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Abstract
This  paper  discusses  the  opportunity  of  using  Machine  Learning  techniques  in  an

automatic environmental mapping context, as was the case for the SIC2004 exercise. First, the
Machine Learning methodology is  quickly described and compared to  Geostatistics.  From
there, some clues about when to apply Machine Learning are proposed, and what outcomes
can be expected from this choice. Finally, three well known regression algorithms: K-Nearest
Neighbors, Multi Layer Perceptron and Support Vector Regression, are used on SIC2004 data
in a  Machine  Learning  context,  and  compared  to  Ordinary Kriging.  This  illustrates  some
potential drawbacks of SVR and MLP for applications such as SIC2004.

1  Introduction
It is a common mistake in some fields (such as  Geostatistics) to confuse  Machine Learning and Artificial
Neural Networks1  (ANNs). Machine Learning can be seen as a methodology (similarly to Geostatistics),
while ANNs are a family of modeling functions (like Kriging).

Algorithms such as ANNs are  very powerful  estimators,  and without  a very careful  methodology to
control them, they can end up predicting something very different from the expectations. This is partly the
origin of the bad reputation ANNs have in some scientific communities.

Machine Learning allows to control efficiently the level of information an ANN is modeling. But it is a
very general methodology and can also be used with other types of modeling functions, from the very simple
and general K-Nearest Neighbors [5], to the more complex Support Vector Machines [17] (for static data),
or  Hidden Markov Models [13] (for sequential data). In fact, one can use almost any family of statistical
modeling functions in the context of Machine Learning.

However, now that the Machine Learning methodology is becoming more and more understood, a new
tendency seems to be the application of complex algorithms on problems which do not always need them.
Environmental mapping may be one of the fields concerned by such a tendency.

Thanks  to  the  increasing  concern  about  environmental  issues,  there  is  now a  huge  amount  of  data
produced  by  nearly  real  time  monitoring  of  pollution  problems  such  as  radioactivity  or  exhaust  gas
emissions. Fast and efficient estimators are thus necessary to produce high quality decision maps, and the
objective of SIC2004 [3] was to make a review of the state-of-the-art in the domain.

In such a situation it is natural to think about applying Machine Learning methodology. But before doing
that, it is necessary to verify whether there is a  need for it, and if so, which algorithm to choose for this
specific application ? 

In this paper, we try to give some hints about these two questions. First, we give an overview of the ideas
behind  the  Machine  Learning methodology.  Then,  we describe  some advantages  and  drawbacks of  the
method by comparing it to Geostatistics, and give some advice on when it might be useful to apply Machine
Learning instead of other modeling methods. Finally, we evaluate the relative efficiency of three algorithms
applied to SIC2004 data in a Machine Learning context and conclude on the opportunity to use each of them

1The question of the difference between Machine Learning and Artificial Intelligence is yet another source of eternal debate.



for such application.

2  Machine Learning
Machine Learning can be seen as a branch of both statistics and computer science, which tries to develop
computing methods with the aim to solve the so-called learning problem.

2.1  Learning from Data
As defined by Vapnik [17], the learning problem consists of extracting meaningful information from a finite
number of data, called the  training set. This very general definition contains the underlying idea that data
are the central source of available information. Any prior knowledge about the data and the problem at hand
is of course useful but not mandatory2 .

Unfortunately, in general the training set not only contains the target meaningful information, but also
contains less interesting information (such as various kinds of noise) which thus needs to be filtered out. A
good model should then be able to extract only the general information from data, and filter out the specific
one.

Vapnik showed [17] that it is possible to control the generalization performance of a model (how good it
is expected to perform on unseen data, also known as test data) by controlling the capacity of the family of
functions it is constructed from. This capacity roughly corresponds to the number of degrees of freedom of
the family of functions (for instance the degree of a polynomial).

2.2  The Bias/Variance Dilemma
The main principle behind capacity control is to be able to solve the famous bias/variance dilemma [6]. A
family of functions with a high capacity should allow to fit almost any data set, i.e. it will have a low bias,
defined as the error on the training set, which the learning procedure tries to minimize. Unfortunately, a new
model based on a slightly different data set (with some examples that have been changed, but still coming
from the same distribution) may end up with a solution quite different from the previous one. This reflects
that this family of functions has a high variance, corresponding to the number of solutions in the family of
functions that are compatible with the training set, and this is also to minimize.

