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Abstract
The Gestalt laws of perceptual organization, which describe how visual elements in an image are grouped and interpreted,
have traditionally been thought of as innate. Given past research showing that these laws have ecological validity, we
investigate whether deep learning methods infer Gestalt laws from the statistics of natural scenes. We examine the law
of closure, which asserts that human visual perception tends to “close the gap” by assembling elements that can jointly
be interpreted as a complete figure or object. We demonstrate that a state-of-the-art convolutional neural network, trained
to classify natural images, exhibits closure on synthetic displays of edge fragments, as assessed by similarity of internal
representations. This finding provides further support for the hypothesis that the human perceptual system is even more
elegant than the Gestaltists imagined: a single law—adaptation to the statistical structure of the environment—might suffice
as fundamental.

Keywords Gestalt laws · Closure · Deep learning · Natural scene statistics

Introduction

Psychology has long aimed to discover fundamental laws
of behavior that place the field on the same footing as
“hard” sciences like physics and chemistry (Schultz and
Schultz 2015). Perhaps the most visible and overarching
set of such laws, developed in the early twentieth cen-
tury to explain perceptual and attentional phenomena, are
the Gestalt principles (Wertheimer 1923). These principles
have had a tremendous impact on modern psychology (Kim-
chi 1992; Wagemans et al. 2012a; Wagemans et al. 2012b;
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Schultz and Schultz 2015). Although Gestalt psychology
has faced some criticism over a lack of rigor (Wagemans
et al. 2012a; Westheimer 1999; Schultz and Schultz 2015),
investigators have successfully operationalized its con-
cepts (Ren and Malik 2003), and it has influenced work in
medicine (Bender 1938), computer vision (Desolneux et al.
2007), therapy (Zinker 1977), and design (Behrens 1998).

The Gestalt principles describe how visual elements are
grouped and interpreted. For example, the Gestalt principle
of closure asserts that human visual perception tends to
“close the gap” by grouping elements that can jointly be
interpreted as a complete figure or object. The principle
thus provides a basis for predicting how viewers will parse,
interpret, and attend to display fragments such as those in
Fig. 1a, b. The linking of fragments such as those in Fig. 1a
hampers access to the constituent fragments but facilitates
rapid recognition of the completed shape (Rensink and Enns
1998).

The Gestalt principles can support object perception by
grouping together strongly interrelated features—features
likely to belong to the same object, allowing features of
that object to be processed apart from the features of other
objects (e.g., Fig. 1c). Consistent with this role of grouping,
the Gestalt principles have long been considered to have
ecological validity in the natural world (Brunswik and
Kamiya 1953). That is, natural image statistics have been
shown to justify many of the Gestalt principles, including
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a b c

Fig. 1 a A circle formed from fragments via closure; b the same
fragments but rearranged to prevent closure; c fragments from two
circles which can be segmented using closure

good continuation, proximity, and similarity (Elder and
Goldberg 2002; Geisler et al. 2001; Krüger 1998; Sigman
et al. 2001).

Gestaltism was in part a reaction to Structuralism (Titch-
ener 1909; Wundt 1874), the perspective that association
and grouping is a consequence of experience (Kimchi
1992). The Gestaltist tradition considered the principles to
be innate and immutable. Although the role of learning was
acknowledged, the atomic Gestalt principles were consid-
ered primary (Todorovic 2008). Even the aforementioned
research examining natural image statistics has presumed
that the principles either evolved to support ordinary percep-
tion or fortuitiously happen to have utility for perception.

However, ample evidence supports the notion that
perceptual grouping can be modulated by experience. For
example, figure-ground segregation is affected by object
familiarity: a silhouette is more likely to be assigned as
the figure if it suggests a common object (Peterson and
Gibson 1994; Peterson 2019). And perceptual grouping can
be altered with only a small amount of experience in a
novel stimulus environment (Zemel et al. 2002). In these
experiments, participants were asked to report whether two
features in a display matched. Consistent with previous
work (Duncan 1984), participants are faster to respond
when the two features—notches on the ends of rectangles—
belong to the same object (Fig. 2a) relative to when they
belong to different objects (Fig. 2b). Although participants
treat Fig. 2a, b as one rectangle occluding another, the
two small squares in Fig. 2c are treated as distinct objects.
However, following brief training on stimuli such as the zig-
zag shape in Fig. 2d, the two small squares are treated as
parts of the same object, relative to a control condition in
which the training consisted of fragments as in Fig. 2e.

