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Abstract

Bag-of-words document representations are often usediniteage and video
processing. While it is relatively easy to determine a slétaord dictionary for
text documents, there is no simple mapping from raw imagesdeos to dictio-
nary terms. The classical approach builds a dictionarygugattor quantization
over a large set of useful visual descriptors extracted fudraining set, and uses a
nearest-neighbor algorithm to count the number of occaasf each dictionary
word in documents to be encoded. More robust approacheshesreproposed
recently that represent each visual descriptor as a spaight®d combination of
dictionary words. While favoring a sparse representatiadheatevel of visual de-
scriptors, those methods however do not ensure that imayessparse represen-
tation. In this work, we use mixed-norm regularization thiege sparsity at the
image level as well as a small overall dictionary. This applocan also be used to
encourage using the same dictionary words for all the imagaglass, providing
a discriminative signal in the construction of image repreations. Experimen-
tal results on a benchmark image classification dataset #avwwhen compact
image or dictionary representations are needed for cortipog efficiency, the
proposed approach yields better mean average precisidasisification.

1 Introduction

Bag-of-words document representations are widely usezkinitnage, and video processing [14, 1].
Those representations abstract from spatial and tempatal tb encode a document as a vector of
the numbers of occurrences in the document of descriptora & suitable dictionary. For text
documents, the dictionary might consist of all the wordsfalithe n-grams of a certain minimum
frequency in the document collection [1].

For images or videos, however, there is no simple mappinug fite raw document to descriptor
counts. Instead, visual descriptors must be first extraatetithen represented in terms of a care-
fully constructed dictionary. We will not discuss furthegrb the intricate processes of identifying
useful visual descriptors, such as color, texture, angled,shapes [14], and of measuring them at
appropriate document locations, such as on regular gridspecial interest points, or at multiple
scales [6].

For dictionary construction, the standard approach in ederpvision is to use some unsupervised
vector quantization (VQ) technique, oftéameans clustering [14], to create the dictionary. A new
image is then represented by a vector indexed by diction@aments (codewords), which for el-
ementd counts the number of visual descriptors in the image whosgest codeword id. VQ



representations are maximally sparse per descriptor mawe since they pick a single codeword
for each occurrence, but they may not be sparse for the inmgenvhole; furthermore, such repre-
sentations are not that robust with respect to descriptaalwiity.

Sparse representations have obvious computational lermfisaving both processing time in han-
dling visual descriptors and space in storing encoded isiage alleviate the brittleness of VQ
representations, several studies proposed represensatiemes where each visual descriptor is en-
coded as a weighted sum of dictionary elements, where thedengoptimizes a tradeoff between
reconstruction error and thie norm of the reconstruction weights [3, 5, 7, 8, 9, 16]. Thesdt
niques promote sparsity in determining a small set of coddsvérom the dictionary that can be
used to efficiently represent each visual descriptor of @aclge [13].

However, those approaches consider each visual descinptioe image as a separate coding prob-
lem and do not take into account the fact that descriptomgpidijust an intermediate step in creating
a bag of codewords representation for the whole image. Bpasse coding of each visual descrip-
tor does not guarantee sparse coding of the whole image migig prevent the use of such methods
in real large scale applications that are constrained Ineetime or space resources. In this study,
we propose and evaluate the mixed-norm regularizers [L2]110 take into account the structure

of bags of visual descriptors present in images. Using thisaach, we can for example specify an
encoder that exploits the fact that once a codeword has ledected to help represent one of the
visual descriptors of an image, it may as well be used to sgmteother visual descriptors of the

same image without much additional regularization cost.

Furthermore, while images are represented as bags, theidemeould be used faets of images,
such as all the images from a given category. In this casegdniggularization can be used to
specify that when a codeword has been selected to help esppreise of the visual descriptors of an
image of a given category, it could as well be used to reptestbar visual descriptors of any image
of the same category at no additional regularization cdsis form of regularization thus promotes
the use of a small subset of codewords for each category thdd be different from category to
category, thus including an indirect discriminative signaode construction.

Mixed regularization can be applied at two levels: for im&geoding, which can be expressed
as a convex optimization problem, and for dictionary leagniusing an alternating minimization
procedure. Dictionary regularization promotes a smalial@ary size directly, instead of indirectly
through the sparse encoding step.

The paper is organized as follows: Sec. 2 introduces thdiontased in the rest of the paper, and
summarizes the technical approach. Sec. 3 describes amed slok convex optimization problem for
mixed-regularization encoding. Sec. 4 extends the tecteniq learn the dictionary by alternating
optimization. Finally, Sec. 5 presents experimental tesut a well-known image database.

