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INTRODUCTION

During these last 20 years, Finite State Automata (FSA), and more particularly Stochastic Finite State Au-

tomata (SFSA) and different variants of Hidden Markov Models (HMMs), have been used quite successfully

to address several complex sequential pattern recognition problems, such as continuous speech recognition,

cursive (handwritten) text recognition, time series prediction, biological sequence analysis, and many others.

FSA allow complex learning problems to be solved by assuming that the sequential pattern can be de-

composed into piecewise stationary segments, encoded through the topology of the FSA. Each stationary

segment can be parametrized in terms of a deterministic or stochastic function. In the latter case, it may also

be possible that the SFSA state sequence is not observed directly but is a probabilistic function of the under-

lying finite state Markov chain. This thus yields to the definition of the powerful Hidden Markov Models,

involving two concurrent stochastic processes: the sequence of HMM states modeling the sequential struc-

ture of the data, and a set of state output processes modeling the (local) stationary character of the data. The

HMM is called “hidden” because there is an underlying stochastic process (i.e., the sequence of states) that

is not observable, but affects the observed sequence of events.

Furthermore, depending on the way the SFSA is parametrized, and the way it is trained, SFSA (and

HMM in particular) can be used as aproduction model(where the observation sequence is considered as

an output signal being produced by the model) or as arecognition model(acceptor) (where the observation

sequence is considered as being accepted by the model). Finally, it may also be the case that the HMM is

used to explicitly model the stochastic relationship between two (input and output) event sequences, then

yielding to a model usually referred to as input/output HMM.

The parameters of these models can be trained by different variants of the powerful Expectation-Maximization

(EM) algorithm (Baum and Petrie, 1966; Liporace, 1982), which, depending on the criterion being used, is

referred to as Maximum Likelihood (ML) or Maximum A Posteriori (MAP) training. However, although

being part of the same family of models, all these models exhibit different properties. The present paper thus

aims at presenting and comparing some of the variants of these powerful SFSA and HMM models currently

used for sequence processing.



Bourlard & Bengio: Hidden Markov Models and other Finite State Automata 3

FINITE STATE AUTOMATA

In its more general form (Hopcroft, Motwani and Ullman, 2000), and as summarized in Table 1, a Finite

State Automata (FSA), which will be denotedM in this paper, is defined as an abstract machine consisting

of:

• A set of statesQ = {I, 1, . . . , k, . . . , K, F}, including the initial stateI and final stateF , also referred

to as accepting state (in the case of recognizers). Variants of this include machines having multiple

initial states and multiple accepting states. In the present paper, a specific state visited at timet will

be denotedqt.

• A setY of (discrete or continuous) input symbols or vectors. A particular sequence of sizeT of input

symbols/vectors will be denotedY = {y1, y2, . . . , yt, . . . , yT } = yT
1 , whereyt represents the input

symbol/vector at timet.

• A setZ of (continuous or discrete) output symbols or vectors. A particular sequence of sizeT of

output symbols/vectors will be denotedZ = zT
1 , wherezt represents the output symbol/vector at time

t.

• A state transition functionqt = f(yt, qt−1), which takes the current input event and the previous state

qt−1 and returns the the next stateqt.

• An emission functionzt = g(qt, qt−1), which takes the current stateqt and the previous stateqt−1 and

returns an output eventzt. This automaton is usually know as aMealy FSA, i.e., producing an output

for eachtransition. As a variant of this, the emission function of aMoore FSAdepends only on the

current state, i.e.zt = g(qt), thus producing an output for each visited state. It is however proved that

there is a homomorphic equivalence between Mealy and Moore automata, provided an increase and

renaming of the states.