If perceptual grouping can be modulated by experience,
perhaps the Gestalt principles are not innate and immutable
but rather are developmentally acquired as a consequence
of interacting with the natural world. Ordinary perceptual
experience might suffice to allow a learner to discover
the Gestalt principles, given that the statistical structure of
the environment is consistent with the Gestalt principles
(Elder and Goldberg 2002; Geisler et al. 2001; Krüger 1998;
Sigman et al. 2001). In the present work, we use deep

learning methods to investigate necessary and sufficient
conditions on this hypothesis.

We focus on closure (Fig. 1a, c). Closure is a particularly
compelling illustration of the Gestalt perspective because
fragments are assembled into a meaningful configuration
and perceived as a unified whole (Wertheimer 1923). Clo-
sure has been studied experimentally via measures that
include electrophysiology (Brodeur et al. 2006; Marini and
Marzi 2016; Pitts et al. 2012), shape discrimination latency
or accuracy (Elder and Zucker 1993; Kimchi 1994; Pomer-
antz et al. 1977; Ringach and Shapley 1996), and attentional
capture (Kimchi et al. 2016; Kramer and Jacobson 1991).

Closure is a form of amodal completion, which corre-
sponds to the naturalistic case of an occluded shape where
the occluder is not visible. As a result of occlusion, some
features are visible and others are missing. In contrast,
modal completion refers to an occluder shape, camouflaged
against the background, whose borders are delineated by
illusory contours. Figure 3a illustrates both modal percep-
tion (the white occluding triangle in the foreground) and
amodal perception (the black outline triangle, occluded by
the white triangle).

Traditional cognitive models have been designed to explain
modal completion (e.g., Grossberg 2014) or to provide a
unified explanation for both modal and amodal completion
(e.g., Kalar et al. 2010). We are not aware of cognitive
models aimed specifically at amodal completion, though the
topic has been of interest in the computer vision community
(e.g., Oliver et al. 2016). These past models adopt the
assumption of innateness in that they are built on specialized
mechanisms designed to perform some type of filling in.
We examine whether a deep neural net trained on natural
images exhibits amodal closure effects naturally and as a
consequence of its exposure to its environment.

The most closely related work to ours is an investigation
of Baker, Kellman, Erlikhman, and Lu (2018) into whether
neural nets “perceive” illusory contours (see also Ehrensperger
et al. 2019). They studied modal perception in displays con-
sisting of fragments that could be completed as either fat or
thin rectangles (Fig. 3b, left and right images, respectively).
Using AlexNet (Krizhevsky et al. 2012), a convolutional net
pretrained for image classification, they removed the output
layer which represents every object class and replaced it
with a single unit that discriminates fat from thin rectangles.
The weights from the penultimate layer to the output unit
were trained on complete (non-illusory) fat and thin rectan-
gles presented in varying sizes, aspect ratios, and positions
in the image. This additional training extracts information
available from the original model for fat versus thin clas-
sification. Following training, the network could readily
discriminate fat and thin rectangles, whether real or illusory.
Baker et al. then borrowed a method from the human behav-
ioral literature, classification images (Gold et al. 2000), to



Comput Brain Behav

a b c d e

Fig. 2 Examples of stimuli used in Zemel et al. (2002). a Same-object notches. b Different-object notches. c Same or different object? d “Single
object” training. e “Double object” training

infer features in the image that drive responses. Essentially,
the method adds pixelwise luminance noise to images and
then uses an averaging technique to identify the pixels that
reliably modulate the probability of a given response. In
humans, this method infers the illusory contours of the
rectangles suggested by the stimuli in Fig. 3b. In contrast,
Baker et al. found no evidence that pixels along illusory
contours influence network classification decisions. They
conclude that “deep convolutional networks do not perceive
illusory contours” (the title of their article).

