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Abstract
Despite their overwhelming capacity to overfit,
deep learning architectures tend to generalize rel-
atively well to unseen data, allowing them to be
deployed in practice. However, explaining why
this is the case is still an open area of research.
One standing hypothesis that is gaining popularity,
e.g. Hochreiter & Schmidhuber (1997); Keskar
et al. (2017), is that the flatness of minima of the
loss function found by stochastic gradient based
methods results in good generalization. This pa-
per argues that most notions of flatness are prob-
lematic for deep models and can not be directly
applied to explain generalization. Specifically,
when focusing on deep networks with rectifier
units, we can exploit the particular geometry of pa-
rameter space induced by the inherent symmetries
that these architectures exhibit to build equivalent
models corresponding to arbitrarily sharper min-
ima. Furthermore, if we allow to reparametrize
a function, the geometry of its parameters can
change drastically without affecting its general-
ization properties.

1 Introduction
Deep learning techniques have been very successful in
several domains, like object recognition in images (e.g
Krizhevsky et al., 2012; Simonyan & Zisserman, 2015;
Szegedy et al., 2015; He et al., 2016), machine transla-
tion (e.g. Cho et al., 2014; Sutskever et al., 2014; Bahdanau
et al., 2015; Wu et al., 2016; Gehring et al., 2016) and speech
recognition (e.g. Graves et al., 2013; Hannun et al., 2014;
Chorowski et al., 2015; Chan et al., 2016; Collobert et al.,
2016). Several arguments have been brought forward to jus-
tify these empirical results. From a representational point of
view, it has been argued that deep networks can efficiently
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approximate certain functions (e.g. Montufar et al., 2014;
Raghu et al., 2016). Other works (e.g Dauphin et al., 2014;
Sagun et al., 2014; Choromanska et al., 2015) have looked
at the structure of the error surface to analyze how trainable
these models are. Finally, another point of discussion is
how well these models can generalize (Nesterov & Vial,
2008; Keskar et al., 2017; Zhang et al., 2017). These corre-
spond, respectively, to low approximation, optimization and
estimation error as described by Bottou (2010).

Our work focuses on the analysis of the estimation error. In
particular, different approaches had been used to look at the
question of why stochastic gradient descent results in solu-
tions that generalize well (Bottou & LeCun, 2005; Bottou &
Bousquet, 2008). For example, Duchi et al. (2011); Nesterov
& Vial (2008); Hardt et al. (2016); Bottou et al. (2016); Go-
nen & Shalev-Shwartz (2017) rely on the concept of stochas-
tic approximation or uniform stability (Bousquet & Elisseeff,
2002). Another conjecture that was recently (Keskar et al.,
2017) explored, but that could be traced back to Hochreiter
& Schmidhuber (1997), relies on the geometry of the loss
function around a given solution. It argues that flat minima,
for some definition of flatness, lead to better generalization.
Our work focuses on this particular conjecture, arguing that
there are critical issues when applying the concept of flat
minima to deep neural networks, which require rethinking
what flatness actually means.

While the concept of flat minima is not well defined, having
slightly different meanings in different works, the intuition
is relatively simple. If one imagines the error as a one-
dimensional curve, a minimum is flat if there is a wide
region around it with roughly the same error, otherwise
the minimum is sharp. When moving to higher dimen-
sional spaces, defining flatness becomes more complicated.
In Hochreiter & Schmidhuber (1997) it is defined as the
size of the connected region around the minimum where the
training loss is relatively similar. Chaudhari et al. (2017)
relies, in contrast, on the curvature of the second order struc-
ture around the minimum, while Keskar et al. (2017) looks
at the maximum loss in a bounded neighbourhood of the
minimum. All these works rely on the fact that flatness
results in robustness to low precision arithmetic or noise in
the parameter space, which, using an minimum description
length-based argument, suggests a low expected overfitting.
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However, several common architectures and parametriza-
tions in deep learning are already at odds with this conjec-
ture, requiring at least some degree of refinement in the
statements made. In particular, we show how the geome-
try of the associated parameter space can alter the ranking
between prediction functions when considering several mea-
sures of flatness/sharpness. We believe the reason for this
contradiction stems from the Bayesian arguments about KL-
divergence made to justify the generalization ability of flat
minima (Hinton & Van Camp, 1993). Indeed, Kullback-
Liebler divergence is invariant to change of parameters
whereas the notion of ”flatness” is not. The demonstrations
of Hochreiter & Schmidhuber (1997) are approximately
based on a Gibbs formalism and rely on strong assumptions
and approximations that can compromise the applicability
of the argument, including the assumption of a discrete
function space.

2 Definitions of flatness/sharpness

Figure 1: An illustration of the notion of flatness. The
loss L as a function of θ is plotted in black. If the height
of the red area is ε, the width will represent the volume
ε-flatness. If the width is 2ε, the height will then represent
the ε-sharpness. Best seen with colors.