On the other hand, a family of functions with low capacity will  behave exactly the converse: it  will
produce  almost  always  the  same  model  whatever  the  exact  content  of  the  data  set,  but  many  of  its
predictions will be heavily biased.

It is then easy to understand that finding a family of functions with the optimal capacity (the one that
simultaneously minimize the bias and the variance terms) will  increase the chance to find a model with
optimal generalization performance. Several techniques have been proposed in the literature to search for
this  optimal  capacity,  the  most  generic  one,  also  widely  used,  being  any  flavor  of  the  general  cross-
validation algorithm. In addition, some specific algorithms, such as large margin classifiers [17], contain an
“automatic tuning” of their capacity during the construction of the model.

3  Machine Learning and Geostatistics
Machine Learning and Geostatistics have many things in common. First, both are methods of statistical data
analysis and modeling. They are also mostly “data driven” approaches, as opposed to physical modeling.
One of their main differences is that Geostatistics has a very specific scope of application while Machine
Learning is much more general.

During the last decade, many people tried, with more or less success, to use so called “Machine Learning
algorithms”  to  model  spatially  distributed  data [4].  The  many  contributions  of  SIC2004  applying  such
algorithms show that there is still a great interest in this domain. However, if Machine Learning has some
advantages over Geostatistics, it may also have some drawbacks.

3.1  What are the Differences ? 
Machine Learning and Geostatistics have many differences, but some have very strong consequences on the
usefulness of the methods in various situations.

Above all, there is a great conceptual difference in the way of interpreting data. In Machine Learning, the
data  samples  are  assumed  to  be  independently  and  identically  drawn  from a  single  unknown  random
process. The training procedure tries to model, directly or indirectly, this distribution. In Geostatistics, each
2Apart from some generic prior on the problem, such as smoothness, which assumes that a small perturbation on the input yields only a small
perturbation on the corresponding output.



data sample is considered as a separate random variable, often assumed to follow a Gaussian distribution,
which parameters depend on the rest of the data samples, following some unknown correlation parameters.
A great confidence is given to the training data3 , which are used to find these correlation parameters.

The other big difference, as described before, is that Geostatistics has been developed specifically for
spatial data analysis, while Machine Learning is a much more general method, often dealing with thousands
of input dimensions, and up to millions of examples, with most of the research focused on classification
tasks while Geostatistics is more interested in the estimation of continuous data.

These  differences  have  various  consequences  on  the  usage  that  can  be  done  of  Machine  Learning
algorithms for spatial data analysis.

3.2  The Drawbacks of the Machine Learning Approach
For the “new-comer”, the most disturbing aspect of a model created using a Machine Learning approach is
that its parameters are often very difficult (or even sometimes impossible) to interpret physically. Machine
Learning has been designed to retrieve information, not to interpret it. It is however sometimes possible to
produce data using a good Machine Learning model and to fit a physical model on them.

A consequence of the data concept of Machine Learning is that there is no particular confidence about
training measures.  The main drawback is  that  the  training procedure  needs  generally more data  than  a
Geostatistical approach would. There exist methods which try to reduce the number of data needed [11] by
maximizing the information contained in the training set, but they are only applicable in situations where
modeling and sampling are closely related. Another important way to reduce the need for data is to constrain
the family of functions with more prior knowledge about the problem to solve, as it is actually done in
Geostatistics for spatial data.

Some other consequences of this are a strong smoothing effect in regression applications, and a total lack
of robustness when trying to predict data drawn from a phenomenon with only a few or no examples in the
training data.

3.3  The Advantages of the Learning Approach
There are three main advantages to Machine Learning. First, it is a very generic approach and can be applied
on  any  kind  of  data  (keeping  in  mind  the  limitations  described  earlier),  and  to  a  very  large  panel  of
algorithms.

The  second  advantage  of  Machine  Learning  models  is  their  robustness  to  noise.  This  is  a  direct
consequence of the data concept and the real strength of the method.

Last but not least, Machine Learning has no constraint on data behavior, apart from the training set to
contain the requested information and the expected function to being “smooth”. In particular, there is no
hypothesis on the shape of the data distribution, which is a very nice property for risk mapping.

3.4  Summary: When to Use Machine Learning ? 
Given the various advantages and drawbacks of Machine Learning, it is better not to use it blindly in all
situations.