This work does not directly bear on ours because it
focuses on modal perception; we focus on amodal. It also
contrasts with our work in the modeling approach taken.
Baker et al. adopt a traditional approach in which a model
is trained to perform a cognitive task and is evaluated by
comparing its behavior to humans’. Although this paradigm
allows networks to be treated as a black box, one advantage
of network experiments over human experiments is that
representations can be observed directly. With humans, the
classification image paradigm is a necessary and clever
means of reverse-engineering representations; with models,
we can inspect network internal representations directly.

Assessing Closure via Internal Representations

In our work, we examine the internal representations of a
neural network trained on natural scenes and then tested
on simple line drawings (Fig. 3c–e), similar to stimuli used
in classic human studies (e.g., Elder and Zucker 1993;
Kimchi et al. 2016; Kimchi 1992). We investigate whether
aligned fragments (Fig. 3c) yield a representation closer
to that of a complete triangle (Fig. 3d) than do disordered
fragments (Fig. 3e). We perform critical control experiments
to ensure that the similarity we observe is not due to abstract
properties of the representations, not simple pixel overlap.
Our approach is similar to fMRI analyses that use the
subtraction method to determine the (dis)similarity of an
experimental condition to a baseline condition.

Focusing on similarity of internal representations allows
us to evaluate the Gestalt perception of shape without
complicating assumptions of behavioral read out. We can
definitively conclude that a neural network does not exhibit
closure if we find that aligned fragments are no more

similar to complete triangles than are disordered fragments.
Similarity of representation is fundamental to generalization
in any neural network. Consequently, without similarity of
representation, no possible read-out mechanism could yield
behavioral responses indicative of closure (or of functional
filling in or grouping).

However, representational similarity consistent with clo-
sure does not ensure that the model will replicate quanti-
tative behavioral patterns of human subjects in a particular
experimental paradigm. To construct traditional cognitive
models that simulate an individual performing a percep-
tual task, we require additional assumptions about response
formation and initiation. It is our experience that these
additional assumptions provide modelers with enough flex-
ibility that it’s not terribly challenging to fit data, especially
when only two conditions are being compared (closure vs.
non-closure displays).

We return to the issue of data fitting later in the article.
For now, we focus on obtaining evidence of a differential
neural response to collections of fragments depending on
whether or not their elements are consistent with a simple
Gestalt figure. It is far from obvious that such a differential
response will be obtained given that we are testing networks
on synthetic images very unlike what they are trained on.

a

c d e

b

Fig. 3 a The Kanisza triangle, an illustration of modal (white triangle
in the foreground defined by illusory contours) and amodal (occluded
black outline triangle) perception; b fat and thin squares used as stimuli
by Baker et al. (2018); c aligned fragments—the minimal visual cues
required to induce closure; d a complete triangle; and e disordered
fragments, which should be insufficient to induce closure
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Methods

Our stimuli are images of complete, aligned, and disordered
shapes, varying in a number of irrelevant dimensions to
ensure robustness of effects we observe (Fig. 4a, b).
The stimuli are fed into a pretrained deep convolutional
neural net (hereafter, ConvNet) that maps the image to
an m-dimensional internal representation, which we refer
to as the embedding (Fig. 4c). We estimate the expected
relative similarity of aligned and disordered fragments to
the complete image using a closure measure, C̄ ∈ [−1, +1],
where a larger value indicates that the representation of
the complete triangle is more like the representation of the
aligned fragments than the representation of the disordered
fragments (Fig. 4d).

Models

In our large simulation experiments, we leverage a state-of-
the-art, pretrained image classification network, Inception,
trained on the 1000-class ImageNet data set (Szegedy
et al. 2016). Most images in this data set consist of one
or multiple instances of a given object in the foreground
with a naturalistic background (e.g., fruit on a plate on a
tablecloth); some involve more complex scenes (e.g., a
family at a dinner table eating ice cream for dessert); and
some are at a larger spatial scale (e.g., sporting events, street
scenes, underwater coral reefs). Input to this model is a
150 × 150 pixel color (RGB) image, and output a 1001-
dimensional activation vector whose elements indicate
the probability that the image contains the corresponding