For conciseness, we will restrict ourselves to supervised
scalar output problems, but several conclusions in this pa-
per can apply to other problems as well. We will consider
a function f that takes as input an element x from an in-
put space X and outputs a scalar y. We will denote by fθ
the prediction function. This prediction function will be
parametrized by a parameter vector θ in a parameter space
Θ. Often, this prediction function will be over-parametrized
and two parameters (θ, θ′) ∈ Θ2 that yield the same pre-
diction function everywhere, ∀x ∈ X , fθ(x) = fθ′(x), are
called observationally equivalent. The model is trained to
minimize a continuous loss function L which takes as argu-
ment the prediction function fθ. We will often think of the
loss L as a function of θ and adopt the notation L(θ).

The notion of flatness/sharpness of a minimum is relative,
therefore we will discuss metrics that can be used to com-
pare the relative flatness between two minima. In this sec-
tion we will formalize three used definitions of flatness in

the literature.

Hochreiter & Schmidhuber (1997) defines a flat minimum
as ”a large connected region in weight space where the
error remains approximately constant”. We interpret this
formulation as follows:

Definition 1. Given ε > 0, a minimum θ, and a loss L,
we define C(L, θ, ε) as the largest (using inclusion as the
partial order over the subsets of Θ) connected set containing
θ such that ∀θ′ ∈ C(L, θ, ε), L(θ′) < L(θ) + ε. The ε-
flatness will be defined as the volume of C(L, θ, ε). We will
call this measure the volume ε-flatness.

In Figure 1, C(L, θ, ε) will be the purple line at the top of
the red area if the height is ε and its volume will simply be
the length of the purple line.

Flatness can also be defined using the local curvature of the
loss function around the minimum if it is a critical point 1.
Chaudhari et al. (2017); Keskar et al. (2017) suggest that
this information is encoded in the eigenvalues of the Hessian.
However, in order to compare how flat one minimum versus
another, the eigenvalues need to be reduced to a single
number. Here we consider the spectral norm and trace of
the Hessian, two typical measurements of the eigenvalues
of a matrix.

Additionally Keskar et al. (2017) defines the notion of ε-
sharpness. In order to make proofs more readable, we will
slightly modify their definition. However, because of norm
equivalence in finite dimensional space, our results will
transfer to the original definition in full space as well. Our
modified definition is the following:

Definition 2. Let B2(ε, θ) be an Euclidean ball centered
on a minimum θ with radius ε. Then, for a non-negative
valued loss function L, the ε-sharpness will be defined as
proportional to

maxθ′∈B2(ε,θ)

(
L(θ′)− L(θ)

)
1 + L(θ)

.

In Figure 1, if the width of the red area is 2ε then the height
of the red area is maxθ′∈B2(ε,θ)

(
L(θ′)− L(θ)

)
.

ε-sharpness can be related to the spectral norm of the Hes-
sian. Indeed, a second-order Taylor expansion of L around
a critical point minimum is written

L(θ′) = L(θ) +
1

2
(θ′ − θ) (∇2L)(θ)(θ′ − θ)T

+ o(‖θ′ − θ‖22).

In this second order approximation, the ε-sharpness at θ

1In this paper, we will often assume that is the case when
dealing with Hessian-based measures in order to have them well-
defined.
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would be ∣∣∣∣∣∣(∇2L)(θ)
∣∣∣∣∣∣

2
ε2

2
(
1 + L(θ)

) .

3 Properties of Deep Rectified
Networks

Before moving forward to our results, in this section we first
introduce the notation used in the rest of paper. Most of our
results, for clarity, will be on the deep rectified feedforward
networks with a linear output layer that we describe below,
though they can easily be extended to other architectures
(e.g. convolutional, etc.).

Definition 3. GivenK weight matrices (θk)k≤K with nk =

dim
(
vec(θk)

)
and n =

∑K
k=1 nk, the output y of a deep

rectified feedforward networks with a linear output layer is:

y = φrect

(
φrect

(
· · ·φrect(x · θ1) · · ·

)
· θK−1

)
· θK ,

where

• x is the input to the model, a high-dimensional vector

• φrect is the rectified elementwise activation func-
tion (Jarrett et al., 2009; Nair & Hinton, 2010;
Glorot et al., 2011), which is the positive part
(zi)i 7→ (max(zi, 0))i.

• vec reshapes a matrix into a vector.

Note that in our definition we excluded the bias terms, usu-
ally found in any neural architecture. This is done mainly
for convenience, to simplify the rendition of our arguments.
However, the arguments can be extended to the case that
includes biases (see Appendix B) . Another choice is that
of the linear output layer. Having an output activation func-
tion does not affect our argument either: since the loss is a
function of the output activation, it can be rephrased as a
function of linear pre-activation.

Deep rectifier models have certain properties that allows
us in section 4 to arbitrary manipulate the flatness of a
minimum.

