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Abstract

Local state or phone posterior probabilities are often inves-
tigated as local scores (e.g., hybrid HMM/ANN systems) or
as transformed acoustic features (e.g., “Tandem”) to improve
speech recognition systems. In this paper, we present initial re-
sults towards boosting these approaches by improving posterior
estimates, using acoustic context (e.g., as available in the whole
utterance), as well as possible prior information (such as topo-
logical constraints). In the present work, the enhanced posterior
distribution is associated with the “gamma” distribution typi-
cally used in standard HMMs training, and estimated from local
likelihoods (GMM) or local posteriors (ANN). This approach
results in a family of new HMM based systems, where only pos-
terior probabilities are used, while also providing a new, prin-
cipled, approach towards a hierarchical use/integration of these
posteriors, from the frame level up to the phone and word levels,
and integrating the appropriate context and prior knowledge in
each level. In the present work, we used the resulting posteriors
as local scores in a Viterbi decoder. On the OGI Numbers’95
database, this resulted in improved recognition performance,
compared to a state-of-the-art hybrid HMM/ANN system.

1. Introduction
Using posterior probabilities for Automatic Speech Recognition
(ASR) has become popular and frequently investigated in the
past decade. Posterior probabilities have been mainly used ei-
ther as local scores (measures) or as features in speech recog-
nition systems. Hybrid Hidden Markov Model / Artificial Neu-
ral Network (HMM/ANN) approaches [1] were among the first
ones to make use of posterior probabilities as local scores. In
these approaches, ANNs and more specifically Multi-Layer Per-
ceptrons (MLPs) are used to estimate the emission probabilities
required in HMM system. Hybrid HMM/ANN method allows
for discriminant training, as well as for the possibility of us-
ing acoustic context by presenting several frames at MLP input.
Posterior probabilities have also been used as local scores for
word lattice rescoring [2], beam search pruning [3] and confi-
dence measures estimation [4]. Regarding the use of posterior
probabilities as features, one successful approach is Tandem [5].
In Tandem, a trained MLP is used for estimating local phone
posteriors. These posteriors, after some transformations, can be
used alone or appended to standard features (such as MFCC or
PLP) as input features to HMMs. Tandem technique takes the
advantage of discriminative acoustic model training, as well as
being able to use the techniques developed for standard HMM
systems. In both hybrid HMM/ANN and Tandem approaches,
local posteriors (i.e., posteriors estimated using local frame or
limited number of local frames) are used.
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In [6], a method was presented to enhance the estimation
of posterior probabilities by using the so called “gamma” re-
cursion (as usually referred to in HMM formalism) to gener-
ate posteriors taking into account all acoustic information avail-
able in each utterance, as well as prior knowledge, possibly for-
mulated in terms of HMM topological constraints. In this pa-
per, the authors investigated the estimation and usage of these
posteriors as features for a standard HMM layer. In their ap-
proach, posterior probabilities are estimated using gamma re-
cursion in a HMM configuration, which, after some transfor-
mation, are fed as features into a second layer consisting of
standard HMM/Gaussian Mixture Models (HMM/GMM). Such
an approach was shown to yield significant performance im-
provement over Tandem approach on Numbers’95 and on a re-
duced vocabulary version (1’000 words) of the DARPA Con-
versational Telephone Speech-to-text (CTS) task.

In the present paper, we follow the same direction, i.e., in-
vestigating the estimation of posteriors taking into account the
whole context and prior knowledge. However, instead of be-
ing used as new HMM/GMM features, these posteriors are now
used as local scores in a Viterbi decoder. Our approach is as
follows: First, the posterior probabilities are estimated using
gamma recursion through a HMM layer, then these posteriors
are used as local scores for a Viterbi decoder properly inte-
grating these posteriors with phone transition and word transi-
tion probabilities. We have achieved performance improvement
comparing with hybrid HMM/ANN approach which uses local
posteriors also as local scores. This approach provides a new,
principled, framework for the hierarchical estimation, integra-
tion and use of these posteriors, from the frame level up to the
phone and word levels. In the framework of the experiment
described below, the resulting system was also shown to be
less sensitive to tuning factors (such as word insertion penalty),
which are usually required in standard likelihood-based HMM
for numerical compensation. This is due to the use of posteriors
(having small numerical dynamic range) instead of likelihoods
for decoding. This implies that there is less need for tuning in
our system to get the best possible performance.