Finally, in the case of sequential pattern processing, the processed sequence is often represented as anob-

served sequenceof symbols or vectors which, depending on the type of automata and optimization criterion,

will sometimes be considered as input or output events. To accommodate this flexibility in the sequel of the

present paper, we thus also define theobserved sequenceof sizeT asX = xT
1 , wherext is the observed

event/vector at timet. For example, in the case of speech recognition,xt would be the acoustic vector result-

ing of the spectral analysis of the signal at timet, and is equivalent tozt (since in that case the observations

are the outputs of the FSA).
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A deterministic FSAis one where the transition and emission functionsf(.) andg(.) are deterministic,

implying that the output event and next state are uniquely determined by a single input event (i.e., there is

exactly one transition for each given input event and state). In comparison, a non-deterministic FSA is one

where the next state depends not only on the current input event, but also on a number of subsequent input

events. However, it is often possible to transform a non-deterministic FSA into a deterministic FSA, at the

cost of a significant increase of the possible number of input symbols.

It is not the goal of the present paper to further discuss deterministic FSA, which have been largely

used in language theory (Hopcroft, Motwani and Ullman, 2000) where FSA are often used to accept or

reject a language, i.e., certain sequences of input events. Many training approaches have been developed,

mainly aiming at automatically inferring the FSA topology from a set of observation sequences. However,

these often depend on the assumed properties (grammar) of the sequences to be processed, and finding the

minimum FSA (minimizing the number of states and transitions) is often an open issue.

STOCHASTIC FINITE STATE AUTOMATA

A Stochastic FSA(SFSA) is a Finite State Automaton where the transition and/or emission functions are

probabilistic functions. In the case of Markov Models, there is a one-to-one relationship between the ob-

servation and the state, and the transition function is probabilistic. In the case of Hidden Markov Models,

the emission function is also probabilistic, and the states are no longer directly observable through the input

events. Instead, each state produces one of the possible output events with a certain probability.

Depending on their structure (as discussed below), transition and emission (probability density) func-

tions are thus represented in terms of a set of parametersΘ, which will have to be estimated on representative

training data. IfX represents the whole sequence of training data, andM its associated SFSA, the estimation

of optimal parameter setΘ∗ is usually achieved by optimizing amaximum likelihood criterion:

Θ∗ = argmax

Θ

p(X|M, Θ) (1)

or amaximum a posterioricriterion, which could be either

Θ∗ = argmax

Θ

p(M |X, Θ) = argmax

Θ

p(X|M, Θ)p(M |Θ) (2)

or

Θ∗ = argmax

Θ

p(M, Θ|X) = argmax

Θ

p(X|M, Θ)p(M, Θ) . (3)
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In the first case, we take into account the prior distribution of the modelM while in the second case, we

take into account the prior distribution of the modelM as well as the parametersΘ.

Markov Models

The simplest form of SFSA, as presented in the second column of Table 1, is a Markov model where states

are directly associated with the observations. We are interested in modelling

p(X) = p(F |xT
1 )p(x1|I)

T∏

t=2

p(xt|xt−1
1 , I)

which can be simplified, using thekth order Markov assumption by

p(X) = p(F |xT
T−k+1)p(x1|I)

T∏

t=2

p(xt|xt−1
t−k)

which leads to the simplest case of the first-order Markov model,

p(X) = p(F |xT )p(x1|I)
T∏

t=2

p(xt|xt−1)

wherep(x1|I) is the initial state probability and the other terms can be seen as a transition probabilities. Note

that anykth order Markov model can be expressed as a first-order Markov model, at the cost of possibly

exponentially more states. Note also that the transition probabilities are time invariant, i.e.p(xt=`|xt−1=k)

is fixed for allt.

The set of parameters, represented by the(K ×K)-transition probability matrix, i.e.