An important topic for optimization of neural networks is
understanding the non-Euclidean geometry of the param-
eter space as imposed by the neural architecture (see, for
example Amari, 1998). In principle, when we take a step
in parameter space what we expect to control is the change
in the behavior of the model (i.e. the mapping of the input
x to the output y). In principle we are not interested in
the parameters per se, but rather only in the mapping they
represent.

Figure 2: An illustration of the effects of non-negative ho-
mogeneity. The graph depicts level curves of the behavior
of the loss L embedded into the two dimensional param-
eter space with the axis given by θ1 and θ2. Specifically,
each line of a given color corresponds to the parameter as-
signments (θ1, θ2) that result observationally in the same
prediction function fθ. Best seen with colors.

If one defines a measure for the change in the behavior of
the model, which can be done under some assumptions,
then, it can be used to define, at any point in the parameter
space, a metric that says what is the equivalent change in
the parameters for a unit of change in the behavior of the
model. As it turns out, for neural networks, this metric is
not constant over Θ. Intuitively, the metric is related to
the curvature, and since neural networks can be highly non-
linear, the curvature will not be constant. See Amari (1998);
Pascanu & Bengio (2014) for more details. Coming back
to the concept of flatness or sharpness of a minimum, this
metric should define the flatness.

However, the geometry of the parameter space is more com-
plicated. Regardless of the measure chosen to compare two
instantiations of a neural network, because of the structure
of the model, it also exhibits a large number of symmet-
ric configurations that result in exactly the same behavior.
Because the rectifier activation has the non-negative homo-
geneity property, as we will see shortly, one can construct a
continuum of points that lead to the same behavior, hence
the metric is singular. Which means that one can exploit
these directions in which the model stays unchanged to
shape the neighbourhood around a minimum in such a way
that, by most definitions of flatness, this property can be
controlled. See Figure 2 for a visual depiction, where the
flatness (given here as the distance between the different
level curves) can be changed by moving along the curve.
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Let us redefine, for convenience, the non-negative homo-
geneity property (Neyshabur et al., 2015; Lafond et al., 2016)
below. Note that beside this property, the reason for study-
ing the rectified linear activation is for its widespread adop-
tion (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015;
Szegedy et al., 2015; He et al., 2016).

Definition 4. A given a function φ is non-negative homoge-
neous if

∀(z, α) ∈ R× R+, φ(αz) = αφ(z)

.

Theorem 1. The rectified function φrect(x) = max(x, 0)
is non-negative homogeneous.

Proof. Follows trivially from the constraint that α > 0,
given that x > 0⇒ αx > 0, iff α > 0.

For a deep rectified neural network it means that:

φrect
(
x · (αθ1)

)
· θ2 = φrect(x · θ1) · (αθ2),

meaning that for this one (hidden) layer neural network,
the parameters (αθ1, θ2) is observationally equivalent to
(θ1, αθ2). This observational equivalence similarly holds
for convolutional layers.

Given this non-negative homogeneity, if (θ1, θ2) 6= (0, 0)
then

{
(αθ1, α

−1θ2), α > 0
}

is an infinite set of obser-
vationally equivalent parameters, inducing a strong non-
identifiability in this learning scenario. Other models like
deep linear networks (Saxe et al., 2013), leaky rectifiers (He
et al., 2015) or maxout networks (Goodfellow et al., 2013)
also have this non-negative homogeneity property.

In what follows we will rely on such transformations, in
particular we will rely on the following definition:

Definition 5. For a single hidden layer rectifier feedforward
network we define the family of transformations

Tα : (θ1, θ2) 7→ (αθ1, α
−1θ2)

which we refer to as a α-scale transformation.

Note that a α-scale transformation will not affect the gener-
alization, as the behavior of the function is identical. Also
while the transformation is only defined for a single layer
rectified feedforward network, it can trivially be extended
to any architecture having a single rectified network as a
submodule, e.g. a deep rectified feedforward network. For
simplicity and readability we will rely on this definition.

4 Deep Rectified networks and flat
minima

In this section we exploit the resulting strong non-
identifiability to showcase a few shortcomings of some
definitions of flatness. Although α-scale transformation
does not affect the function represented, it allows us to sig-
nificantly decrease several measures of flatness. For another
definition of flatness, α-scale transformation show that all
minima are equally flat.

4.1 Volume ε-flatness
Theorem 2. For a one-hidden layer rectified neural network
of the form

y = φrect(x · θ1) · θ2,

and a minimum θ = (θ1, θ2), such that θ1 6= 0 and θ2 6= 0,
∀ε > 0 C(L, θ, ε) has an infinite volume.

We will not consider the solution θ where any of the weight
matrices θ1, θ2 is zero, θ1 = 0 or θ2 = 0, as it results
in a constant function which we will assume to give poor
training performance. For α > 0, the α-scale transformation
Tα : (θ1, θ2) 7→ (αθ1, α

−1θ2) has Jacobian determinant
αn1−n2 , where once again n1 = dim

(
vec(θ1)

)
and n2 =

dim
(
vec(θ2)

)
. Note that the Jacobian determinant of this

linear transformation is the change in the volume induced
by Tα and Tα ◦ Tβ = Tαβ . We show below that there is
a connected region containing θ with infinite volume and
where the error remains approximately constant.