2 Problem Statement

We denote scalars with lower-case letters, vectors witt lmoVer-case letters such asWe assume
that the instance spacel®’ endowed with the standard inner product between two veet@sd
v,u-v =" ujv;. We also use the standafginorms|| - ||, overR™ with p € 1,2, co. We often

make use of the fact that - u = ||u||?, where as usual we omit the norm subscriptifes 2..

Our main goal is to encode effectively groups of instancesrims of a set of dictionary codewords

D = {d, }‘fi‘l. For example, if instances are image patches, each groupetine set of patches in
a particular image, and each codeword may represent somdekaverage patch. The'th group

is denotedg,,, wheregG,,, = {mmyi}l./g:”{" where eactx,, ; € R™ is an instance. When discussing

operations on a single group, we géor the group in discussion and denotedsyits i'th instance.

GivenD andg, our first subgoal, encoding, is to minimize a tradeoff betwéhe reconstruction
error for G in terms of D, and a suitable mixed norm for the matrix of reconstructiagiglits
that express each; as a positive linear combination af; € D. The tradeoff between accurate
reconstruction or compact encoding is governed througly@aezation parametey.

Our second subgoal, learning, is to estimate a good digtjoPagiven a set of training groups
{Gm} _,. We achieve these goals by alternating between (i) fixingdtbtonary to find recon-



struction weights that minimize the sum of encoding objestifor all groups, and (ii) fixing the
reconstruction weights for all groups to find the diction#lgit minimizes a tradeoff between the
sum of group encoding objectives and the mixed norm of thiodiary.

3 Group Coding

To encode jointly all the instances in a grogwith dictionaryD, we solve the following convex
optimization problem:

A* = argming Q(A4,G,D)

2
D ; D
where  Q(A.G.D) = i |ei- Sl + AT eyl @
and af > 0 Vij.
The reconstruction matrid = {ozj}‘jli‘1 consists of non-negative vectors; = (o, ... ,a‘jgl)

specifying the contribution ofl; to each instance. The second term of the objective weighs the
mixed ¢, /¢, norm of A, which measures reconstruction complexity, with the rege&tion param-
eter )\ that balances reconstruction quality (the first term) aidmstruction complexity.

The problem of Eqg. (1) can be solved by coordinate descerdvihg all indices intact except for
indexr, omitting fixed arguments of the objective, and denoting:bwndc, terms which do not
depend orw,., we obtain the following reduced objective:
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We next show how to find the optimuma,. for p = 1 andp = 2. Let Q be just the reconstruction
term of the objective. Its partial derivatives with respcéachx’. are

0

5@ =D 0j(d; - dy) — i di +agfde | (3)
4 J#r
Let us make the following abbreviation for a given index
pi=aido— > al(d; - dy) . 4)

J#ET
It is clear that ify; < 0 then the optimum for is zero. In the derivation below we therefore
employp; = [1i] . where[z], = max{0, z}. Next we derive the optimal solution for each of the

norms we consider starting with= 1. Forp = 1 the objective function is separable and we get the
following sub-gradient condition for optimality,
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Sincea! > 0 the above subgradient condition for optimality impliesttha = 0 wheny;” < A and
otherwisen! = (u — \)/||d.||?.

The objective function is not separable when= 2. In this case we need to examine the entire
set of valueqp; }. We denote by the vector whosé'th value isp;”. Assume for now that the
optimal solution has a non-zero norifw.,-||2 > 0. In this case, the gradient 6J(c,) with an/,
regularization term is

o,
e 2ty — pt 4+ A
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At the optimum this vector must be zero, so after rearrantgnms we obtain

2 A - +

Therefore, the vectoty,. is in the same direction gg* which means that we can simply write
a, = s uT wheres is a non-negative scalar. We thus can rewrite Eq. (6) sokelyfanction of the

scaling parameter
A —1
+ _ 2 +
st = (a1 0 ) we
sllut]]

1 A
A (1 - ||u+||> | @)

We now revisit the assumption that the norm of the optimalitsah is greater than zero. Sinee
cannot be negative the above expression also provides tuitiom for obtaining a zero vector for
a,. Namely, the termi — \/| || must be positive, thus, we get that = 0 if ||| < X and
otherwisea,. = su™ wheres is defined in Eq. (7).

which implies that

Once the optimal group reconstruction matwxis found, we compress the matrix into a single
vector. This vector is of fixed dimension and does not depenthe number of instances that
constitute the group. To do so we simply takeghgorm of eachw;, thus yielding §D| dimensional
vector. Since we use mixed-norms which are sparsity prowoi particular the /¢, mixed-norm,
the resulting vector is likely to be sparse, as we show empentally in Section 6.