As presented qualitatively in Figure 1, Machine Learning should not be used with small datasets (i.e. less
than 100), and would probably not give better results than other statistical methods with medium datasets (a
few hundred data) unless some prior knowledge is available. However, with large datasets (a few thousands
and more), Machine Learning is probably the best approach whatever the prior knowledge available.

3This is the famous “respect of data” principle.



At the level of applications, Machine Learning is a good approach for all what concerns probabilities
(e.g. risk mapping). On such problems, and still given a sufficient number of data, the absence of a priori on
data distribution allows dedicated Machine Learning algorithms to be very reliable [8] [7].

Another  domain where  Machine  Learning is  a  good choice  is  multi-variate  analysis.  Dimensionality
reduction techniques (such as principal component analysis) have benefited a lot from Machine Learning
research, allowing complex non-linear transformations of the input space [15].

Finally,  another  application  of  interest  for  environmental  mapping,  and  where  Machine  Learning
research is very active, is time series prediction [1].

Machine Learning is  thus  applicable  in many fields of  interest  for  environmental  mapping, provided
enough data are available. However, as we will see in the next section, the fact that Machine Learning can
be applied does not mean that any Machine Learning algorithm is suited for the job.

4  Comparison of Three Machine Learning Algorithms
Even when Machine Learning can be applied, it is very important to use an algorithm that is suited for the
application.  In this  section,  using SIC2004 data,  we apply  Machine  Learning methodology to  construct
models from three different algorithms, and compare their results to Ordinary Kriging.

The three algorithms chosen for this comparison are well known and often used in Machine Learning.
Some contributions to SIC97 [4] and SIC2004 used them in different flavors. In the present paper, we only
used their simplest versions.

4.1  K-Nearest Neighbors
It might sound odd to classify K-Nearest Neighbors (KNN) as a Machine Learning algorithm. Actually, it is
the way the capacity parameter k is chosen that allows this label.

The principle of KNN is very simple: Let X be a set of l input data {x1 , , x l}, x∈ℝn and Y be their

corresponding  output  values, {y1 , , y l}, y∈ℝ .  Let X x and Y x be  sorted  list  versions  of X and Y ,

according to their Euclidean distance, in the X space, to x . Thus, let X x
i be the ith nearest component of X

to x , and Y x
i be its corresponding output. Given some x , the corresponding estimated output  is then given

by: 

y=1
k ∑i=1

k

Y x
i

The problem is thus  to find the value of k which minimizes  the  error  y−y 2 on some unseen data.
Hence, k is chosen by cross-validation.

Figure 1: Qualitative representation of the optimal usage
of various modeling methods with respect to the size of the
data set and the prior knowledge about the studied
phenomenon.



4.2  Support Vector Regression
Support Vector Machines (SVM) [17] for classification problems were developed a decade ago. Later, the
algorithm was extended to the regression case [16] and named Support Vector Regression (SVR).

For a given set of data  x i , yi1il , x∈ℝn and y∈ℝ , the simplest linear SVR algorithm tries
to find the function 

f  x =w⋅xb
minimizing the quadratic optimization problem 

1
2
∥w∥2C∑

i=1

l

Q  yi− f x i

where C controls the trade-off between optimizing the criterion Q and the capacity of the resulting function.
In general, Q x =max {0,∣x∣−} , which corresponds to Vapnik’s ε-insensitive loss function, and does
not penalize errors less than ≥0 . After some reformulation and taking into account the case of non-
linear regression, the optimization problem is then transformed into the minimization of 

1
2∑i=1

l

∑
j=1

l

i−i
∗ j− j

∗k  x i , x j∑
i=1

l

ii
∗−∑

i=1

l

yi i−i
∗

subject to 

∑
i=1

l

i−i
∗=0

0≤i ,i
∗≤C , for 1≤i≤l

where the i ,i
∗

are Lagrange multipliers, solutions of the optimization problem,  C is the  soft  margin
parameter, weighting the influence of the loss function against the regularization term, and k x i , x j is a
kernel function, defining the feature space in which the optimal solution of the problem will be computed in
order  to  handle  non-linear  problems.  In  our  experiments,  we  used  the  popular  Gaussian  Radial  Basis
Function (RBF) kernel: 

k x1, x2=exp−∥x1−x2∥
2

22 
To estimate a new point, we then use the following function f : 

f  x =∑
i=1

N

si
−si

∗k  x , x s ib

where the si ,1≤i≤N are the indices of the data points for which either si
or si

∗
is non zero. Those

points are called support vectors.
In order to control the capacity of SVRs, one can tune the following hyper-parameters: C, the trade-off

between large capacity and small error,  the error we are ready to accept for each estimate, and σ, the
bandwidth of the RBF kernel.

