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Abstract. This paper proposes the use of Gaussian Mixture Mod-
els to estimate conditional probability density functions in an envi-
ronmental risk mapping context. A conditional Gaussian Mixture
Model has been compared to the geostatistical method of Sequen-
tial Gaussian Simulations and shows good performances in recon-
structing local PDF. The data sets used for this comparison are
parts of the digital elevation model of Switzerland.

INTRODUCTION

Environmental survey needs very reliable tools in order to facilitate decision
making. An important category of these tools is called “Risk Maps”. It
consists of drawing various kinds of probability maps, such as “indicator
maps” (probability of exceeding a threshold), the “value at risk” (quantile
map), etc.

These problems can be solved using classical regression models such as
K-Nearest Neighbors, Inverse Distance, Indicator Kriging, Artificial Neural
Networks, etc. However, it is known that regression models based on min-
imization of the expected error have a smoothing effect and do not recover
the variability of data. In the case of risk mapping, this smoothing effect is
not acceptable as we are especially interested in unusual events, i.e. events
that are not necessarily extreme but often far from the mean value. It is thus
necessary to develop alternate prediction methods which could concentrate
on reconstructing not only the mean but also the variability and eventually
the whole distribution of the data.

In Geostatistics, Stochastic Simulations [5] were developed to solve these
particular problems. However, these methods have some drawbacks. The
modelization process is usually very complicated and necessitates a strong
expert knowledge; they are often based on some assumptions about data
distribution (stationarity, normality, . . . ); they do not provide any analytical
model of the local distribution of a sample point which could be reused for
other tasks.



In this paper, we propose a method that can estimate the local probability
density function (PDF) for each data point, without making any assumption
on the distribution of the data. It is based on the use of Gaussian Mixture
Models (GMM) for conditional density estimation, by conditioning a global
PDF model on the sample location.

To evaluate the relative performance of this method, we compare it to the
well-known Geostatistical method of Sequential Gaussian Simulations (SGS).

In the following, we first present the principles of conditional GMM and
SGS algorithms. We then describe the methodology used to build, use and
compare the models during the experiments. Finally, we present the ex-
periments themselves, the results and some conclusions on the efficiency of
conditional GMM for local PDF estimation.

ALGORITHMS DESCRIPTION

Gaussian Mixture Models

Gaussian Mixture Models have the property of being able to represent any
distribution as long as the number of Gaussians in the mixture is large
enough. The PDF of a vector v can be modeled as:

p(v) =
n∑

i=1

wi · N (v, µi,Σi) (1)

where wi, µi and Σi are respectively the weight, the mean vector and the
covariance matrix of the ith of the n Gaussians of the model. All wi are
positive and sum to 1.

In the present study, we are interested in modeling the distribution p(y|x)
of a variable y given its position x. An interesting solution is to use a neural
network with inputs x and which outputs the parameters of a mixture of
Gaussians on y, the whole thing being optimized by gradient ascent [6][1].
However such solution, while appealing, often does not work in practice as
it suffers from initialization problems: if the Gaussians are not properly ini-
tialized, the learning algorithm is often stuck in poor local optima, and with
such solution, we only control the parameters of the neural network. Hence,
an other solution is to use the definition:

p(y|x) =
p(y,x)
p(x)

. (2)

The method developped for these experiments was found to be similar to
the Distorted Probability Mixture Network described in [6]. The idea is to
use the property of diagonal GMM 1 allowing to write:

1i.e. a GMM where the covariance matrix of each Gaussian is diagonal. Hence, for each
Gaussian: p(v) =

∏
i
p(vi)



p(y,x) =
n∑

i=1

wiN (y, µyi, σyi)N (x, µxi, Σxi). (3)

It is then possible to derive p(x) from this model, simply by “removing” the
contribution of y to the model. The expression p(y|x) then becomes:

p(y|x) =
n∑

i=1

Wi(x)N (y, µyi, σyi) (4)

with:

Wi(x) =
wiN (x, µxi, Σxi)∑n

j=1 wjN (x, µxj , Σxj)
. (5)

Sequential Gaussian Simulations

The idea of stochastic simulations is to develop a spatial Monte Carlo gener-
ator that will be able to generate many, and in some sense equally probable,
realizations of a random function (in general, described by a joint probability
density function).