Θ = p(xt=`|xt−1=k), ∀`, k ∈ Q

is then directly estimated on a large amount of possible observation (and, thus, state) sequences such that:

Θ∗ = argmax

Θ

p(X|M, Θ)

and simply amounts to estimating the relative counts of observed transitions, possibly smoothed in the case

of undersampled training data, i.e.:

p(xt=`|xt−1=k) =
nk`

nk

wherenk` stands for the number of times a transition from statek to statè was observed, whilenk represents

the number of times statek was visited.
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It is sometimes desirable to compute the probability to go from the initial stateI to the final stateF in

exactlyT steps, which could naively be estimated by summing path likelihoods over all possible paths of

lengthT in modelM , i.e.

p(F |I) = p(x1|I)
∑

paths

p(F |xT )
T∏

t=2

p(xt|xt−1)

although there is a possibly exponential number of paths to explore. Fortunately, a more tractable solution

exists, using the intermediate variable

αt(`) = p(xt=`, xt−1
1 , I)

which can be computed using theforward recurrence:

αt(`) =
∑

k

αt−1(k)p(xt=`|xt−1=k) (4)

and can be used as followed

p(F |I) = αT+1(F ) .

Replacing the sum operator in (4) by the max operator is equivalent to finding the most probable path of

lengthT betweenI andF .

Although quite simple, Markov models have many usage. For example, they are used in all state-of-the-

art continuous speech recognition system to represent statistical grammars (Jelinek, 1998), usually referred

to asN -grams, and estimating the probability of a sequence ofK words

p(wK
1 ) ≈

K∏

k=N+1

p(wk|wk−1
k−N )

which is equivalent to assuming that possible word sequences can be modeled by a Markov model of order

N .

Hidden Markov Models (HMM)

In many sequential pattern processing/classification problems (such as speech recognition and cursive hand-

writing recognition), one of the greatest difficulties is to simultaneously model the inherent statistical vari-

ations in sequential rates and feature characteristics. In this respect, Hidden Markov Models (HMMs) have

been one of the most successful approaches used so far. As presented in Table 1, an HMM is a particular

form of SFSA where Markov models (modeling the sequential properties of the data) are complemented by

a second stochastic process modeling the local properties of the data. The HMM is called “hidden” because
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P (qt = i|qt−1 = i)

P (qt = j|qt−1 = i)

p(xt|qt = i) p(xt|qt = j) p(xt|qt = k)

qt = i qt = j qt = k

P (qt = k|qt−1 = k)

P (qt = k|qt−1 = j)

P (qt = j|qt−1 = j)

xtxtxt

Figure 1: A schematic of a three state, left-to-right hidden Markov model (HMM).

there is an underlying stochastic process (i.e., the sequence of states) that is not observable, but affects the

observed sequence of events.

Although sequential signals, such as speech and handwriting, are non-stationary processes, HMMs thus

assume that the sequence of observation vectors is apiecewise stationaryprocess. That is, a sequence

X = xT
1 is modeled as a succession of discrete stationary statesQ = {1, . . . , k, . . . ,K}, with instantaneous

transitions between these states. In this case, a HMM is defined as a stochastic finite state automata with a

particular (generally strictly left-to-right for speech data) topology. An example of a simple HMM is given

in Figure 1. In speech recognition, this could be the model of a word or phoneme which is assumed to be

composed of three stationary parts. In cursive handwriting recognition, this could be the model of a letter.

Once the topology of the HMM has been defined (usually arbitrarily!), the main criterion used for

training and decoding is based on the likelihoodp(X|M, Θ), i.e., the probability that the observed vector

sequenceX was produced by Markov modelM . In this case, the HMM is thus considered as aproduction

model, and the observation vectorsxt are thus considered as output variableszt of the HMM. It can be

shown that, provided several assumptions (Bourlard and Morgan, 1993), the likelihoodp(X|M, Θ) can be

expressed and computed in terms of transition probabilitiesp(qt=`|qt−1=k,Θ) andemission probabilities,

which can be of the Mealy type (emission on transitions)p(xt|qt, qt−1, Θ) or of the Moore type (emission

on states)p(xt|qt,Θ). In the case of multivariate continuous observations, these emission probabilities are

estimated by assuming that they follow a particular functional distribution, usually (mixtures of) multivariate

Gaussian densities. In this case, the set of parametersΘ comprises all the Gaussian means and variances,

mixing coefficients, and transition probabilities. These parameters are then usually trained according to the
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maximum likelihood criterion (1), resulting in the efficient Expectation-Maximization (EM) algorithm (Gold

and Morgan, 2000; Liporace, 1982).