In the present paper, Section 2 shows how posterior proba-
bilities can be estimated to capture the whole context and prior
knowledge. Section 3 explains decoding method using these
posteriors. Experiments and results are presented in Section 4.
Conclusions and future work plans are discussed in Section 5.

2. Enhancing posterior probability
estimation

In this section, we show how posterior probability estimation
can be enhanced by using acoustic context information (in
our case, using the whole utterance), as well as possible prior
knowledge. Therefore, enhancing posterior estimates refers to
estimating new and more informative posteriors. These poste-
riors can be estimated for different levels, ranging from phones



to words, or even sentences [6]. In the present paper though, we
focus on phone level posteriors only.

2.1. “State gamma” estimation

In phone-based HMM speech recognition systems, phones are
typically modeled by specific HMMsM with a few number of
states. The posteriors are first estimated for each state (called
“state gammas” as referred to in HMM formalism and used in
HMMs training), which are then integrated to phone or higher
level posteriors. According to standard HMM formalism, the
state gammaγ(i, t|M) is defined as the probability of being in
statei at time t, given the whole observation sequencex1:T

and modelM encoding specific prior knowledge (topologi-
cal/temporal constraints):

γ(i, t|M) = p(qi
t|x1:T , M) (1)

where,xt is a feature vector at timet, x1:T = {x1, . . . , xT }
is an acoustic observation sequence,qt is HMM state at timet,
which value can range from 1 toNq (total number of possible
HMM states), andqi

t shows the event “qt = i”. In the follow-
ing, we will drop theM , keeping in mind that all recursions are
processed through some prior (Markov) modelM .

In standard likelihood-based HMMs, the state gammas
γ(i, t) can be estimated by using forwardα and backwardβ
recursions (as referred to in HMM formalism) [7] using local
emission likelihoodsp(xt|qt

i) (e.g., modeled by GMMs):

α(i, t) = p(x1:t, q
i
t)

= p(xt|qi
t)

X
j

p(qi
t|qj

t−1)α(j, t− 1) (2)

β(i, t) = p(xt+1:T |qi
t)

=
X

j

p(xt+1|qj
t+1)p(qj

t+1|qi
t)β(j, t + 1) (3)

thus yielding the estimate ofp(qi
t|x1:T ):

γ(i, t) = p(qi
t|x1:T ) =

α(i, t)β(i, t)P
j α(j, T )

(4)

Similar recursions, also yielding “state gammas”, can be
developed for local posterior based systems such as hybrid
HMM/ANN systems using MLPs to estimate HMM emission
probabilities. In standard HMM/ANN systems, these local pos-
teriors are usually turned into “scaled likelihoods” by divid-
ing MLP outputs by their respective prior probabilitiesp(qi

t),

i.e.:p(xt|qi
t)

p(xt)
=

p(qi
t|xt)

p(qi
t)

. These scaled likelihoods can be used in

“scaled alpha”αs(i, t) and “scaled beta”βs(i, t) recursions to
yield gamma estimates [6]. These recursions are similar to the
previous recursions except that the likelihood term is replaced
by the scaled likelihood.

All these gammas, either computed from local likelihoods
or local posteriors, have the same theoretical definition (i.e.,
posteriors integrating all available acoustic information, as well
as possible topological constraints) and thus result in the same
theoretical value. However, their estimated values will be dif-
ferent since different local estimators, possibly with different
properties, have been used.

