1− FRR)

4 · NC

ű

HTER ∼ N
ţ

HTER,
FAR(1− FAR)

4 · NI
+

FRR(1− FRR)

4 · NC

ű

(13)

Using this last definition, we can now compute easily
confidence intervals around HTERs using the methodology
presented in section 3 and summarized in Figure 2 for clas-
sical confidence values used in the scientific literature,

Moreover, the test can be easily extended to variations
of HTER, such as the DCF. For instance, in the case of

3such that the distributions of FAR and FRR should be independent,
which may look false since they are both linked by the same model and
threshold, but in fact,given a model and associated thresholdthese two
quantities are indeed independent since they are computed on separate data
(the client accesses and the impostor accesses), assuming the model was
estimated on a separate training set, as it should be.



the well-known NIST evaluations performed yearly to com-
pare speaker verification systems, and which use the DCF
measure described by equation (2) with Cost(FR)= 10,
P(client)= 0.01, Cost(FA)= 1 and P(impostor)= 0.99,
the underlying Normal becomes:

DCF ∼ N
(

DCF,
FAR(1− FAR)

0.99−2 · NI
+

FRR(1− FRR)
100 · NC

)
.

(14)

4.2. Difference Between HTERs

The distribution of the difference between two HTERs as-
sumingindependencebetween the two underlying distribu-
tions is

HTERA − HTERB ∼ N (
0, σ2

INDEP

)
(15)

with

σ2
INDEP =





FARA (1− FARA) + FARB (1− FARB)
4 · NI

+
FRRA (1− FRRA) + FRRB (1− FRRB)

4 · NC

while the distribution of the difference between two HTERs
assumingdependencebetween the two underlying distribu-
tions becomes

HTERA − HTERB ∼ N (
0, σ2

DEP

)
(16)

with

σ2
DEP =

FARAB + FARBA

4 · NI
+

FRRAB + FRRBA

4 · NC

where FARAB = NIAB

NI and NIAB is the number of impos-
tor accesses correctly rejected by modelA and incorrectly
accepted by modelB, with similar definitions for FARBA,
FRRAB , and FRRBA.

Hence, in summary, and using the standard confidence
values used in the scientific literature, we obtain the sim-
ple methodology described in Figure 2 in order to compute
statistical tests for person authentication tasks4.

5. OTHER STATISTICAL TESTS

While several researchers have pointed out the use of thez-
testto compute statistical tests around values such as FAR or
FRR (see for instance [4]), we are not aware, to the best of
our knowledge, of any similar attempt for aggregate mea-
sures such as HTERs (or EER, or DCF). However, most
people publishing results in verification use HTERs or DCF
to assess the quality of their methods.

4While this summary concerns HTERs, it should now be obvious to
extend it to the general DCF function.

The confidence interval (CI) around an HTER is

HTER± σ · Zα/2 with

σ =

√
FAR(1− FAR)

4 · NI
+

FRR(1− FRR)
4 · NC

Zα/2 =





1.645 for a90% CI

1.960 for a95% CI

2.576 for a99% CI

and similarly, HTERA and HTERB are statistically
significantly different ifz > Zα/2 with

z =
|HTERA − HTERB |√√√√√√√

FARA (1− FARA) + FARB (1− FARB)
4 · NI

+

FRRA (1− FRRA) + FRRB (1− FRRB)
4 · NC

in the independent case, and

z =
|FARAB − FARBA + FRRAB − FRRBA|√

FARAB + FARBA

4 · NI
+

FRRAB + FRRBA

4 · NC

in the dependent case.

Fig. 2. Methodology for statistical tests around HTERs.

One simple solution could be to consider the classifica-
tion error instead of the HTER and compute statistical tests
around it. Since the classification error is a well-defined
proportion, we can apply thez-testas well; LetCLASS be
defined as the following random variable:

CLASS =
FA+FR
NC+NI

then, the corresponding underlying Normal becomes:

CLASS∼ N
(

FA+FR
NC+NI

,
FA+FR

(NC+NI)2

(
1− FA+FR

NC+NI

))

(17)
but remember that while this test is correct to assess models
according to their respective classification error, it does not
say anything on the confidence one has over the correspond-
ing HTER, which is the measure of interest in person au-
thentication. In fact, we will show in section 6.1 that, under
reasonable assumptions, the variance ofCLASS in equa-
tion (17) is always smaller than the variance ofHTER in



equation (13), hence confidence tests using (17) will always
result in over-confident statistical significance (or smaller
confidence intervals). This will be explored further in the
following section.