4.3  Multilayer Perceptron
A multilayer perceptron (MLP) is a particular architecture of artificial neural networks, composed of layers
of non-linear but differentiable parametric functions. An MLP for regression can be written mathematically
as follows: 

f  x ;=b∑
n=1

N

wn⋅tanh bn∑
m=1

M

xm⋅wnm
where the estimated output f(x;θ) is a function of the input vector x (indexed by its M values xm ), and the
parameters {: wn , wnm ,bn , b ; with n∈[1, N ] , m∈[1, M ]} . This MLP is thus a weighted combination
of N hyperbolic tangents4  of weighted combinations of the input vector. Given a criterion Q to minimize,
such as the mean squared error, 

4Other non-linear but differentiable functions could replace hyperbolic tangents, including the so-called sigmoid  x=1 /1exp −x .



Q=∑
i=1

l

 yi− f x i ;
2

between the desired output yi and the estimated output f  x i ; , for a given training set of size l, one
can  minimize  such  criterion  using  a  gradient  descent  algorithm [14].  This  algorithm  is  based  on  the
computation of  the partial  derivative   of  the  criterion  Q with  respect  to  all  the  parameters  θ of  f(x;θ).
Gradient descent can then be performed using 

=−⋅∂Q
∂

for each parameter  θ where  λ is the  learning rate. It has been shown that given a number of hyperbolic
tangents N sufficiently large, one can approximate any continuous function using such MLPs [9].

The  capacity  of  MLPs can  be tuned  in  several  ways,  including the  number  of  hidden  units  M,  the
learning rate  λ, the number of training iterations, and the  weight decay γ, a factor that can added to the
criterion in order to push the parameters θ  to 0 in order to linearize the resulting function5 .

4.4  Application to SIC2004
4.4.1  The Datasets
We used the SIC2004 data sets  to evaluate the adequacy of these algorithms to environmental  mapping
application.  Two  problems  are  to  be  solved.  The  first  one  is  called  the  “Natural”  one:  data  are  real
measurements of daily gamma radioactivity measured all across Germany. The second is called the “Joker”:
it is a similar set of measurements as in the Natural set to which a simulated radioactive accident was added.

For each of these two data sets,  two case studies have been created.  This will  allow to evaluate the
influence of the training set size on Machine Learning algorithms performances: 

• the “Small” case study: 80 measurements are available to estimate the radioactivity at 808 locations; 
• the “Large” case study: the training set contains 808 measurements, and the test set only 200. 
For the Large case, we took exactly the same data sets as proposed for SIC2004, but inverted the train

and test  sets.  For the Small  case,  the 80 points  were randomly extracted from the 200 training data  of
SIC2004. For the Small  Joker set, we just  made sure that  the hot spot data were among the 80 training
points.

4.4.2  Experimental Protocol
The context of these experiments is a bit different from the one of the SIC2004 competition as we are not
using  the  spare  data  sets  provided  as  prior  information.  For  the  rest,  we  tried  to  stay  in  the  spirit  of
“automatic  mapping”,  human intervention  being  limited  to  choosing the  variation  ranges  of  the  hyper-
parameters of the algorithms.

In practice, this means that the choice of the optimal hyper-parameters was computed via cross validation
over the predefined list  of values. In the case of Ordinary Kriging (OK), an omni directional  variogram
model was constructed by least square fitting of a spherical model.

The quality of the models is evaluated using the Root Mean Squared Error (RMSE), the Mean Absolute
Error (MAE), the Mean Error (ME), and the correlation coefficient of predictions versus real values (R).
Furthermore, using the fact that the Mean Squared Error (MSE) and the MAE correspond to averages of
some real values, we used a statistical test, the Student’s t-test, in order to assess the statistical significance
of the difference between all pairs of results, with a confidence of 95%.

In addition,  as we are dealing with environmental  mapping and a simulated emergency situation, we
expect the models to be able to detect the “Joker spot” and locate it correctly, i.e. accurately identify an area
of high radioactivity levels.  This is why a qualitative observation of the output maps is also part of the
quality evaluation process.