Fig. 4 Outline of the stimuli and
methodology to test closure in
pretrained neural networks. a
The tested shapes varied in
global orientation and the
disordered images also varied in
local orientation of their
elements. b Examples of
stimulus variation for the three
experimental conditions
(depicted in the rows), and for
five properties (depicted in the
columns). c Images are fed into
a deep ConvNet trained to
classify images, where there is
one output neuron per class. In
most of our simulations, the
penultimate layer, with m units
is used as a deep embedding of
the input image. d Computing a
closure measure, C̄, where a
larger value indicates that the
representation of the complete
triangle is more similar to the
representation of the aligned
fragments than to the
representation of the disordered
fragments. Note that C̄ is an
expectation over many image
triples, not depicted in the
equation

a

b

c

d



Comput Brain Behav

object class. (The ImageNet task involves 1000 classes; the
additional class is a “none of the above” category.) Inception
has been trained on 1.2 million images from the ImageNet
data set (Deng et al. 2009) to assign each image to one
of a thousand object classes. Standard data augmentation
methods were used including: horizontal flips, feature-wise
normalization, aspect ratio adjustment, shifts, and color
distortion. In most simulations, we read out representations
from the penultimate layer of the net, known as Mixed 7c,
which consists of a 2048-dimensional flat vector. The
penultimate layer of a deep net is commonly assumed to
embody a semantic representation of the domain (visual
objects). For example, in transfer learning and few-shot
learning models, this layer is used for encoding novel object
classes (e.g., Scott et al. 2018; Yosinski et al. 2014). One of
our experiments reads out from earlier layers of the network.

We also explore a simple convolutional architecture con-
sisting of three pairs of alternating convolutional and max
pooling layers followed by a fully connected layer and a sin-
gle output unit trained to discriminate between three classes,
randomly chosen from ImageNet. A fully connected variant
of the architecture replaces the convolutional and pooling
blocks with fully connected layers. For these simple models,
the embedding is the penultimate layer of the network.

For the sanity-check experiments (CD and BD models),
we used the simple convolutional architecture with a
single output trained to perform a binary discrimination
(disordered versus complete and aligned for CD; black
backgrounds versus white backgrounds for BD). The CD
and BD models are trained on 75% of the 768 distinct
complete-aligned-disordered triples; the remainder form a
validation set, which reaches 100% accuracy and is used
for evaluating the model. Five replications of the CD and
BD models are trained with different random initial seeds to
ensure reliability of results.

Further details on all models are provided in the Supple-
mental Information.

Stimuli

We compare three critical conditions (Fig. 3c–e): complete
triangles, triangle fragments with aligned corners, and frag-
ments with disordered corners. Each stimulus is rendered
in a 150 × 150 pixel image and the Euclidean distance
between vertices is 116 pixels. Rather than testing models
with more elaborate images (e.g., Fig. 3a, b), we chose to
use the simplest images possible that could evoke closure
effects, for two reasons. First, with more complex and natu-
ralistic images, we found that it was difficult to control for
various potential confounds (e.g., the amount of input acti-
vation, which affects the level of output activation). Second,
the simplistic shapes we studied are quite unlike ImageNet

images which are used for training the model. Any observed
closure effects cannot be attributed to the possibility that the
stimuli were part of a model’s training set.

We manipulated various properties of the stimuli, as
depicted in Fig. 4. For all conditions, the stimuli varied in
the global orientation of the triangle or fragments, which we
refer to as θglobal, the background (light on dark versus dark
on light), and the position of the object center in the image.
For the disordered condition, we varied the orientation of
the corners with respect the orientation of corners in the
aligned fragment condition, which we refer to as θlocal. And
finally, for the disordered and aligned conditions, we varied
the length of the edges extending from the fragment corners,
which we refer to as edge length.