Another possible solution is to consider the HTER itself
as a proportion (which it is not directly) and compute the
statistical test on it. LetNAIVE be the random variable of
this value; the underlying Normal becomes:

NAIVE ∼ N
(

HTER,
HTER(1− HTER)

NC+NI

)
(18)

Again, we will show in section 6.1 that under reasonable
assumptions, the variance ofNAIVE in equation (18) is al-
ways smaller than the variance ofHTER in equation (13),
hence confidence tests using (17) should always result in
over-confident statistical significance (or smaller confidence
intervals).

Yet another solution that has been proposed by some re-
searchers (see for instance [5]) is to compute a statistical test
for FAR and FRR separately and then combine the results5.
For instance, in order to compute a confidence interval for
HTER, one would average both upper bounds and both
lower bounds found separately by the FAR and FRR tests.
On top of the fact that there is no theoretical ground to jus-
tify such an approach, there is an evident problem with all
approaches that consider separately FARs and FRRs. Two
models could yield very similar HTERs but for some reason
(in general linked to the choice of the threshold, which is
done in general on a separate data set) one could be slightly
biased toward FRRs and the other one slightly biased to-
ward FARs. In such a case, these tests would consider them
statistically significantly different while they would not be
when considering globally their respective HTER instead.
For this reason, we will not consider this solution further
here.

6. ANALYSIS

We would like to compare in this section the use of the pro-
posed statistical test for HTERs, with respect to the two
other tests presented in section 5. We will first show that
under some reasonable conditions, increasing the ratio be-
tween NI and NC will increase the difference between the
variance of the Normal of the proposed test and the variance
of the Normal of the other tests. Afterward, we present two
real case studies where the use of the proposed statistical
test would have yielded a different conclusion with regard
to the confidence intervals and the difference between the
compared models.

5The well-known NIST evaluation campaigns have also apparently re-
cently investigated the use of the McNemar test to assess speaker verifica-
tion methods, but have considered separately FARs and FRRs [6].

6.1. Theoretical Analysis

Let us first look in which conditionsσ2(13), the variance
of HTER as written in equation (13) is higher thanσ2(18),
the variance ofNAIVE as written in equation (18):

σ2(13) > σ2(18) (19)

implies that

FAR(1− FAR)
4 · NI

+
FRR(1− FRR)

4 · NC
>

HTER(1− HTER)
NC+NI

which can be simplified and yields

0 > (FAR ·NC−FRR·NI)(NI(1−FRR)−NC(1−FAR))

which means that inequation (19) will be true when either
NC is much less or much higher than NI (which is in gen-
eral the case), and FAR is similar to FRR (again, when
the threshold is chosen such that we haveequal error rate
(EER) on a separate validation set, as it is often done, this
is reasonable).

Let us now look in which conditionsσ2(13) is higher
thanσ2(17), the variance ofCLASS, representing the clas-
sification error:

σ2(13) > σ2(17) (20)

implies that

FAR(1− FAR)
4 · NI

+
FRR(1− FRR)

4 · NC
>

FA+FR
(NC+NI)2

· (FA+FR)2

(NC+NI)3

which can be re-written as

(1− FRR)NI(3NC + NI) > (1− FAR)NC(3NI + NC)

and assuming FAR is similar to FRR, it can be simplified
into

NI2 > NC2 (21)

which is true as long as NI is higher than NC, which is in
general the case, again.