Proof. We will first introduce a small region with approxi-
mately constant error around θ with non-zero volume. Given
ε > 0 and if we consider the loss function continuous with
respect to the parameter, C(L, θ, ε) is an open set containing
θ. Since we also have θ1 6= 0 and θ2 6= 0, let r > 0 such
that the L∞ ball B∞(r, θ) is in C(L, θ, ε) and has empty
intersection with {θ′, θ′1 = 0}. Let v = (2r)n1+n2 > 0 the
volume of B∞(r, θ).

Since the Jacobian determinant of Tα is the multiplicative
change of induced by Tα, the volume of Tα

(
B∞(r, θ)

)
is

vαn1−n2 . If n1 6= n2, we can arbitrarily grow the volume
of Tα

(
B∞(r, θ)

)
, with error within an ε-interval of L(θ),

by having α tends to +∞ if n1 > n2 or to 0 otherwise.

If n1 = n2, ∀α′ > 0, Tα′

(
B∞(r, θ)

)
has volume v. Let

C ′ =
⋃
α′>0 Tα′

(
B∞(r, θ)

)
. C ′ is a connected region

where the error remains approximately constant, i.e. within
an ε-interval of L(θ).

Let α = 2 ‖θ1‖∞+r
‖θ1‖∞−r . Since

B∞(r, θ) = B∞(r, θ1)×B∞(r, θ2),
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Figure 3: An illustration of how we build different dis-
joint volumes using Tα. In this two-dimensional exam-
ple, Tα

(
B∞(r′, θ)

)
and B∞(r′, θ) have the same volume.

B∞(r′, θ), Tα
(
B∞(r′, θ)

)
, T 2
α

(
B∞(r′, θ)

)
, . . . will there-

fore be a sequence of disjoint constant volumes. C ′ will
therefore have an infinite volume. Best seen with colors.

where × is the Cartesian set product, we have

Tα
(
B∞(r, θ)

)
= B∞(αr, αθ1)×B∞(α−1r, α−1θ2).

Therefore, Tα
(
B∞(r, θ)

)
∩B∞(r, θ) = ∅ (see Figure 3).

Similarly, B∞(r, θ), Tα
(
B∞(r, θ)

)
, T 2
α

(
B∞(r, θ)

)
, . . .

are disjoint and have volume v. We have also
T kα
(
B∞(r′, θ)

)
= Tαk

(
B∞(r′, θ)

)
∈ C ′. The vol-

ume of C ′ is then lower bounded by 0 < v + v + v + · · ·
and is therefore infinite. C(L, θ, ε) has then infinite volume
too, making the volume ε-flatness of θ infinite.

This theorem can generalize to rectified neural networks in
general with a similar proof. Given that every minimum
has an infinitely large region (volume-wise) in which the
error remains approximately constant, that means that every
minimum would be infinitely flat according to the volume
ε-flatness. Since all minima are equally flat, it is not possible
to use volume ε-flatness to gauge the generalization property
of a minimum.

4.2 Hessian-based measures
The non-Euclidean geometry of the parameter space, cou-
pled with the manifolds of observationally equal behavior of
the model, allows one to move from one region of the param-
eter space to another, changing the curvature of the model
without actually changing the function. This approach has
been used with success to improve optimization, by moving
from a region of high curvature to a region of well behaved

curvature (e.g. Desjardins et al., 2015; Salimans & Kingma,
2016). In this section we look at two widely used measures
of the Hessian, the spectral radius and trace, showing that
either of these values can be manipulated without actually
changing the behavior of the function. If the flatness of a
minimum is defined by any of these quantities, then it could
also be easily manipulated.

Theorem 3. The gradient and Hessian of the loss L with
respect to θ can be modified by Tα.

Proof.

L(θ1, θ2) = L(αθ1, α
−1θ2),

we have then by differentiation

(∇L)(θ1, θ2) = (∇L)(αθ1, α
−1θ2)

[
αIn1

0
0 α−1In2

]
⇔ (∇L)(αθ1, α

−1θ2) = (∇L)(θ1, θ2)

[
α−1In1 0

0 αIn2

]
and

(∇2L)(αθ1, α
−1θ2)

=

[
α−1In1

0
0 αIn2

]
(∇2L)(θ1, θ2)

[
α−1In1

0
0 αIn2

]
.

Sharpest direction Through these transformations we
can easily find, for any critical point which is a minimum
with non-zero Hessian, an observationally equivalent param-
eter whose Hessian has an arbitrarily large spectral norm.

Theorem 4. For a one-hidden layer rectified neural network
of the form

y = φrect(x · θ1) · θ2,

and critical point θ = (θ1, θ2) being a minimum
for L, such that (∇2L)(θ) 6= 0, ∀M > 0,∃α >
0,
∣∣∣∣∣∣(∇2L)

(
Tα(θ)

)∣∣∣∣∣∣
2
≥ M where

∣∣∣∣∣∣(∇2L)
(
Tα(θ)

)∣∣∣∣∣∣
2

is
the spectral norm of (∇2L)

(
Tα(θ)

)
.