2.2. Phoneme posterior (gamma) estimation

The estimated state gammas can then be used to estimate phone
posteriors (phone gammas), which in turn can be used to esti-
mate sentence posteriors. In the following, we call these phone

posteriors as “phone gammas”γp(i, t), which can be expressed
in terms of state gammasγ(i, t) as follows:

γp(i, t) = p(pi
t|x1:T ) =

NqX
j=1

p(pi
t, q

j
t |x1:T )

=

NqX
j=1

p(pi
t|qj

t , x1:T )p(qj
t |x1:T )

=

NqX
j=1

p(pi
t|qj

t , x1:T )γ(j, t) (5)

where pt is a phone at timet and pi
t represents the event

“pt = i”. Probability p(pi
t|qj

t , x1:T ) represents the probabil-
ity of being in a given phonei at timet knowing to be in the
statej at time t. If there is no parameter sharing between
phones, this is deterministic and equal to 1 or 0. Otherwise,
this can be estimated from the training data. In this work, we
assume that there is no parameter sharing between the phones,
thus a phone gamma is estimated by adding up all state gam-
mas associated with the phone in the whole model. The poste-
rior estimation for different kinds of phones (context-dependent
or context-independent) is basically the same, the difference is
only in modeling the phone in the HMM layer used for posterior
estimation.

2.3. HMM topologies for posterior probability estimation

The HMM layer used for posterior estimation can have different
topologies. The topology of this layer affects the state gamma
posteriors since they capture some prior knowledge (such as
HMM topology). We have studied two different general topolo-
gies:

1. Ergodic topology: In this HMM topology, a phone is
modeled by one state. Phone models are connected to
each other with uniform transition probabilities. Due to
the ergodic uniform transition probabilities, we do not
make use of specific prior information. Moreover, in
this case the state gammas are equal to local normalized
(scaled) likelihoods1[6]. Therefore, they do not capture
contextual information contained in the whole utterance.

2. Non ergodic topology:In this topology, a phone is mod-
eled by a left to right, self loop 3-state HMM. Instead
of ergodic connection, phone models belonging to each
word are connected to make word model and the word
models are connected together based on the language
model. This is similar to the standard HMM topology
normally used for speech recognition. This topology al-
lows capturing prior information encoded in the model
topology as well as context information in the whole ut-
terance. Parameters of this model are estimated using the
training set.

3. Decoding and recognition
Decoding is performed by a Viterbi decoder using phone gam-
mas as local scores. For each phone, a state is reserved in the
decoder structure. Phone states belonging to each word are con-
nected based on phone transition probabilities to make words.
Words are also connected based on language model. The lo-
cal scores in the decoder are phone gammas and the transition

1Normalized (scaled) likelihood is the (scaled) likelihood divided by
the sum of all classes (scaled) likelihoods.



penalties between states are phone transition probabilities or
transition probabilities between words.
We define:

V (i, t) = max
p1:t−1

p(pi
t, p1:t−1|x1:T ) (6)

which can be derived recursively as follows:
V (i, t) = max

j,p1:t−2
p(pi

t, p
j
t−1, p1:t−2|x1:T )

= max
j

[p(pi
t|pj

t−1, p1:t−2, x1:T ) ·

max
p1:t−2

p(pj
t−1, p1:t−2|x1:T )]

= max
j

p(pi
t|pj

t−1, p1:t−2, x1:T )V (j, t− 1) (7)

wherep1:t = {p1, . . . , pt} is the phone sequence. Assuming
a left to right model, the termp(pi

t|pj
t−1, p1:t−2, x1:T ) can be

estimated as:

p(pi
t|pj

t−1, p1:t−2, x1:T ) = p(pi
t|x1:T )p(pi

t|pj
t−1) (8)

The term p(pi
t|x1:T ) is the phone gamma and the term

p(pi
t|pj

t−1) is the frame level phone transition probability in-
side a word (or transition probability between words while go-
ing from the last phone in a word to the first phone in the next
word)2. Simply stated, the decoding process finds the phone
sequence (consequently word sequence) having maximum pos-
terior probability. It is generally similar to the decoding in stan-
dard HMMs except that the local scores are phone gammas in-
stead of likelihoods.