Edge length is centrally related to the phenomenon of
interest. Edge length, or equivalently, the gap between cor-
ners, influences the perception of closure, with smaller
gaps leading to stronger closure (Elder and Zucker 1993;
Jakel et al. 2016). The remaining properties—background
color, local and global orientation, and image position—are
manipulated to demonstrate invariance to these properties.
If sensitivity to any of these properties is observed, one
would be suspicious of the generality of results. Further,
these properties must be varied in order to avoid a criti-
cal confound: the complete image (Fig. 3d) shares more
pixel overlap with the aligned fragments (Fig. 3c) than
with the disordered fragments (Fig. 3d). We therefore must
ensure that any similarity of response between complete and
aligned images is not due to pixel overlap. We accomplished
this aim by always comparing the response to complete
and fragment images that have different θglobal and differ-
ent image positions. However, when comparing represen-
tations, we always match the images in background color
because neural nets tend to show larger magnitude responses
to brighter images.

The background color has two levels, black and white.
The position is varied such that the stimuli could be centered
on the middle of the image or offset by −8 pixels from the
center in both x and y directions, resulting in two distinct
object locations. The global orientation is chosen from eight
equally spaced values from 0◦ to 105◦. (Symmetries make
additional angles unnecessary. A 120◦ triangle is identical to
a 0◦ triangle.) The local orientation of the disordered corners
is rotated from the aligned orientation by 72◦, 144◦, 216◦,
or 288◦. The edge length is characterized by the length of an
edge emanating from the vertex; we explored six lengths: 3,
8, 13, 18, 24, and 29 pixels, which corresponds to removal
of between 95% and 50% of the side of a complete triangle
to form an aligned image. These manipulations result in
2 × 2 × 8 = 32 complete triangles, 2 × 2 × 8 × 6 = 192
aligned fragments, and 2 × 2 × 8 × 6 × 4 = 768 disordered
fragments, totalling 992 distinct stimulus images.
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Quantitative Measure of Closure

We compare model internal representations via a quantita-
tive measure of closure:

Ci = s(f (ai ), f (ci )) − s(f (d i ), f (ci )),

where i is an index over matched image triples consisting
of a complete triangle (ci), aligned fragments (ai), and
disordered fragments (d i); f (.) ∈ R

m is the neural
net mapping from an input image in R

150×150 to an m-
dimensional embedding, and s(., .) is a similarity function
(Fig. 4). Consistent with activation dynamics in networks,
we use a standard similarity measure, the cosine of the angle
between the two vectors,1

s(x, y) = f (x)f (y)T

|f (x)| |f (y)| .

The triples are selected such that ai and d i are matched in
θglobal position, both differ from ci in θglobal, and all three
images have the same background color (black or white).
These constraints ensure that there is no more pixel overlap
(i.e., Euclidean distance in image space) between complete
and aligned images than between complete and disordered
images.

We test 768 triples by systematically pairing each of the
768 distinct disordered images with randomly selected
aligned and complete images, subject to the constraints in
the previous paragraph. Each of the 192 aligned images
in the data set is repeated four times, and each of the 32
complete images is repeated 24 times.

We compute the mean closure across triples, C̄ ∈ [−1, +
1]. This measure is +1 when the complete image yields
a representation identical to that of the aligned image and
orthogonal to that of the disordered image. These conditions
are an unambiguous indication of closure because the closure
measure cannot distinguish the complete triangle from the
aligned fragments. Mean closure C̄ is 0 if the complete image
is no more similar to the aligned than disordered images,
contrary to what one would expect by the operation of Gestalt
grouping processes that operate based on the alignment of
fragments to construct a coherent percept similar to that of
the complete triangle. Mean closure C̄ may in principle be
negative, but we do not observe these values in practice.

Although our measure of representational similarity is
common in the deep learning literature, the neuroimaging
literature has suggested other notions of similarity, e.g.,
canonical correlation analysis (Härdle and Simar 2007)
and representational similarity analysis (Kriegeskorte et al.
2008). These measures are particularly useful for comparing
signals of different dimensionality (e.g., brain-activity
measurement and behavioral measurement).

1We assume s(x, y) = 0 if both |f (x)| = 0 and |f (y)| = 0.