Proof. The trace of a symmetric matrix is the sum of its
eigenvalues and a real symmetric matrix can be diagonalized
in R, therefore if the Hessian is non-zero, there is one non-
zero positive diagonal element. Without loss of generality,
we will assume that this non-zero element of value γ > 0
corresponds to an element in θ1. Therefore the Frobenius
norm

∣∣∣∣∣∣(∇2L)
(
Tα(θ)

)∣∣∣∣∣∣
F

of

(∇2L)(αθ1, α
−1θ2)

=

[
α−1In1

0
0 αIn2

]
(∇2L)(θ1, θ2)

[
α−1In1

0
0 αIn2

]
.
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is lower bounded by α−2γ.

Since all norms are equivalent in finite dimension, there
exists a constant r > 0 such that r|||A|||F ≤ |||A|||2 for all
symmetric matrices A. So by picking α <

√
rγ
M , we are

guaranteed that
∣∣∣∣∣∣(∇2L)

(
Tα(θ)

)∣∣∣∣∣∣
2
≥M .

Any minimum with non-zero Hessian will be observation-
ally equivalent to a minimum whose Hessian has an arbi-
trarily large spectral norm. Therefore for any minimum
in the loss function, if there exists another minimum that
generalizes better then there exists another minimum that
generalizes better and is also sharper according the spectral
norm of the Hessian. The spectral norm of critical points’
Hessian becomes as a result less relevant as a measure of
potential generalization error. Moreover, since the spectral
norm lower bounds the trace for a positive semi-definite
symmetric matrix, the same conclusion can be drawn for
the trace.

Further properties of the Hessian are analyzed in Appendix
E.

4.3 ε-sharpness

Figure 4: An illustration of how we exploit non-
identifiability and its particular geometry to obtain sharper
minima: although θ is far from the θ2 = 0 line, the observa-
tionally equivalent parameter θ′ is closer. The green and red
circle centered on each of these points have the same radius.
Best seen with colors.

We have redefined for ε > 0 the ε-sharpness of Keskar et al.
(2017) as follow

maxθ′∈B2(ε,θ)

(
L(θ′)− L(θ)

)
1 + L(θ)

where B2(ε, θ) is the Euclidean ball of radius ε centered
on θ. This modification will demonstrate more clearly the
issues of that metric as a measure of probable generaliza-
tion. If we use K = 2 and (θ1, θ2) corresponding to a
non-constant function, i.e. θ1 6= 0 and θ2 6= 0, then we can
define α = ε

‖θ1‖2 . We will now consider the observation-

ally equivalent parameter Tα(θ1, θ2) = (ε θ1
‖θ1‖2 , α

−1θ2).
Given that ‖θ1‖2 ≤ ‖θ‖2, we have that (0, α−1θ2) ∈

B2

(
ε, Tα(θ)

)
, making the maximum loss in this neighbor-

hood at least as high as the best constant-valued function,
incurring relatively high sharpness. Figure 4 provides a
visualization of the proof.

For rectified neural network every minimum is observation-
ally equivalent to a minimum that generalizes as well but
with high ε-sharpness. This also applies when using the
full-space ε-sharpness used by Keskar et al. (2017). We
can prove this similarly using the equivalence of norms
in finite dimensional vector spaces and the fact that for
c > 0, ε > 0, ε ≤ ε(c + 1) (see Keskar et al. (2017)). We
have not been able to show a similar problem with random
subspace ε-sharpness used by Keskar et al. (2017), i.e.
a restriction of the maximization to a random subspace,
which could relate to the notion of wide valleys described
by Chaudhari et al. (2017).

By exploiting the non-Euclidean geometry and non-
identifiability of rectified neural networks, we were able to
demonstrate some of the limits of using typical definitions of
minimum’s flatness as core explanation for generalization.

5 Allowing reparametrizations
In the previous section 4 we explored the case of a fixed
parametrization, that of deep rectifier models. In this section
we demonstrate a simple observation. If we are allowed to
change the parametrization of some function f , we can
obtain arbitrarily different geometries without affecting how
the function evaluates on unseen data. The same holds for
reparametrization of the input space. The implication is that
the correlation between the geometry of the parameter space
(and hence the error surface) and the behavior of a given
function is meaningless if not preconditioned on the specific
parametrization of the model.

5.1 Model reparametrization
One thing that needs to be considered when relating flatness
of minima to their probable generalization is that the choice
of parametrization and its associated geometry are arbitrary.
Since we are interested in finding a prediction function in a
given family of functions, no reparametrization of this fam-
ily should influence generalization of any of these functions.
Given a bijection g onto θ, we can define new transformed
parameter η = g−1(θ). Since θ and η represent in different
space the same prediction function, they should generalize
as well.