Simulations differ from regression models as reconstruction of the his-
togram and of the spatial variability of original data takes precedence over
local accuracy.

In the present study, SGS were applied. This method consists of gener-
ating values corresponding to given spatial locations, using a modelization
of the spatial correlation (also called variogram model in Geostatistics) of a
normally distributed known data set. The experimental variogram γ is first
constructed using the formula:

γ(h) =
1

2N(h)

N(h)∑

i=1

(y(x)− y(x + h))2 (6)

where h is the vector of the direction in which the correlation is measured,
and N(h) is the number of pairs of points (x1,x2) such that

−→
x1x2= h. h

usually has a user-defined tolerance in norm and direction. If its direction
tolerance is 90◦, the variogram is omni-directional. Given this experimental
variogram, which is of course not a continuous function, we still need to model
it using various continuous functions. One of the most commonly used is the
spherical model, whose formula for a fixed direction of h is:

γ̂(h) =
{

3h
2a − 1

2

(
h
a

)3
0 ≤ h ≤ a

1 h > a

where h is the norm of the vector h, and a is called the “range” of the
variogram in the studied direction, i.e. the distance beyond which there is
no more spatial correlation (in case of stationary data).



The variogram model is then used to compute the weights of a linear
regression method called Kriging [2] (similar to Gaussian Processes [7]) which
is the best linear unbiased estimator. It allows not only to estimate the value
of new datum but also to compute the variance of this estimation.

Each simulated value is then generated from a normal distribution whose
mean and variance are computed by applying Kriging on the neighboring
(original and previously simulated) data points, based on the global vari-
ogram model.

METHODOLOGY

In the experiments presented in this paper, the data set is segmented into
three parts. The first part is the training set, defined as

Y = (xi, yi), ∀i = 1, . . . , N (7)

where x is the input vector (which represents the coordinates of the sample
on a map), and y is the scalar output (studied value). The second part is the
testing set, defined as

V = (ui, vi), ∀i = 1, . . . , M (8)

where u is the input vector, and the output v is hidden to the models. The
third part, which contains at least ten times more points than the training and
testing sets, is called reference set. It will be used to compute the reference
cumulative distribution of each point of the testing set.

The training set is used to tune the model’s parameters and hyper-
parameters as it will be explained for each method in the following sub-
sections.

The tuned models are then used to build a cumulative distribution func-
tion for each point of the testing set. These cumulative distributions are then
compared to those based on the reference set2. The quantitative performance
of the models is evaluated on this last comparison.

GMM Experimental Protocol

In order to train a conditional GMM, one first need to select some hyper-
parameters, such as the number of Gaussians, the relative variance lower
bound in each dimension, and the Dirichlet prior on the weights of each
Gaussians.

The initial position of the Gaussians must also be chosen. After several
empirical experiments, we decided to initialize the GMM with one Gaussian
per training point. The mean vector of each Gaussian was initially set to
the position of the associated training point in the input space. Afterward,

2As the reference set is very large, a non-parametric method, detailed later, can be used
to estimate reliably the distribution.



the GMM was trained using the Expectation-Maximization (EM) algorithm
[3]. At the end of the training procedure, the Gaussians which were not
contributing to the model (i.e. whose weights were close to 0) were removed.

The choice of the other hyper-parameters is done by k-fold cross-validation.
Various criteria, measured on validation data, were tested to select efficiently
the optimal set of hyper-parameters, such as the maximization of the like-
lihood, the lowest prediction error and the best reconstruction of centered
moments. Finally, maximization of likelihood appeared to be the most effi-
cient criterion.

SGS Experimental Protocol

SGS can only be used on normally distributed data. As a consequence, if this
is not the case for original data, a Normal Score transformation[5] is needed.
This transformation consists of the function NS : FY → N (0, 1), where FY(y)
is the cumulative distribution function of y in Y. The crucial part is then
to model the spatial correlation (i.e. the variogram). It can be difficult (or
even impossible) to fit the variogram’s shape with an appropriate model,
depending on the studied phenomenon, the spatial repartition of data, the
number of points, etc. In the present experiments, variograms were modeled
using the classical spherical model presented before.

A simulation procedure starts by defining a random path visiting each
location u of V once. Then, the simulated values are obtained by kriging of
the neighboring training and previously simulated data. Afterward, they are
back-transformed using NS−1 : N (0, 1) → FY .