Results

Sanity Check

We conduct a proof-of-concept experiment to show that we
can distinguish models that produce closure from those that
do not. To ensure that the models have these properties,
we train simple ConvNets from scratch solely on our set
of complete, aligned, and disordered images. The networks
are trained to perform one of two binary classification
tasks: closure discrimination (CD), which produces output
1 for complete and aligned images and output 0 for
disordered images, and background discrimination (BD),
which produces output 1 for black backgrounds and 0
for white backgrounds. The CD net will necessarily treat
complete and aligned as more similar than complete and
disordered, and should therefore produce a positive C̄ score.
In contrast, the BD net needs to extract color not shape
information from images, and if it ignores shape altogether,
it will yield a C̄ score of 0. Our aim in this contrast
is to present the pattern of results obtained in these two
conditions as signatures of closure (for CD) and lack of
closure (for BD).

Figure 5 presents the closure measure (C̄) for the CD
and BD models, as a function of the edge length (Fig. 4b).
The measure is computed using the activations in the
penultimate layer of the net. The CD model, trained to
treat aligned and closure as identical, produces linearly
increasing closure as the edge length increases. The BD
model, trained to focus on background color, produces a
flat function of closure with edge length. Thus, when a
model necessarily treats aligned and complete as identical,
it produces a monotonic ramp with edge length. When a
model has no constraint on how it treats the different types
of images, it fails to produce closure at any edge length.
We therefore use these curves as signatures of closure and
failure to exhibit closure, respectively.

Given that the CD model was trained to treat aligned
images as equivalent to complete triangles, regardless of
edge length, it is surprising that internal representations of
the model remain sensitive to edge length, as evidenced
by increasing closure with edge length. Because the task
requires determining how edges align in Gestalt shapes, it
seems to be impossible for the CD model not to preserve
information about edge length, albeit task irrelevant. This
feature of the model is consistent with findings that
human performance also varies as a continuous, monotonic
function of the edge length, whether the behavioral
measure of closure is discrimination threshold (Ringach and
Shapeley 1996), search latency (Elder and Zucker 1993), or
memory bias (Holmes 1968). Similarly, neurons in area 18
of the visual cortex of alert monkeys responding to illusory
contours show an increased strength of response as the
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Fig. 5 Sanity check experiment. CD networks, trained to discriminate
complete and aligned from disordered images, show increasing closure
with edge length. BD networks, trained to discriminate background
color, show no closure. The simulation is replicated multiple times
with different random initial seeds, and statistics of each value are
depicted via a standard box-and-whisker diagram which shows the
median value, first and third quartiles, as well as individual outlier
points

edge length increases (von der Heydt et al. 1984). These
empirical results give further justification to treating the
profile of the CD model in Fig. 5 as a signature of closure.

The Role of Natural Image Statistics

We now turn to the main focus of our modeling effort:
to evaluate the hypothesis that natural image statistics,
in conjunction with a convolutional net architecture, are
necessary and sufficient to obtain closure in a neural net.
We perform a series of simulations that provide converging
evidence for this hypothesis. Each experiment compares
a base model to a model that varies in a single aspect,
either its architecture or training data. Our base model is
a state-of-the-art pretrained image classification network,
Inception (Szegedy et al. 2016).

Natural Images Versus White Noise

Figure 6a compares the base model to an identical archi-
tecture trained on white noise images. The base model
and white-noise net share not only the same architecture
but also training procedure and initial weight distribution;
they differ only in that the white-noise net does not bene-
fit from natural image statistics. Nonetheless, the network
has the capacity to learn a training set of 1.2 million
examples (same number as normal ImageNet training set)
from 1001 randomly defined classes. Each pixel in these

images is sampled from a uniform [−1, +1] distribution,
the range of values that the model has for natural images
after preprocessing. The base model shows a closure effect:
a monotonic increase in C̄ with edge length, whereas the
white-noise net obtains C̄ = 0 regardless of edge length.
Performing a two-way analysis of variance with stimulus
triple as the between-condition random factor, we find a
main effect of model (F(1, 1188) = 2507, p < 0.0001), a
main effect of edge length (F(5, 1188) = 254, p < 0.0001),
and an interaction (F(5, 1188) = 254, p < 0.0001).