Let’s call Lη = L ◦ g the loss function with respect to the
new parameter η. We generalize the derivation of Subsec-
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(a) Loss function with default parametrization

(b) Loss function with reparametrization

(c) Loss function with another reparametrization

Figure 5: A one-dimensional example on how much the
geometry of the loss function depends on the parameter
space chosen. The x-axis is the parameter value and the
y-axis is the loss. The points correspond to a regular grid in
the default parametrization. In the default parametrization,
all minima have roughly the same curvature but with a
careful choice of reparametrization, it is possible to turn
a minimum significantly flatter or sharper than the others.
Reparametrizations in this figure are of the form η = (|θ −
θ̂|2 + b)a(θ− θ̂) where b ≥ 0, a > − 1

2 and θ̂ is shown with
the red vertical line.

tion 4.2:

Lη(η) = L
(
g(η)

)
⇒ (∇Lη)(η) = (∇L)

(
g(η)

)
(∇g)(η)

⇒ (∇2Lη)(η) = (∇g)(η)T (∇2L)
(
g(η)

)
(∇g)(η)

+ (∇L)
(
g(η)

)
(∇2g)(η).

At a differentiable critical point, we have by definition
(∇L)

(
g(η)

)
= 0, therefore the transformed Hessian at a

critical point becomes

(∇2Lη)(η) = (∇g)(η)T (∇2L)
(
g(η)

)
(∇g)(η).

This means that by reparametrizing the problem we can
modify to a large extent the geometry of the loss function so
as to have sharp minima of L in θ correspond to flat minima
ofLη in η = g−1(θ) and conversely. Figure 5 illustrates that
point in one dimension. Several practical (Dinh et al., 2014;
Rezende & Mohamed, 2015; Kingma et al., 2016; Dinh
et al., 2016) and theoretical works (Hyvärinen & Pajunen,
1999) show how powerful bijections can be. We can also
note that the formula for the transformed Hessian at a critical
point also applies if g is not invertible, g would just need
to be surjective over Θ in order to cover exactly the same
family of prediction functions

{fθ, θ ∈ Θ} = {fg(η), η ∈ g−1(Θ)}.

We show in Appendix A, bijections that allow us to perturb
the relative flatness between a finite number of minima.

Instances of commonly used reparametrization are batch
normalization (Ioffe & Szegedy, 2015), or the virtual batch
normalization variant (Salimans et al., 2016), and weight
normalization (Badrinarayanan et al., 2015; Salimans &
Kingma, 2016; Arpit et al., 2016). Im et al. (2016) have
plotted how the loss function landscape was affected by
batch normalization. However, we will focus on weight nor-
malization reparametrization as the analysis will be simpler,
but the intuition with batch normalization will be similar.
Weight normalization reparametrizes a nonzero weight w
as w = s v

‖v‖2 with the new parameter being the scale s and
the unnormalized weight v 6= 0.

Since we can observe that w is invariant to scaling of v,
reasoning similar to Section 3 can be applied with the sim-
pler transformations T ′α : v 7→ αv for α 6= 0. Moreover,
since this transformation is a simpler isotropic scaling, the
conclusion that we can draw can be actually more powerful
with respect to v:

• every minimum has infinite volume ε-sharpness;

• every minimum is observationally equivalent to an
infinitely sharp minimum and to an infinitely flat min-
imum when considering nonzero eigenvalues of the
Hessian;

• every minimum is observationally equivalent to a mini-
mum with arbitrarily low full-space and random sub-
space ε-sharpness and a minimum with high full-space
ε-sharpness.

This further weakens the link between the flatness of a
minimum and the generalization property of the associated
prediction function when a specific parameter space has not
been specified and explained beforehand.
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5.2 Input representation
As we conclude that the notion of flatness for a minimum in
the loss function by itself is not sufficient to determine its
generalization ability in the general case, we can choose to
focus instead on properties of the prediction function instead.
Motivated by some work in adversarial examples (Szegedy
et al., 2014; Goodfellow et al., 2015) for deep neural net-
works, one could decide on its generalization property by
analyzing the gradient of the prediction function on exam-
ples. Intuitively, if the gradient is small on typical points
from the distribution or has a small Lipschitz constant, then
a small change in the input should not incur a large change
in the prediction.

But this infinitesimal reasoning is once again very dependent
of the local geometry of the input space. For an invertible
preprocessing ξ−1, e.g. feature standardization, whitening
or gaussianization (Chen & Gopinath, 2001), we will call
fξ = f ◦ ξ the prediction function on the preprocessed input
u = ξ−1(x). We can reproduce the derivation in Section 5
to obtain

∂fξ
∂uT

(
ξ(u)

)
=

∂f

∂xT
(
ξ(u)

) ∂ξ
∂uT

(u).