Given this formalism, the likelihood of an observation sequenceX given the modelM can be calculated

by extending the forward recurrence (4) defined for Markov models to also include the emission probabili-

ties. Assuming a Moore automaton (emission on states), we thus have theforward recurrence

αt(`) = p(xt
1, qt=`) = p(xt|qt=`)

∑

k

αt−1(k)p(qt=`|qt−1=k) (5)

which will be applied over all possiblet, and where
∑

k is applied over all possible predecessor states of`,

thus resulting in:

p(X|M, Θ) = αT+1(F ) .

Replacing the sum operator in (5) by the max operator is equivalent to finding the most probable path of

lengthT generating the sequenceX, and then yields the well known dynamic programming recurrence, also

referred to as theViterbi recurrencein the case of HMM:

p(xt
1, qt=`) = p(xt|qt=`) max

{k}

{
p(xt−1

1 , qt−1=k)p(qt=`|qt−1=k)
}

(6)

wherep(xt
1, qt=`) represents the probability of having produced the partial observation sequencext

1 while

being in statè at time t and having followed the most probable path;{k} represents the set of possible

predecessor states of` (given by the topology of the HMM); the likelihoodp(X|M, Θ) of the most probable

path is obtained at the end of the sequence and is equal top(xT
1 , F ).

During training, the HMM parametersΘ are optimized to maximize the likelihood of a set of training ut-

terances given their associated (and known during training) HMM model, according to (1) wherep(X|M, Θ)

is computed by taking all possible paths into account (forward recurrence) or only the most probable path

(Viterbi recurrence). Powerful iterative training procedures, based on the Expectation-Maximization (EM)

algorithm, exist for both criteria, and have been proved to converge to a local optimum. At each iteration of

the EM algorithm, the “Expectation” step estimates the most probable segmentation or the best state poste-

rior distribution (referred to as “hidden variables”) based on the current values of the parameters, while the

“Maximization” step re-estimates the optimal value of these parameters assuming that the current estimate

of the hidden variables is correct.

For further reading of the HMM training and decoding algorithms, see (Bourlard and Morgan, 1993;

Deller, Proakis and Hansen, 1993; Gold and Morgan, 2000; Jelinek, 1998).
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HMM Advantages and Drawbacks

The most successful application of HMMs is speech recognition. Given a sequence of acoustic, the goal is

to produce a sequence of associated phoneme or word transcription. In order to solve such a problem, one

usually associates one HMM per different phoneme (or word). During training, a new HMM is created for

each training sentence as the concatenation of the corresponding target phoneme models, and its parameters

are maximized. Over the last few years, a number of laboratories have demonstrated large-vocabulary (at

least 1,000 words), speaker-independent, continuous speech recognition systems based on HMMs.

HMMs are models that can deal efficiently with the temporal aspect of speech (time warping) as well

as with frequency distortion. They also benefit from powerful and efficient training and decoding algo-

rithms. For training, only the transcription in terms of the speech units which are trained is necessary and

no explicit segmentation of the training material is required. Also, HMMs can easily be extended to include

phonological and syntactical rules (at least when these are using the same statistical formalism).

However, the assumptions that make the efficiency of these models and their optimization possible limit

their generality. As a consequence, they also suffer from several drawbacks including, among others:

• Poor discrimination due to the training algorithm which maximizes likelihoods instead ofa posteriori

probabilitiesp(M |X) (i.e., the HMM associated with each speech unit is trained independently of the

other models).

• A priori choice of model topology and statistical distributions, e.g., assuming that the probability

density functions associated with the HMM state can be described as (mixtures of) multivariate Gaus-

sian densities, each with a diagonal-only covariance matrix (i.e., the possible correlation between the

components of the acoustic vectors is disregarded).