After a given number of simulations of the whole testing set (usually at
least 100), the cumulative distribution at each point is estimated using a
cumulative histogram.

Model Comparison Method

Comparing local PDF models is very difficult when there is only one real-
ization of the studied phenomenon. In order to solve this problem, we used
large data sets (thousands of samples) from which we only kept a small por-
tion for training and testing (a typical training set in Geostatistics contains
a few hundreds of samples). Remaining data were used to build a reference
cumulative distribution function Cref (v|u) at every location u of the testing
set.

Cref (v|u) is constructed by selecting the k nearest neighbors of each test-
ing location, taken from the reference set and compute a cumulative his-
togram as it has been done for simulations. To define how many neighbors
have to be taken, we simply divided the number of points in the reference set
by the number of testing points. With such an approach, and providing that
the testing locations are not clustered, one can consider that most of the k
nearest neighbors of a testing point are only associated with this point. Of
course, this cumulative histogram is only an approximation of the true CDF.



However it is the best approximation one can expect without any a priori
knowledge of the data.

To measure the quality of a conditional PDF estimator, we proceed as
follows:

• construct the conditional PDF estimator,

• estimate the cumulative Cmodel(v|u) at every location u,

• compute the D-Statistic, which is the greatest discrepancy between
Cref (v|u) and Cmodel(v|u) for each u, as it is used in the Kolmogorov-
Smirnof Test[4] to verify whether two distribution functions are differ-
ent,

• compute the mean of the D-Statistics over the whole testing set.

This statistic is the main quantitative performance criterion that will be
use in this paper.

EXPERIMENTS

Data description

Two data sets were used in this paper3. The first one is the digital elevation
model of Switzerland and will be designed as SWRND (left of Figure 1). The
second one is a subset of the previous one, and focuses on the mountains of
the eastern part of Switzerland. It will be referenced as GRISONS (right of
Figure 1).

In both cases, 3 subsets were generated: a training, a testing and a refer-
ence set. Table 1 gives the number of points inside each set.

Subsets SWRND GRISONS
Train 500 500
Test 1000 1000
Reference 93628 16032
Neighbors 100 20

Table 1: Number of data points inside the various subsets of SWRND and
GRISONS. Train and Test were extracted randomly from the full data set, and Ref-
erence is the remaining data. The value “Neighbors” indicates how many neighbors
were taken in the Reference set to construct the reference cumulative histogram of
the Test points.

For numerical stability reasons, the coordinates have been linearly trans-
formed so that they are all positive and smaller than 1. For the same reasons,
altitudes are given in kilometers in order to have smaller values.

The main characteristic of the SWRND data set is that its histogram (left
of Figure 2) shows clearly a multi-modal distribution of the altitude values.

3these data sets are available at http://www.idiap.ch/learning/data/swissdem.tar.gz.



Figure 1: Presentation of the complete data sets SWRND (left) and GRISONS
(right)
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Figure 2: Statistical histograms of output values (altitudes in kilometers) for
SWRND (left) and GRISONS (right). The plain curve is the reference set, the
dash curve is the training set, and the dot curve is the testing set.

This can also be observed on left of Figure 1 where the high altitudes of the
Alps appear in dark, while the low altitudes of the Swiss Plateau appear in
light grey. The GRISONS data set looks simpler as its histogram is unimodal
(right of Figure 2). However it has a high local variability, not easy to extract
from the global tendency of medium altitudes.

The cumulative histograms used for the experiments are constituted of
100 intervals lying between 0.0 and 5.0 km, in such a way that any altitude
of the data sets is covered.

The SWRND data set

The D-Statistics, detailed in Table 2, shows that, on the SWRND data set,
conditional GMM globally yields better estimates of local PDF than SGS.
This was an expected result because of the multi-modal behavior of SWRND
altitudes. The Normal Score back-transformation of data, which is necessary
for SGS, can produce bad results when data are far from the normal distribu-
tion, and even more if they are multi-modal. This kind of problems doesn’t
occur with GMM, since no assumptions need to be done on data distribution,
except the fact that data are supposed to be independently and identically
distributed.

Figure 3 shows how GMM and SGS manage to reconstruct the local cu-
mulative distribution at two locations taken randomly in the testing set. On
the left, GMM’s cumulative distribution fits almost perfectly the reference
curve while SGS is completely missing the point. On the right, both methods



give a good estimation of local PDF, and in this case, SGS seems a little bit
better than conditional GMM.