The whole recognition system is composed of two layers:
the posterior probability estimator and the decoder. Figure 1
shows a diagram of the whole system. The first layer is a HMM
layer estimating state gamma posteriors using (4), having the
whole utterance acoustic features. This layer can have different
topologies, such as ergodic or non ergodic as explained in Sec-
tion 2.3. The state gammas are then integrated to phone gam-
mas using (5). The second layer is a Viterbi decoder which uses
phone gammas as local scores. Conceptually, the first layer gets
some features as input and acts as a corrective filter by introduc-
ing some context and prior knowledge. The prior knowledge
has been encoded in the HMM topology. This corrective filter
suppresses the effect of features or local posteriors not match-
ing with prior knowledge about the problem or contextual infor-
mation in the utterance, and magnifies the effect of features or
posteriors matching the prior and contextual information. The
output of this corrective filter which is in the form of posteriors
is fed as local scores to the decoder. The role of the decoder is to
make the decision based on these enhanced posterior estimates.
The decoder also uses phone and word transition probabilities
as transition penalties to force legal phone and word sequences.
Note that the value of these transition probabilities will now
have a bigger impact than in standard likelihood or scaled like-
lihood based systems since they are combined with posterior
probabilities (ranging between 0 and 1) instead of likelihoods
or scaled likelihoods.

Although in this paper we only studied phone level poste-
riors, this approach provides a theoretical framework for hier-
archical estimation, integration and use of posteriors, from the
frame level up to the phone and word levels. Word gammas can
be estimated basically in the same way as state gammas are inte-
grated into phone gammas. These higher level gammas can also

2The transition probabilities are estimated by using forced alignment
phone and word level transcriptions of the training set.
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Figure 1:The whole recognition system. State gammas are es-
timated through a HMM, then they are integrated into phone
gammas. These phone gammas are used as local scores for de-
coding.

be used as local scores for a decoder or as features for a stan-
dard HMM layer. The ultimate goal is to build a hierarchical
processing system, in which each layer enhances and smooths
the estimation of posteriors coming from the previous layer by
introducing appropriate prior knowledge, context or even auxil-
iary information, and without ever taking local decisions.

4. Experiments and results
We used OGI Numbers’95 database for connected word recog-
nition task [8]. The training set contains 3’233 utterances spo-
ken by different speakers. The test set contains 1’206 utter-
ances. The vocabulary consists of 31 words (including silence)
with a single pronunciation for each word. There are 24 context-
independent phones (monophones) and 80 context-dependent
phones (triphones) including silence.

The acoustic vector is the PLP cepstral coefficients ex-
tracted from the speech signal using a window of 25 ms with
a shift of 12.5 ms. At each framet, 13 PLP coefficients, their
first and second order derivatives are extracted resulting in 39
dimensional acoustic vector.

Our system consists of two layers. The first layer is a stan-
dard HMM/GMM layer used to estimate state gammas using
(4) which are then integrated to triphone gammas using (5).
We used the non ergodic topology for this layer to be able to
estimate posteriors using context and prior knowledge. This
HMM/GMM layer has 12 Gaussians per state, and 3-state left
to right, self loop model for each triphone. Parameters of the
model are estimated using the training set. Word transition
probabilities are considered uniform for the case of numbers
database. The estimated triphone gammas are used as local
scores in the second layer which is a Viterbi decoder. Table 1
shows the recognition results. The first row in the table shows
our system performance. The second row shows the perfor-
mance of HMM/ANN baseline system and the third row shows
the performance for standard HMM/GMM speech recognition
system. All the tests were done without using word insertion
penalties for decoding. Comparing with hybrid HMM/ANN ap-
proach which uses local posteriors (in the form of scaled likeli-
hoods) also as local scores, our system performs better. In our
system, we have replaced the local posteriors with enhanced es-
timates of posteriors taking into account the whole context and
prior knowledge. In addition, transition probabilities have more
impact in our decoder than hybrid HMM/ANN system due to



the combination with the posteriors having the same numeri-
cal range, instead of scaled likelihoods. Our system also per-
forms better than the standard HMM/GMM speech recognition
system, having the same HMM/GMM model parameters as the
one used for estimating posteriors in the first layer of our sys-
tem. We did the same experiment using monophone models and
we got similar conclusions.