Original Images Versus Shuffled Pixels

Training on white noise might be considered a weak com-
parison point because the low-order statistics (e.g., pairs
of adjacent pixels) are quite different from those natural
images. Consequently, we tested an input variant that looks
quite similar to white noise to the human eye but matches
pixelwise statistics of natural images: images whose pixels
have been systematically shuffled between image locations.
While these shuffled images contain the same information
as natural images, the rearrangement of pixels not only pre-
vents the human eye from detecting structure but also blocks
the network from learning structure and regularities due
to the local connectivity of the receptive fields. Nonethe-
less, large overparameterized neural networks like Inception
have the capacity to learn the shuffled-pixel training set,
although they will not generalize to new examples (Zhang
et al. 2016).

Figure 6b shows that Inception trained on shuffled pixels
does not obtain a closure effect. Performing a two-way
analysis of variance, we find a main effect of model
(F(1, 888) = 1249.6, p < .0001), a main effect of edge
length (F(5, 888) = 253.3, p < .0001), and an interaction
(F(5, 888) = 126.7, p < .0001).

Trained Versus Untrained Networks

Our white-noise and shuffled-pixel experiments indicate
that training on corrupted inputs prevents closure. Now we
ask whether an untrained network naturally exhibits closure,
which is then suppressed by training in the case of corrupted
images.

Figure 6c compares our base model to the same model
prior to training, with random initial weights. The untrained
model exhibits a weaker closure effect as indicated by
an interaction between condition and edge length (F(5,

1188) = 166.9, p < .0001). Averaging over edge lengths,
the magnitude of the random-weight closure effect is
nonzero (t (599) = 19.7, p < 0.0001), indicating that
some amount of closure is attributable simply to the
initial architecture and weights. This finding is not entirely
surprising as researchers have noted the strong inductive
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Fig. 6 Exploration of how closure is influenced by various aspects of
the neural net. We test Inception with 1000 classes (panels a–d) and a
smaller ConvNet architecture with 3, 6, or 9 classes (panels e–h). Each
graph compares a standard ConvNet architecture trained on natural
images to an alternative: a comparing standard Inception to white-
noise trained model, b comparing standard Inception to model trained

on shuffled pixels, c comparing standard Inception to untrained model,
d comparing standard Inception to model trained on shuffled labels, e
comparing small ConvNet to white-noise trained model, f comparing
small ConvNet to model trained on shuffled pixels, g comparing small
ConvNet to untrained model, h comparing small ConvNet to model
trained on shuffled labels

bias that spatially local connectivity and convolutional
operators impose on a model, making them effective as
feature extractors with little or no data (Ulyanov et al. 2018;
Zhang et al. 2020). In the Supplemental Information, we
show that the amount of training required for the network to
reach its peak C̄ is fairly minimal, about 20 passes through
the training set, about 1/6th of the training required for the
network to reach its asymptotic classification performance.

Systematic Versus Shuffled Labels

We have argued that the statistics of natural image data are
necessary to obtain robust closure, but we have thus far not
explored what aspect of these statistics are crucial. Natural
image data consist of {image, label} pairs, where there is
both intrinsic structure in the images themselves—the type
of structure typically discovered by unsupervised learning
algorithms—and associative structure in the systematic
mapping between images and labels. Associative structure
is crucial in order for a network to generalize to new cases.

In Fig. 6d, we compare our base model with a version
trained on shuffled labels, which removes the associative
structure. Our model has the capacity to memorize the ran-
domly shuffled labels, but of course it does not generalize.

The shuffled-label model exhibits a weaker closure effect
as indicated by an interaction between condition and edge
length (F(5, 1188) = 143.0, p < .0001). Averaging over
edge lengths, the magnitude of the shuffled-label closure
effect is nonzero (t (599) = 18.5, p < 0.0001), indicat-
ing that some amount of closure is attributable simply to
intrinsic image structure. We conjecture that the network
must extract this structure in order to compress informa-
tion from the original 150 × 150 × 3 pixel input into the
more compact 2048-dimensional embedding, which will
both allow it to memorize idiosyncratic class labels and—
as a side effect—discover regularities that support closure.
By this argument, supervised training on true labels further
boosts the network’s ability to extract structure meaning-
fully related to class identity. This structure allows the
network to generalize to new images as well as to further
support closure.