Since visual descriptors and dictionary elements are oodgssed through inner products in the
above method, it could be easily generalized to work withddekernels instead.

4 Dictionary Learning

Now that we know how to achieve optimal reconstruction foiveig dictionary, we examine how to
learn a good dictionary, that is, a dictionary that balar®een reconstruction error, reconstruc-
tion complexity, overall complexity relative to the giveaining set. In particular, we seek a learning
method that facilitates both induction of new dictionaryrd®and the removal of dictionary words
with low predictive power. To achieve this goal, we will apgl /¢» regularization controlled by a
new hyperparametey, to dictionary words. For this approach to work, we assuna¢ ittstances
have been mean-subtracted so that the zero vécteithe (uninformative) mean of the data and
regularization toward§ is equivalent to removing words that do not contribute mucikkdmpact
representation of groups.

LetG = {G1,...,G,} be asetof groups and = {A4,, ..., A, } the corresponding reconstruction
coefficients relative to dictionarf. Then, the following objective meets the above requiresient
D

QA D) = Q(An,Gm, D)+ lldill, stal, ;> 0Vi,j,m ®)

m=1 k=1
where the single group objectivg(A,,, G,., D) is as in Eq. (1).
In our application we set = 2 as the norm penalty of the dictionary words. For fixédthe ob-
jective above is convex . Moreover, the same coordinate descent technique dedaiim/e for

finding the optimum reconstruction weights can be used dugaia after simple algebraic manipu-
lations. Define the following auxiliary variables:

Ur = Z Zo‘in,rwm»i and v, = Z Zain,jaiz,k . 9
m 7

m 1

Then, we can express. compactly as follows. As before, assume tiydt|| > 0. Calculating the
gradient with respect to eael) and equating it to zero, we obtain

Z Z Zain,jain,rdj + (ain,r)QdT’ - ain,rwm,i + ’Yﬁ =0.

m i€G, \j#r



Swapping the sums over and: with the sum ovey, using the auxiliary variables, and noting that
d; does not depend neither amnor oni, we obtain

d,
Z Vj,de + Vr,rdr — vy + ’Ym =0. (10)
g#r "

Similarly to the way we solved fat,., we now define the vectar, = v, — Z#T vj rd; to get the
following iterate ford,.:

d, = v} {1 i } u, 11)
' [l +

where, as above, we incorporated the cdse= 0, by applying the operatof|, to the term

1 — v/|lur||. The form of the solution implies that we can eliminatg as it become®, when-

ever the norm of the residual vectay. is smaller thany. Thus, the dictionary learning procedure

naturally facilitates the ability to remove dictionary wisrwhose predictive power falls below the

regularization parameter.

5 Experimental Setting

We compare our approach to image coding with previous sgadiag methods by measuring their
impact on classification performance on the PASCAL VOC (slgdbject Classes) 2007 dataset [4].
The VOC datasets contain images from 20 classes, includiogle, animalskird), vehicles éero-
plane), and indoor objectschair), and are considered natural, difficult images for clasaifo.
There are around 2500 training images, 2500 validation @samd 5000 test images in total.

For each coding technique under consideration, we explaege of values for the hyperparameters
A and~. In the past, many features have been used for VOC clasgificavith bag-of-words
histograms of local descriptors like SIFT [6] being most plap. In our experiments, we extract
local descriptors based on a regular grid for each imagegfilgooints are located at every seventh
pixel horizontally and vertically, which produces an awgraf 3234 descriptors per image. We
used a custom local descriptor that collects Gabor wavedgionses at different orientations, spatial
scales, and spatial offsets from the interest point. Foigntations (°, 45°, 90°, 135°) and 27
(scale, offset) combinations are used, for a total of 108pmmments. The 27 (scale, offset) pairs were
chosen by optimizing a previous image recognition taskelabed to this paper, using a genetic
algorithm. Tolaet al. [15] independently described a descriptor that similadgsiresponses at
different orientations, scales, and offsets (see theinr€i@). Overall, this descriptor is generally
comparable to SIFT and results in similar performance.

To build an image feature vector from the descriptors, we thuestigate the following methods:

1. Build a bag-of-words histogram over hierarchikaheans codewords by looking up each
descriptor in a hierarchicél-means tree [11]. We use branching factors of 6 to 13 and a
depth of 3 for a total of between 216 and 2197 codewords. Wheshwith multiple feature
types, this method results in very good classification perémce on the VOC task.

2. Jointly train a dictionary and encode each descriptargiané, sparse coding approach
with v = 0, which was studied previously [5, 7, 9].