4.4.3  The OK Models
As explained before, the OK models are based only on multi-directional spherical variograms models which
parameters are presented in Table 1. The fitting was straight-forward in the case of the Natural sets, but for
the Joker, it was necessary to remove the outliers from the Joker spot in order to be able to construct the
variogram model. The outliers were chosen based on the fact they were lying very far from the main data

5The new criterion then becomes Q=∑i=1

l
 yi− f  x i ;

2∑ j
 j

2 .



distribution. Such a procedure is easy to automatize. This ended up with 2 points removed from the Small
set and 6 from the Large set. Of course, these points were put back into the dataset for the estimation.

OK Nugget Sill Range

Natural & Small 41.49 377.8 545926

Natural & Large 65.73 474.0 461211

Joker & Small 117.8 469.4 412513

Joker & Large 0.0 1128.6 52653

Table 1: Parameters of the spherical variogram models for the different data sets.

4.4.4  The KNN Models
The number of neighbors was chosen between 1 and 20. The optimal value was obtain by cross-validation
over the training data and are presented in Table 2.

KNN K

Natural & Small 4

Natural & Large 8

Joker & Small 11

Joker & Large 3

Table 2: Hyper-parameters of the KNN models for the different data sets.

4.4.5  The SVR Models
The three hyper-parameters of the SVR models were chosen by cross-validation. The input and output data
of each data set were normalized, with zero mean and unit standard deviation, estimated on the training sets.
The range of values for the hyper-parameters were: C∈{1, ... , 1000}, σ∈[0.1, 2.0], ∈[0.01,1.0 ] . The
optimal values are presented in Table 3.

SVR C s 
Natural & Small 1 0.5 0.03
Natural & Large 1 0.3 0.03
Joker & Small 10 1.1 0.5
Joker & Large 10 0.1 0.01

Table 3: Hyper-parameters of the SVR models for the different data sets.

4.4.6  The MLP Models
The three hyper-parameters of the MLP models were chosen by cross-validation. The input and output data
of each data set were normalized, with zero mean and unit standard deviation, estimated on the training sets.
The range of values for the hyper-parameters were: number of hidden units (nhu)  ∈[1,40],  learning rate

∈[10−5 ,10−3] , weight decay (γ) ∈[0, 0.001]. The optimal values are presented in Table 4.

MLP nhu λ γ
Natural & Small 3 0.001 0.001

Natural & Large 35 0.001 0.0

Joker & Small 35 0.001 0.0

Joker & Large 30 0.001 0.001

Table 4: Parameters of the MLP models for the different data sets.



4.5  Analysis of the Results
4.5.1  The Natural Datasets
Figure 2 shows  the  two  training  sets  for  the  Natural  data.  Both  sets  are  relatively  smooth  with  small
variance, as can be observed in Table 5. The highest values are located in the East and South-West of the
area, while the smallest are located in the North.

Figure 2: The Natural Small (left) and Large
(right) training data sets. Colors are

proportional to radioactivity level at the
central location. Point sizes are proportional
to the fourth power of the radioactivity level.

Natural Min Median Max Mean StdDev Skewness Kurtosis

Small 66.0 96.3 138.0 95.4 17.1 0.3 -0.5

Large 57.0 98.8 180.0 98.0 20.0 0.5 0.7

Table 5: Natural training data sets summary statistics.

The data sampling of the Small dataset is not very uniform, especially in the Center-South and Center-
East. However, this should not influence too much the prediction results given the smoothness of data.

Results on the Small Set:
 Figure 3 presents the prediction maps of the 4 algorithms (Figures 3b to  3d) with respect to the real data
(figure 3a). Visually, it is almost impossible to distinguish the 4 prediction maps from one another. It seems
that all the algorithms managed to extract almost exactly the same information from the training set. They
are all unable to reproduce exactly the high values from the East and South-West, but the general trend is
very well reproduced.

Figure 3: Small Natural data set estimation maps. Figure a) is the real map. The
others are the estimation from: b) Ordinary Kriging, c) K-Nearest-Neighbors, d)

Support Vector Regression, and e) Multilayer Perceptron. Color and size scales are
the same as in figure 2.