In order to verify these relations graphically, we have
fixed some variables to reasonable values (FAR = 0.1, FRR
= 0.2, NC = 100) and have varied NI, the number of im-
postor accesses. Figure 3 shows the relation between the
standard deviation of the underlying Normal distributions
and the ratio between NI and NC. As expected, the higher
the ratio NI

NC, the bigger the difference between the standard
deviation of the Normal distributions related to the three
statistical tests. Moreover, we see that the standard devi-
ation of the proposedHTER distribution stays close to the
one of theFRR distribution, which is mostly influenced by
NC, the number of client accesses, and does not decrease
with the increase of NI, contrary to the two other solutions.
Since the size of the confidence interval is directly related
to the standard deviation, this Figure essentially shows that
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the confidence interval computed using the proposed tech-
nique will always be larger than that of the two other tech-
niques. Hence two verification methods yielding two dif-
ferent HTERs could easily be considered statistically sig-
nificantly different using one of the methods described in
section 5, while they would not be considered statistically
significantly different using the proposed technique. In fact,
the Figure shows that the confidence interval is directly in-
fluenced by the minimum of NC and NI and not their sum.

In the next two subsections, we present two real case
studies where the use of the proposed statistical test would
have yielded a different conclusion.

6.2. Empirical Analysis on XM2VTS

In the first case, the well-known text-independent audio-
visual verification database XM2VTS [7] was used. In this
database, the test set consists of up to 112000 impostor ac-
cesses and only 400 client accesses, for a total of 112400
accesses. In a recent competition [8], several models were
compared6 on a face verification task and we will look here
at the results of the best model, hereafter calledmodel A,
and the third best model, hereafter calledmodel B, appar-
ently significantly worse. Table 1 shows the difference of

6While this is not the topic of this paper (since it should apply to any
data/model), people interested in knowing more about the problem tackled
in this case study are referred to [8]; we used results of the models of IDIAP
and UniS-NC on the automatic registration task, using Lausanne Protocol
I. Furthermore, note that the results of UniS-NC are slightly different from
those published in [8], but correspond to the list of scores provided by one
of the authors of the method.

performance in terms of HTER between models A and B.
Having up to 112400 examples, one could indeed expect the
difference between the two models to be statistically signif-
icant.

Method FAR (%) FRR (%) HTER (%)

Model A 1.15 2.50 1.82
Model B 1.95 2.75 2.35

Table 1. HTER Performance comparison on the test set
between models A and B when the threshold was selected
according to the Equal Error Rate criterion (EER) on a sep-
arate validation set.

δ HTER NAIVE CLASS
eq (13) eq (18) eq (17)

90% 1.285% 0.131% 0.105%
95% 1.531% 0.156% 0.125%
99% 2.013% 0.206% 0.164%

Table 2. Confidence intervals around results of model A,
computed using three different hypotheses (and their re-
spective equation).

Table 2 shows the size of the confidence intervals com-
puted around the result (using HTER or the classification
error) obtained by model A for the three methods for three
different values ofδ (90%, 95% and 99%). As we can see,
for all values ofδ, the size of the interval is about one order
of magnitude larger for the proposed method than for the
two other methods.

HTER HTER NAIVE CLASS
DEP, eq (16) INDEP, eq (15) eq (18) eq (17)

δ 69.2% 64.7% 100.0% 100.0%
σ 0.0052 0.0057 0.0006 0.0005

Table 3. Confidence valueδ on the fact that model A is sta-
tistically significantly different from model B, according to
their respective performance (HTER or classification error),
and computed using four different hypotheses (and their re-
spective equation). For each method, we also giveσ, the
standard deviation of the corresponding statistical test.

Table 3 verifies whether the HTER obtained by model
A gives statistically significantly different results than the
one obtained by model B, using thetwo-sidedtest of equa-
tion (6) for the independent cases and (10) for the dependent
case. According to both proposed HTER method (indepen-
dent and dependent cases), both models are equivalent (the
confidence on their difference is much less than, say, 90%),



while according to both other methods, the models would
be different (with 100% confidence!). Remember that there
was only 400 client accesses during the test, hence it is rea-
sonable that only one error on these accesses makes a visible
difference in HTER while it cannot seriously be considered
statistically significant. This is well captured by our tech-
nique, but not by the other ones. Moreover, in this case,
the dependence/independence assumption did not have any
impact on the final decision.

6.3. Empirical Analysis on NIST’2000

In the second case, the well-known text-independent
speaker verification benchmark database NIST’2000 was
used. Here, the test set consists of 57748 impostor accesses
and 5825 client accesses, for a total of 63573 accesses. We
compared the performance of two models7 hereafter called
models CandD. Note that, while on XM2VTS the ratio be-
tween the number of impostor and client accesses was very
high (280 times more), for the NIST database, the ratio is
more reasonable, but still high (around 10).