As we can alter significantly the relative magnitude of the
gradient at each point, analyzing the amplitude of the gradi-
ent of the prediction function might prove problematic if the
choice of the input space have not been explained before-
hand. This remark applies in applications involving images,
sound or other signals with invariances (Larsen et al., 2015).
For example, Theis et al. (2016) show for images how a
small drift of one to four pixels can incur a large difference
in terms of L2 norm.

6 Discussion
It has been observed empirically that minima found by stan-
dard deep learning algorithms that generalize well tend
to be flatter than found minima that did not generalize
well (Chaudhari et al., 2017; Keskar et al., 2017). How-
ever, when following several definitions of flatness, we have
shown that the conclusion that flat minima should generalize
better than sharp ones cannot be applied as is without fur-
ther context. Previously used definitions fail to account for
the complex geometry of some commonly used deep archi-
tectures. In particular, the non-identifiability of the model
induced by symmetries, allows one to alter the flatness of a
minimum without affecting the function it represents. Addi-
tionally the whole geometry of the error surface with respect
to the parameters can be changed arbitrarily under different
parametrizations. In the spirit of (Swirszcz et al., 2016), our
work indicates that more care is needed to define flatness
to avoid degeneracies of the geometry of the model under
study. Also such a concept can not be divorced from the

particular parametrization of the model or input space.
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(a) ψ(r, r̂, δ, ρ)

(b) g−1(θ)

Figure 6: An example of a radial transformation on a 2-
dimensional space. We can see that only the area in blue
and red, i.e. inside B2(θ̂, δ), are affected. Best seen with
colors.

A Radial transformations
We show an elementary transformation to locally perturb the
geometry of a finite-dimensional vector space and therefore
affect the relative flatness between a finite number minima,
at least in terms of spectral norm of the Hessian. We define
the function:

∀δ > 0,∀ρ ∈]0, δ[,∀(r, r̂) ∈ R+×]0, δ[,

ψ(r, r̂, δ, ρ) = 1
(
r /∈ [0, δ]

)
r + 1

(
r ∈ [0, r̂]

)
ρ
r

r̂

+ 1
(
r ∈]r̂, δ]

) (
(ρ− δ) r − δ

r̂ − δ
+ δ
)

ψ′(r, r̂, δ, ρ) = 1
(
r /∈ [0, δ]

)
+ 1

(
r ∈ [0, r̂]

) ρ
r̂

+ 1
(
r ∈]r̂, δ]

) ρ− δ
r̂ − δ

For a parameter θ̂ ∈ Θ and δ > 0, ρ ∈]0, δ[, r̂ ∈]0, δ[,
inspired by the radial flows (Rezende & Mohamed, 2015)
in we can define the radial transformations

∀θ ∈ Θ, g−1(θ) =
ψ
(
‖θ − θ̂‖2, r̂, δ, ρ

)
‖θ − θ̂‖2

(
θ − θ̂

)
+ θ̂

with Jacobian

∀θ ∈ Θ, (∇g−1)(θ) = ψ′(r, r̂, δ, ρ) In

− 1
(
r ∈]r̂, δ]

) δ(r̂ − ρ)

r3(r̂ − δ)
(θ − θ̂)T (θ − θ̂)

+ 1
(
r ∈]r̂, δ]

)δ(r̂ − ρ)

r(r̂ − δ)
In,

with r = ‖θ − θ̂‖2.

First, we can observe in Figure 6 that these transformations
are purely local: they only have an effect inside the ball
B2(θ̂, δ). Through these transformations, you can arbitrarily
perturb the ranking between several minima in terms of
flatness as described in Subsection 5.1.

B Considering the bias parameter
When we consider the bias parameter for a one (hidden)
layer neural network, the non-negative homogeneity prop-
erty translates into

y = φrect(x · θ1 + b1) · θ2 + b2

= φrect(x · αθ1 + αb1) · α−1θ2 + b2,

which results in conclusions similar to section 4.

For a deeper rectified neural network, this property results
in

y = φrect

(
φrect

(
· · ·φrect(x · θ1 + b1) · · ·

)
· θK−1 + bK−1

)
· θK + bK

= φrect

(
φrect

(
· · ·φrect(x · α1θ1 + α1b1) · · ·

)
· αK−1θK−1 +

K−1∏
k=1

αkbK−1

)
· αKθK + bK

for
∏K
k=1 αk = 1. This can decrease the amount of eigen-

values of the Hessian that can be arbitrarily influenced.

C Rectified neural network and
Lipschitz continuity

Relative to recent works (Hardt et al., 2016; Gonen &
Shalev-Shwartz, 2017) assuming Lipschitz continuity of the
loss function to derive uniform stability bound, we make
the following observation:
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Theorem 5. For a one-hidden layer rectified neural network
of the form

y = φrect(x · θ1) · θ2,

if L is not constant, then it is not Lipschitz continuous.

Proof. Since a Lipschitz function is necessarily absolutely
continuous, we will consider the cases where L is absolutely
continuous. First, if L has zero gradient almost everywhere,
then L is constant.