Natural & Small OK KNN SVR MLP

RMSE 12.82 13.16 14.36 13.26

MAE 9.41 9.68 10.78 10.09

ME 1.52 1.25 2.63 1.5

R 0.77 0.76 0.71 0.75

Table 6: Small Natural data set estimation errors.

The  prediction  errors  given  in  Table 6 lead  to  exactly  the  same  conclusion:  all  the  4  models  are
performing equivalently, with a RMSE significantly smaller than the standard deviation of the data set. The
relatively bad correlation coefficient is the sign that some high values were not correctly estimated. These
error are probably the highest contribution to the RMSE as well. In any case, the Student test did not show
any significant difference between the performances.

Results on the Large Set:
 The prediction maps of figure 4 look again very similar, although OK and KNN seem to give slightly better
predictions in the Eastern area than SVR and MLP.

Figure 4: Large Natural data set estimation maps. Figure a) is the real map. The
others are the estimation from: b) Ordinary Kriging, c) K-Nearest Neighbors, d)

Support Vector Regression, and e) Multilayer Perceptron. Color and size scales are
the same as in Figure 2.

Natural & Large OK KNN SVR MLP

RMSE 10.11 10.07 10.32 10.33

MAE 7.65 7.64 7.63 7.81

ME -1.75 -1.70 -0.9 -0.63

R 0.83 0.83 0.82 0.81

Table 7: Large Natural data set estimation errors.

Table 7 confirms this similarity between the predictions. The Student test also confirms that there is no
significant difference between the models performances.

4.5.2  The Joker Datasets



Figure 5: The Joker Small (left) and Large
(right) training data sets. Point sizes and

colors are proportional to radioactivity level
at the central location.

Joker Min Median Max Mean StdDev Skewness Kurtosis

Small 58.2 99.5 1499.0 127.0 190.9 6.4 41.5

Large 57.0 99.0 1528.2 105.4 83.7 11.5 153.8

Table 8: Joker training data sets summary statistics.

The Joker data sets look far more complex than the Natural one. Basically, we have a very large flat area,
with a very tiny hot spot. More precisely, it is a “hot trail”, extending in a West-East direction, as we can see
on figure 5b. As a consequence, the general statistics of the data sets are strongly perturbed (cf. table 8).

Results on the Small Set:
 Unlike the results for the Natural data set, Figure 6 shows very different prediction maps depending on the
algorithm involved.  Apart for SVR, all the other models manage to locate correctly the center of the hot
spot,  OK  giving  the  tightest one.  However,  none  is  able  to  actually  reproduce  the  real  shape  of  the
phenomenon, due to a lack of information. Interestingly, MLP and SVR show that they are able to build
anisotropic models. Unfortunately, they completely missed the West-East shape of the hot spot.

Figure 6: Small Joker data set estimation maps. Figure a) is the real map. The others
are the estimation from: b) Ordinary Kriging, c) K-Nearest Neighbors, d) Support

Vector Regression, and e) Multilayer Perceptron. Color and size scales are the same
as in Figure 5.

Joker & Small OK KNN SVR MLP

RMSE 82.60 109.72 91.32 114.64

MAE 33.20 52.99 49.96 65.89

ME -14.84 -34.63 -3.85 -27.12

R 0.43 0.27 0.18 0.27

Table 9: Small Joker data set estimation errors.

Table 9 gives more details on the prediction values themselves. KNN and MLP are the worst predictors
on this case study, while OK is significantly better  than the rest.  SVR is in between, but its  very small



correlation coefficient is the sign that something has going really wrong in the prediction of the hot spot.

Results on the Large Set:

 

Figure 7: Large Joker data set estimation maps. Figure a) is the real map. The
others are the estimation from: b) Ordinary Kriging, c) K-Nearest Neighbors, d)

Support Vector Regression, and e) Multilayer Perceptron. Color and size scales are
the same as in Figure 5.

Figure 7 presents the prediction maps for the Large Joker set. The performance of KNN and OK and
SVR in  localizing  the  hot  spot  are  very  good.  MLP manages  to  locate  the  hot  spot  correctly,  but  its
predictions are too smooth.

Joker & Large OK KNN SVR MLP

RMSE 97.79 96.74 113.69 114.14

MAE 27.16 22.12 28.93 28.29

ME -3.02 0.27 -1.27 5.61

R 0.60 0.61 0.38 0.36

Table 10: Large Joker data set estimation errors.