3. Jointly train a dictionary and encode sets of descripidisre each set corresponds to a
single image, using; /¢» group sparse coding, varying bothand\.

4. Jointly train a dictionary and encode sets of descriptdrsre each set corresponds to all
descriptors or all images of a single class, ugin» sparse coding, varying bothand\.
Then, use, /¢, sparse coding to encode the descriptors in individual image obtain a
singlea vector per image.

As explained before, we normalized all descriptors to have mean so that regularizing dictionary
words towards the zero vector implies dictionary sparsity.

In all cases, the initial dictionary used during trainingswabtained from the same hierarchiéal
means tree, with a branching factor of 10 and depth 4 ratlaer 3has used in the baseline method.
This scheme yielded an initial dictionary of size 7873.



Mean Average Precision vs Dictionary Size
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Figure 1: Mean Average Precision on the 2007 PASCAL VOC detafas a function of the size of
the dictionary obtained by both and¢, /¢, regularization approaches when varyih@r v. We
show results where descriptors are grouped either by imabg dass. The baseline system using
hierarchicalk-means is also shown.

To evaluate the impact of different coding methods on an mamb end-to-end task, image classi-
fication, we selected the VOC 2007 training set for classifaning, the VOC 2007 validation set
for hyperparameter selection, and the VOC 2007 test sebfoevaluation. After the datasets are
encoded with each of the methods being evaluated, a onasvalislinear SVM is trained on the
encoded training set for each of the 20 classes, and the Wdsth$perparamete€’ is chosen on
the validation set. Class average precisions on the endededet are then averaged across the 20
classes to produce the mean average precision shown inaphgr

6 Resultsand Discussion

In Figure 1 we compare the mean average precisions of the ettmgpapproaches as encoding
hyperparameters are varied to control the overall dictipsize. For the/; approach, achieving
different dictionary size was obtained by tuningwhile settingy = 0. For the¢, /¢, approach,
since it was not possible to compare all possible combinataf A and~, we first fixed~ to be
zero, so that it could be comparable to the standardpproach with the same setting. Then we
fixed X\ to a value which proved to yield good results and varjedAs it can be seen in Figure 1,
when the dictionary is allowed to be very large, the plyrapproach yields the best performance.
On the other hand, when the size of the dictionary mattees) #ll the approaches based @i/,
regularization performed better than thecounterpart. Even hierarchicdalmeans performed better
than the puré; in that case. The version éf /¢5 in which we allowedy to vary provided the best
tradeoff between dictionary size and classification penéorce when descriptors were grouped per
image, which was to be expected aglirectly promotes sparse dictionaries. More interesyingl
when grouping descriptors per class instead of per imaggetveven better performance for small
dictionary sizes by varying.

In Figure 2 we compare the mean average precisiofisafid/, /¢> regularization as average image
size varies. When image size is constrained, which is oftercéise is large-scale applications, all



Mean Average Precision vs Average Image Size
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Figure 2: Mean Average Precision on the 2007 PASCAL VOC detalas a function of the average
size of each image as encoded using the trained dictionaaynell by bottY; and/, /¢5 regular-
ization approaches when varyingand~. We show results where descriptors are grouped either by
image or by class. The baseline system using hierarchica¢ans is also shown.
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Figure 3: Comparison of the dictionary words used to recansthe same image. A pufe coding
was used on the left, while a mixég/¢,; encoding was used on the right plot. Each row represents
the number of times each dictionary word was used in the stnartion of the image.

the ¢, /¢> regularization choices yield better performance tiiamegularization. Once agaify
regularization performed even worse than hierarchiealeans for small image sizes

Figure 3 compares the usage of dictionary words to encodestine image, either usirfg (on the
left) or ¢ /¢5 (on the right) regularization. Each graph shows the numbtmes a dictionary word

(a row in the plot) was used in the reconstruction of the ima@kearly, ¢, regularization yields
an overall sparser representation in terms of total numbdictionary coefficients that are used.
However, almost all of the resulting dictionary vectors aom-zero and used at least once in the
coding process. As expected, with/¢> regularization, a dictionary word is either always used or
never used yielding a much more compact representatiomrirstef the total number of dictionary
words that are used.



Overall, mixed-norm regularization yields better perfarme when the problem to solve includes
resource constraints, either time (a smaller dictionaeydg faster image encoding) or space (one
can store or convey more images when they take less spacey. miight thus be a good fit when
a tradeoff between pure performance and resources is neaslésl often the case for large-scale
applications or online settings.

Finally, grouping descriptors per class instead of per endigring dictionary learning promotes the
use of the same dictionary words for all images of the sanssclence yielding some form of weak
discrimination which appears to help under space or timstcaimts.
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