Moreover, we found that the new system is less sensitive to
changes in word insertion penalties than standard HMM/GMM
speech recognition system. The word insertion penalty is a tun-
ing factor to compensate for difference in words length. Since
our system uses posteriors instead of likelihoods for decoding,
it has less numerical dynamic range and thus, less sensitivity to
this factor. This is another advantage of this approach which
means it needs less tuning to achieve the best performance.

To understand the role of HMM topology in estimation of
posteriors, we did another experiment to compare posteriors es-
timated through the ergodic and non ergodic model. We used
HMM/ANN model once with ergodic topology and the second
time with non ergodic topology to estimate posteriors3. An
MLP with 351 input nodes (9x39 vector) and 24 output units
corresponding to the 24 monophones were used to estimate
HMM emission probabilities. The same decoder was applied
to the estimated posteriors in both cases. Table 2 shows the
results of the experiment. The system which uses phone gam-
mas estimated through the non ergodic topology performs sig-
nificantly better. It shows the fact that the posteriors estimated
using non ergodic model are more discriminative than the ones
estimated using ergodic model. As mentioned before, ergodic
configuration does not capture context or prior knowledge while
non ergodic configuration takes the advantage of capturing prior
knowledge and the whole utterance context enhancing the esti-
mation of posteriors.

Table 1: Different systems performance
System Configuration WER
Triphone gammas estimated by non ergodic
HMM/GMM + Decoder

5.8%

Hybrid HMM/ANN baseline system 6.9%
HMM/GMM baseline system 6.8%

Table 2: Comparing ergodic and non ergodic topologies for pos-
terior estimation

System configuration WER
Monophone gammas estimated by non ergodic
HMM/ANN + Decoder

9.4%

Monophone gammas estimated by ergodic
HMM/ANN + Decoder

13.3%

5. Conclusions and future work
In this paper, we proposed a new, principled, theoretical frame-
work for estimation, integration and use of posterior probabil-
ities in automatic speech recognition systems. We explained
how the posterior estimation can be enhanced taking into ac-
count all possible information present in the data (whole acous-
tic context), as well as possible prior information (e.g. topolog-
ical constraints).

3HMM/GMM configuration was not used for this experiment since
ergodic HMM/GMM yields normalized likelihoods (estimated by
GMMs) as gammas [6] which are not discriminative for decoding, while
ergodic HMM/ANN takes the advantage of MLP discriminant acoustic
modeling, yielding more discriminant normalized scaled likelihoods.

We used these posteriors as local scores in a Viterbi de-
coder. We showed our system performs better as compared to
the hybrid HMM/ANN approach (which uses local posteriors
also as local scores). Therefore, we proposed here to replace
the local posteriors with new, enhanced estimates of posteriors.
We also showed how the HMM topology can affect the estima-
tion of posteriors.

The enhanced estimates of posteriors can also be used as
features (e.g. for a standard HMM layer [6]). The layer used for
estimating posteriors acts as a corrective filter using contextual
and prior knowledge about the problem, thus resulting in more
efficient features, in the form of posteriors.

This theoretical framework allows designing optimal hier-
archical HMM structures [9] since it proposes a principled way
to introduce appropriate context and prior knowledge in each
level of hierarchy. The final goal is to make a hierarchical pro-
cessing system, in which each level enhances and smooths the
estimation of posteriors coming from the previous level by in-
troducing appropriate context and prior knowledge.
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