SWRND D-Statistics Mean Min Median Max
Conditional GMM 0.350 0.051 0.332 0.835
SGS 0.531 0.000 0.510 1.000

Table 2: Results from D-Statistics calculation on SWRND testing set, between the
reference cumulative distribution and the estimations from Sequential Gaussian
Simulation (SGS) and Conditional Gaussians Mixture Model (GMM). The smaller
the statistics, the better the model.
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Figure 3: Comparison of the cumulative distributions of altitude at two different
locations of the testing set. Plain lines are the references. Dash lines are the
estimations from conditional GMM. Dots lines are the estimations from SGS.

Figure 4: Risk Maps of the probability that altitude lies under 2.0 kilometers. The
darker, the less probable. Conditional GMM risk map is on the left, reference is in
the middle, and SGS risk map is on the right.

The risk maps of Figure 4 were constructed directly from the local esti-
mation of the cumulative PDF of the testing set. Each map is a cut through
these cumulative functions for v < 2.0 km given u. A rapid comparison be-
tween the three models enlights the sharpness of SGS maps and the reference
maps in front of the smoothness of GMM maps. The first reason is that
the GMM model built for this data set contains “only” 95 Gaussians, while
SGS is using a lot more points. The second reason is that GMM provides a
continuous function while SGS and the reference don’t. As a consequence,
there is a lot of discontinuities in SGS maps which make them appear sharp.

However, this “sharpness” of SGS is in fact mainly noise. Looking closer
at the map on the right of Figure 4, SGS estimations don’t seem to be so
close to the reference. GMM seems to be more efficient to keep the general
structure, except in the Eastern part. One can finally see that GMM is
generally also smoothing the distribution tales, as it seems to under-estimate
the high probabilities and over-estimate the low probabilities.



The GRISONS data set

Table 3 shows that conditional GMM and SGS perform in a very similar way
on the GRISONS data set. While for SWRND, D-Statistics performance of
GMM was 33% better than SGS, it is now less than 4% better. On this
data set, SGS is no longer perturbed by any multi-modal distribution, and
thus, its performances are relatively better. On the other hand, GMM had
a lot of difficulties to reproduce the variability of data: the optimal model
found contains only 21 Gaussians, which is very few. However, it seems to
be enough to perform efficiently regarding D-Statistics.

The similarity between GMM and SGS performances is also visible on
Figure 5. For both sample locations, the cumulative from GMM and the one
from SGS are very close to each other.

GRISONS D-Statistics Mean Min Median Max
Conditional GMM 0.385 0.081 0.360 0.965
SGS 0.400 0.080 0.370 1.000

Table 3: Results from the D-Statistics calculation on GRISONS testing set, between
the reference cumulative distribution and the estimation from Sequential Gaussian
Simulation (SGS) and Conditional Gaussians Mixture Model ( GMM). The smaller
the values, the better the model.
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Figure 5: Comparison of the cumulative distributions of altitude at two different
locations of the testing set. Plain lines are the references. Dash lines are the
estimations from conditional GMM. Dot lines are the estimations from SGS.

Figure 6: Risk Maps of the probability that altitude lies under 2.5 kilometers. The
darker, the less probable. Conditional GMM risk map is on the left, reference is in
the middle, and SGS risk map is on the right.

The smoothing tendency of GMM pointed out with SWRND data set
becomes obvious when comparing the various risk maps of Figure 6. GMM
did not manage to reproduce the complexity of the GRISONS data set and



the optimal model generated was a very “simple” one. SGS appeared to
reproduce this complexity, but in fact, results are more noisy than sharp,
and out of the general tendencies (also found by GMM) it does not perform
very well. It is interesting to notice that GMM and SGS are performing
similarly in terms of D-Statistics but in a completely different way.

CONCLUSION

Conditional Gaussians Mixture Models proved to be efficient to estimate local
probability density function in order to draw risk maps. When compared to
the classical method used in this field, it appeared to be at least as efficient in
terms of D-Statistics, and even better when the distribution of data is multi-
modal. A strong advantage of conditional GMM over SGS is that it needs
less expert knowledge and less hypotheses on data distribution. It also gives
a real function of the conditional probability of a variable at any location of
the studied area, and can easily handle joint distributions of multiple output
variables.
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