In the prediction errors of Table 10, OK and KNN are performing equivalently, a little bit better than
SVR and MLP. SVR high RMSE is a bit astonishing given its apparently good performance in localizing the
hot spot. However, a very careful look at the data shows that it actually predict a little bit off target, which is
enough to produce very high errors and destroy the correlation coefficient. Performances of MLP are easier
to understand given the strong underestimation of the hot spot values.

4.5.3  Discussion on the Experiments
The introduction of the Joker set in SIC2004 was a very good idea. As the experiments on the Natural sets
showed, it is almost impossible to distinguish prediction algorithms dealing with smooth data, even with a
small data set. However, when an event such as the one simulated by the Joker arises, algorithms are under
stress and some discrepancy appears.

First of all, Ordinary Kriging is very well adapted to such applications. This is of course not a scoop, but
it is still interesting to notice for non Geo-statisticians. In the context of the Joker, the hot spot was small
enough with respect to the studied area to allow its exclusion of the variogram modeling process. This might
not always be the case however, and if no variogram is available, then OK is useless. Still, OK was very fast
to compute (given the small number of data), and very efficient, both in terms of prediction error and of
localization of the hot spot.

For what concerns Machine Learning, we have shown that it can be used for such applications, provided
the data set size is somehow proportional to the complexity of the problem. On the smooth Natural data sets,
only a few data were necessary to extract some relevant information. On the other hand, Machine Learning
did  not  handle  very  well  the  Small  Joker  set,  where  the  various  algorithms  were  all  giving  too  much
importance to the hot spot extension. In such context, the lack of information from data is clearly to blame,
while the prior information about the importance of spatial correlation is giving a great advantage to OK.



 KNN gave very good performance despite (or thanks to) its simplicity. The poor results it gave on the
Small Joker were clearly due to the size of the data set, as its good performance on the Large Joker attests.
Most of all, it was never outperformed by SVR or MLP, while being a lot faster to train and use.

SVR relative performances were good on the Natural sets, but much worse on the Small Joker where it
had some difficulties to locate the hot spot. On the Large Joker, its performances were a bit worse than KNN
and OK, but the localization of the hot spot was good, showing that with enough data, this algorithm is able
to  handle  complex phenomena.  Its  main drawback of the  algorithm is  the  search for  the  optimal  hyper
parameters, which is very slow and thus difficult to do in a time critical situation.

Finally, MLP showed also its dependency to the data set size, but it showed its strong smoothing effect
as well. This was particularly obvious for the Large Joker where  localization was good, but the hot spot
values were strongly under estimated. Algorithms such as MLP are more at ease on noisy datasets or large
scale tendencies. Unfortunately, the context of the Joker data set is exactly the reverse. In addition, MLP has
the strong drawback of being initialized randomly. The consequence is that two models trained on the same
data, with the same hyper-parameters can give different results. This is a cause of high uncertainty on the
optimality of the "best" hyper-parameters found.

As a  conclusion,  we  can  say  that  SVR and MLP are  probably  not  the  best  choice  for  the  type  of
application proposed for SIC2004. If the predictions on smooth data set were good, they were not better than
the ones from OK or KNN, which are much simpler and faster to tune. And when a situation like the Joker
arises, even given enough data, SVR was still not better than KNN, and MLP predictions were too smooth.

5  Conclusion
In this  paper,  we presented an overview of Machine Learning, making a strong distinction between the
method itself and the applications and algorithms it can be applied on.

By comparing it to Geostatistics, we have shown that it was based on a very different philosophy, which
is  the source  of many interesting properties,  but also of  some non negligible drawbacks. We have then
proposed a qualitative representation of when Machine Learning should be preferred to other methods, with
respect to the quantity and type of information available.

In the experiments presented in this paper, we rose the issue of applying “classical” Machine Learning
algorithms on problems they were not designed to solve. Hence, we have shown that algorithms such as
MLP and SVR were usually not a good choice for  environmental mapping applications such as the one
proposed for SIC2004. Simpler and faster algorithms such as KNN can give similar or better results for the
same amount of data. And if the available measurements allow the construction of a variogram, OK is often
much more reliable, whatever the number of data available.

Of course, this does not mean that Machine Learning has nothing to offer to the Environmental Mapping
community. Time series analysis and risk mapping are examples of applications where the advantages of
Machine Learning can have a significant impact on the quality of the results.
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