• Assumption that the state sequences are first-order Markov chains.

• Assumption that the input observations are not correlated over time. Thus, apart through the HMM

topology, the possible temporal correlation across features associated with the same HMM state is

simply disregarded.

In order to overcome some of these problems, many researchers have concentrated on integrating Artificial

Neural Networks into the formalism of HMMs. In the next section, we expose some of the most promising

approaches.



Bourlard & Bengio: Hidden Markov Models and other Finite State Automata 11

ANN-BASED STOCHASTIC FINITE STATE AUTOMATA

The idea of combining HMMs and ANNs was motivated by the observation that HMMs and ANNs had

complementary properties: (1) HMMs are clearly dynamic and very well suited to sequential data, but

several assumptions limit their generality; (2) ANNs can approximate any kind of nonlinear discriminant

functions, are very flexible and do not need strong assumptions about the distribution of the input data, but

they cannot properly handle time sequences (although recurrent neural networks can indeed handle time,

they are known to be difficult to train long term dependencies, and cannot easily incorporate knowledge in

their structure as it is the case for HMMs). Therefore a number of hybrid models have been proposed in the

literature.

Hybrid HMM/ANN Systems

HMMs are based on a strict probabilistic formalism, making them difficult to interface with other modules

in a heterogeneous system. However, it has indeed been shown (Bourlard and Morgan, 1993; Richard and

Lippmann, 1991) that if each output unit of an ANN (typically a multilayer perceptron) is associated with a

statek of the set of statesQ = {1, 2, . . . , K} on which the SFSA are defined, it is possible to train the ANN

(e.g., according to the usual least means square or relative entropy criteria) to generate good estimates ofa

posterioriprobabilities of the output classes conditioned on the input. In other words, ifgk(xt|Θ) represents

the output function observed on thek-th ANN output unit when the ANN is being presented with the input

observation vectorxt, we will have:

gk(xt|Θ∗) ≈ p(qt=k|xt) (7)

whereΘ∗ represents the optimal set of ANN parameters.

When using these posterior probabilities (instead of local likelihoods) in SFSA, the model becomes a

recognition model (sometimes referred to as stochastic finite state acceptor), where the observation sequence

is aninput to the system, and where all local and global measures are based on a posteriori probabilities. It

was thus necessary the revisit the SFSA basis to accommodate this formalism. In (Bourlard and Morgan,

1993; Bourlard, Konig and Morgan, 1996), it is shown thatp(M |X, Θ) can be expressed in termscon-

ditional transition probabilitiesp(qt|xt, qt−1) and that it is possible to train the optimum ANN parameter

setΘ according to the MAP criterion (2). The resulting training algorithm (Bourlard, Konig and Morgan,

1994), referred to as REMAP (Recursive Estimation and Maximization of A Posteriori Probabilities) is a

particular form of EM training, directly involving posteriors, where the “Maximization” step involves the

(gradient-based) training of the ANN, and where the desired target distribution (required to train the ANN)
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has been estimated in the previous “Expectation” step. Since this EM version includes an iterative “Maxi-

mization” step, it is also sometimes referred to as Generalized EM (GEM). As for standard HMMs, there is

a full likelihood version (taking all possible paths into account) as well as a Viterbi version of the training

procedure.

Another popular solution in using hybrid HMM/ANN as a sequence recognizer is to turn the local

posterior probabilitiesp(qt=k|xt) into scaled likelihoodsby dividing these by the estimated value of the

class priors as observed on the training data, i.e.:

p(qt=k|xt)
p(qt=k)

=
p(xt|qt=k)

p(xt)
(8)

These scaled likelihoods are trained discriminatively (using the discriminant properties of ANN); during

decoding though, the denominator of the resulting scaled likelihoodsp(xt|qt=k)
p(xt)

is independent of the class

and simply appears as a normalization constant. The scale likelihoods can thus be simply used in a regular

Viterbi or forward recurrence to yield an estimator of the global scaled likelihood (Hennebert et al., 1997):

p(X|M, Θ)
p(X)

=
∑

paths

T∏

t=1

p(xt|qt)
p(xt)

p(qt|qt−1) (9)

where the sum extends over all possible paths of lengthT in modelM .