Method FAR (%) FRR (%) HTER (%)

Model C 13.1 9.6 11.4
Model D 15.8 7.8 11.8

Table 4. HTER Performance comparison on the test set
between models C and D when the threshold was selected
according to the Equal Error Rate criterion (EER) on a sep-
arate validation set.

δ HTER NAIVE CLASS
eq (13) eq (18) eq (17)

90% 0.676% 0.414% 0.436%
95% 0.805% 0.493% 0.519%
99% 1.058% 0.648% 0.682%

Table 5. Confidence intervals around results of model C,
computed using three different hypotheses (and their re-
spective equation).

We now present the same kinds of results as for the
XM2VTS case. Table 4 shows the difference of perfor-
mance in terms of HTER between models C and D; Table 5
shows the size of the confidence intervals computed around
the result obtained by model C; as we can see, given a ratio
of impostor and client accesses around 10 instead of 280,
the difference between all the confidence intervals is less

7Once again, while this is not the topic of this paper, people interested
in knowing more about the problem tackled in this case study are referred
to [9].

HTER HTER NAIVE CLASS
DEP, eq (16) INDEP, eq (15) eq (18) eq (17)

δ 98.8% 89.1% 98.9% 100.0%
σ2 0.0016 0.0028 0.0018 0.0019

Table 6. Confidence valueδ on the fact that model C is sta-
tistically significantly different from model D, according to
their respective performance (HTER or classification error),
and computed using four different hypotheses (and their re-
spective equation). For each method, we also giveσ, the
standard deviation of the corresponding statistical test.

drastic but still exists; Table 6 verifies whether the HTER
obtained by model C gives statistically significantly differ-
ent results than the one obtained by model D. For each test,
we show both the confidence valueδ and the standard devi-
ationσ of the corresponding statistical test.

As it can be seen, in the DEP case,σ is very small, even
smaller than the NAIVE and CLASS solutions, hence ob-
taining a very high confidence that the two models are dif-
ferent. In order to explain this unexpected result, note than
none of the tests take into account the possible dependence
existing between the comparedmodels. Indeed, if the two
models are based on the same technique (which is often the
case; for instance, in speaker verification, most systems are
often based on Gaussian Mixture Models, but trained with
slightly different assumptions), then both systems will have
a natural tendency to answer very correlated scores on the
same example. In the case of the two models trained on
the XM2VTS database, they were very different (one was
based on a Gaussian Mixture Model, while the other one
was based on Linear Discriminant Analysis and Normal-
ized Correlation); while for the models trained on the NIST
database, both were in fact variations of Gaussian Mixture
Models, hence are probably very correlated. Unfortunately,
there exist no test that take this dependency into account.
Hence, for instance, the variancepAB+pBA

n of equation (9)
will be quickly very small simply because the models are
correlated (and not just because the examples are the same).
Using this equation will thus result in an underestimate of
the true variance when models are very correlated, as em-
pirically shown in Table 6.

On the other hand, the INDEP case does not take into
account the dependency between the data, but somehow it
is reasonable to expect that the effect of this error may be
balanced by the fact that it does not take into account the
dependency between the models neither. The correct solu-
tion probably lies somewhere between these two solutions,
hence, one should probably favor the most difficult test so
as to only assess statistical differences when both tests agree
on this fact (hence, here, with only 89.1% confidence).



7. CONCLUSION

In this paper, we have proposed a proper method to com-
pute statistical tests on aggregate measures such as HTER
or DCF often used in person authentication. We have also
shown why using other approximations such as tests on the
classification error instead would result in over-optimistic
decisions. We have given some empirical evidence using
two benchmark databases. It is important to note that the
test of two proportions is not the ultimate statistical test and
there exist other tests that are known to be sometimes more
appropriate for classification tasks (such as complex cross-
validation techniques for instance [10]). However, none of
these tests have so far addressed the problem of dependence
between the tested models. Nevertheless, an important find-
ing of this paper is that when people design new databases
for person authentication, they should keep in mind that it is
probably not worth having a huge unbalance between client
and impostor access numbers, since the statistical signifi-
cantness of the results will mainly depend on the smallest
of these two numbers (providing equal costs for false ac-
ceptances and false rejections).
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