Now, if there is a point θ with non-zero gradient, then by
writing

(∇L)(θ1, θ2) = [(∇θ1L)(θ1, θ2)

(∇θ2L)(θ1, θ2)],

we have

(∇L)(αθ1, α
−1θ2) = [α−1(∇θ1L)(θ1, θ2)

α(∇θ2L)(θ1, θ2)].

Without loss of generality, we consider (∇θ1L)(θ1, θ2) 6= 0.
Then the limit of the norm

‖(∇L)(αθ1, α
−1θ2)‖22 = α−2‖(∇θ1L)(θ1, θ2)‖22

+ α2‖(∇θ2L)(θ1, θ2)‖22

of the gradient goes to +∞ as α goes to 0. Therefore, L is
not Lipschitz continuous.

This result can be generalized to several other models con-
taining a one-hidden layer rectified neural network, includ-
ing deeper rectified networks.

D Euclidean distance and input
representation

A natural consequence of Subsection 5.2 is that metrics re-
lying on Euclidean metric like mean square error or Earth-
mover distance will rank very differently models depending
on the input representation chosen. Therefore, the choice
of input representation is critical when ranking different
models based on these metrics. Indeed, bijective transfor-
mations as simple as feature standardization or whitening
can change the metric significantly.

On the contrary, ranking resulting from metrics like f-
divergence and log-likelihood are not perturbed by bijective
transformations because of the change of variables formula.

E Eigenspectrum of Hessian
In Section 4.2, we show how to manipulate the spectral
radius and trace of the Hessian as a notion of sharpness. In

However, some notion of sharpness might take into account
the entire eigenspectrum of the Hessian as opposed to its
largest eigenvalue, for instance, Chaudhari et al. (2017) de-
scribe the notion of wide valleys, allowing the presence of
very few large eigenvalues. We can generalize the trans-
formations between observationally equivalent parameters
to deeper neural networks with K − 1 hidden layers: for
αk > 0, Tα : (θk)k≤K 7→ (αkθk)k∈K with

∏K
k=1 αk = 1.

If we define

Dα =


α−11 In1 0 · · · 0

0 α−12 In2
· · · 0

...
...

. . .
...

0 0 · · · α−1K InK


then the first and second derivatives at Tα(θ) will be

(∇L)
(
Tα(θ)

)
=(∇L)(θ)Dα

(∇2L)
(
Tα(θ)

)
=Dα(∇2L)(θ)Dα.

We will show to which extent you can increase several
eigenvalues of (∇2L)

(
Tα(θ)

)
by varying α.

Definition 6. For each n×n matrixA, we define the vector
λ(A) of sorted singular values of A with their multiplicity
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

If A is symmetric positive semi-definite, λ(A) is also the
vector of its sorted eigenvalues.

Theorem 6. For a (K − 1)-hidden layer rectified neural
network of the form

y = φrect(φrect(· · ·φrect(x · θ1) · · · ) · θK−1) · θK ,

and critical point θ = (θk)k≤K being a minimum for L,
such that (∇2L)(θ) has rank r = rank

(
(∇2L)(θ)

)
, ∀M >

0,∃α > 0 such that
(
r − mink≤K(nk)

)
eigenvalues are

greater than M .

Proof. For simplicity, we will note
√
M the principal

square root of a symmetric positive-semidefinite matrix
M . The eigenvalues of

√
M are the square root of the

eigenvalues of M and are its singular values. By defini-
tion, the singular values of

√
(∇2L)(θ)Dα are the square

root of the eigenvalues of Dα(∇2L)(θ)Dα. Without loss
of generality, we consider mink≤K(nk) = nK and choose
∀k < K,αk = β−1 and αK = βK−1. Since Dα and√

(∇2L)(θ) are positive symmetric semi-definite matrices,
we can apply the multiplicative Horn inequalities (Klyachko,
2000) on singular values of the product

√
(∇2L)(θ)Dα:

∀i ≤ n,j ≤ (n− nK),

λi+j−n
(
(∇2L)(θ)D2

α

)
≥ λi

(
(∇2L)(θ)

)
β2.
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By choosing β >
√

M

λr

(
(∇2L)(θ)

) , since we have

∀i ≤ r, λi
(
(∇2L)(θ)

)
≥ λr

(
(∇2L)(θ)

)
> 0 we can

conclude that

∀i ≤ (r − nK),

λi
(
(∇2L)(θ)D2

α

)
≥ λi+nk

(
(∇2L)(θ)

)
β2

≥ λr
(
(∇2L)(θ)

)
β2 > M.

It means that there exists an observationally equivalent pa-
rameter with at least

(
r −mink≤K(nk)

)
arbitrarily large

eigenvalues. Since Sagun et al. (2016) seems to suggests that
rank deficiency in the Hessian is due to over-parametrization
of the model, one could conjecture that

(
r−mink≤K(nk)

)
can be high for thin and deep neural networks, resulting in
a majority of large eigenvalues. Therefore, it would still
be possible to obtain an equivalent parameter with large
Hessian eigenvalues, i.e. sharp in multiple directions.