These hybrid HMM/ANN approaches provide more discriminant estimates of the emission probabilities

needed for HMMs, without requiring strong hypotheses about the statistical distribution of the data. Since

this result still holds with modified ANN architectures, the approach has been extended in a number of ways,

including:

• Extending the input field to accommodate not only the current input vector but also its right and

left contexts, leading to HMM systems that take into account the correlation between acoustic vec-

tors (Bourlard and Morgan, 1993).

• Partially recurrent ANN (Robinson, Hochberg and Renals, 1996) feeding back previous activation

vectors on the hidden or output units, leading to some kind of higher-order HMM.

Input/Output HMMs

Input/Output Hidden Markov Models (IOHMMs) (Bengio and Frasconi, 1995) are an extension of classical

HMMs where the emission and transition probability distributions are conditioned on another sequence,

called the input sequence, and notedY = yT
1 . The emitted sequence is now called the output sequence,
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notedZ = zT
1 . Hence, in the simplest case of the Moore model as presented in Table 1, the emission

distribution now modelsp(zt|qt, yt) while the transition distribution modelsp(qt|qt−1, yt).

While this looks like an apparently simple modification, it has structural impacts on the resulting model

and hence on the hypotheses of the problems to solve. For instance, while in classical HMMs the emission

and transition distributions do not depend ont (we say that HMMs are homogeneous), this is not the case

anymore for IOHMMs, which are hence called inhomogeneous, as the distributions are now conditioned on

yt, which changes with timet.

Applications of IOHMMs range from speech processing to sequence classification tasks, and include

time series prediction and robot navigation. For example, for economic time series, the input sequence

could represent different economic indicators while the output sequence could be for instance the future

values of some target assets or the evolution of a given portfolio.

In order to train IOHMMs, an EM algorithm has been developed (Bengio and Frasconi, 1995) which

looks very much as the classical EM algorithm used for HMMs, except that all distributions and posterior

estimates are now conditioned on the input sequence. Hence we need to implement conditional distribu-

tions, either for transitions or emissions, which can be represented for instance by artificial neural networks

(ANNs). The resulting training algorithm is thus a Generalized EM, which is also guaranteed to converge.

For transition probabilities, the output of the ANN would represent the posterior probability of each transi-

tion p(qt|qt−1, yt) with the constraint that all such probabilities from a given state sum to 1. For emission

probabilities, the output of the ANN would represent the parameters of a unconditional probability distri-

bution, such as a classical mixture of Gaussians. Another implementation option would be to use an ANN

to represent only the expectationE[zt|qt, yt] instead of the probability itself. For some applications such as

prediction, this is often sufficient and more efficient.

An interesting extension of IOHMMs has been proposed in (Bengio and Bengio, 1996) in order to handle

asynchronous input/output sequences, hence being able to match input sequences that might be shorter or

longer than output sequences. An obvious application of asynchronous IOHMMs is speech recognition (or

handwritten cursive recognition) where the input sequence represents the acoustic while the output sequence

represents the corresponding phoneme transcription.

DISCUSSION

In this paper, we discussed the use of deterministic and stochastic finite state automata for sequence pro-

cessing, also attempting to present this in an unified framework. As a particularly powerful instantiation of
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SFSA, and one of the most popular tools for the processing of complex piecewise stationary sequences, we

also discussed hidden Markov models in more detail. Finally, we described a few (certainly not exhaustive)

contributions of the artificial neural network (ANN) community to further improve those SFSA, mainly

including hybrid HMM/ANN systems and Input/Output HMMs.

Of course, this overview and comparison could have been extended to many other related areas such as

transducers, linear dynamical systems, Kalman filters, and others. This, however, would have fell outside

the scope of this short introduction.
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