We chose to eliminate associative structure by shuffling
labels, but an alternative approach might be to train an
unsupervised architecture that uses only the input images,
e.g., an autoencoder. We opted not to explore this alternative
because label shuffling was a more direct and well-
controlled manipulation; it allows us to reuse the base model
architecture as is.
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Replication on Simpler Architecture

To examine the robustness of the results we’ve presented
thus far, we conducted a series of simulations with a smaller,
simpler architecture. This architecture has three output
classes, chosen randomly from the ImageNet data set, and
three layers, each consisting of a convolutional mapping
followed by max pooling. We train 8–10 networks with the
same architecture and different weight initializations.

Figure 6e–h show closure results for the simple archi-
tecture that correspond to the results from the larger archi-
tecture in Fig. 6a–d. This simple architecture produces
the same pattern of closure effects as the larger Inception
model, suggesting that closure is robust to architecture. Clo-
sure also appears to be robust to stimulus image diversity:
Inception is trained on images from 1000 distinct classes;
the simple net is trained on images from only 3 classes.
However, we have observed lower bounds on the required
diversity: When we train either model on one example per
class, closure is not obtained.

The Role of Convolutional Operators and Local
Connectivity

The success of deep networks in vision is partially due
to the adoption of some basic architectural features of the
mammalian visual system, specifically, the assumptions of
local connectivity and equivariance (Fukushima et al. 1983).
Local connectivity in a topographic map indicates that a
detector in one region of the visual field receives input only
from its local neighborhood in the visual field. Equivariance
indicates that when presented with the same local input,
detectors in different parts of the topographic map respond
similarly. These properties are attained in deep nets via
convolutional architectures with weight constraints.

To evaluate the role of these architectural constraints,
we compare a ConvNet with the generic alternative, a
fully connected architecture (FCNet) with dense (non-
local) connectivity and no built in equivariance. Because
FCNets do not perform as well on complex vision tasks,
we were unable to train an FCNet on the full ImageNet
data set to achieve performance comparable to our baseline
ConvNet. Without matching the two architectures on
performance, any comparison confounds architecture and
performance. Consequently, we trained small instances of
both architectures on just three randomly selected classes
from ImageNet, allowing us to match the ConvNet and
FCNet on performance. We replicated this simulation 7
times for robustness.

Figure 7 compares the closure effect for ConvNets and
FCNets. The penultimate layer of representation is used to
assess closure for both architectures. While the ConvNet
evidences closure, the FCNet does not. Taking this finding

Fig. 7 Exploring closure on convolutional versus fully connected
architectures. Only the convolutional net achieves a closure effect, as
indicated by the nonzero slope of the edge length vs. closure function

together with the fact that the untrained ConvNet exhibits
some degree of closure (Fig. 6c and g), we infer that some
aspect of the ConvNet structure facilitates the induction of
closure.

Levels of Representation and Closure

Thus far, we have investigated closure at the penultimate
layer of a network, on the assumption that this representa-
tion would be the most abstract and therefore most likely to
encode object shape. However, the deep Inception architec-
ture we tested has 16 major layers, some of which involve
multiple convolutional transformation and pooling opera-
tions. A priori, observing closure in early layers seems
unlikely because the receptive fields of neurons in these lay-
ers have spatially constrained receptive fields, and closure
requires the registration of Gestalt properties of the shapes.
(Our test of closure will not false trigger based on local
visual edge similarity because we compare images with
distinct θglobal.)

In Fig. 8a, we show the closure effect for representations
in the last eleven layers of Inception. “Mixed 7c” is the
layer whose representation we have previously reported on.
The graph legend is ordered top to bottom from shallowest
to deepest layer. While all of the eleven layers show
closure, closure is weaker for the shallower layers, labeled
“Mixed 5”, than the deeper layers, labeled “Mixed 6” and
“Mixed 7”. We do not have a definitive explanation for why
the effect is slightly weaker in the deeper “Mixed 7” layers
than in the shallower “Mixed 6” layers, though we suspect
it is a consequence of training the model for classification.
Classification does not require any information other
than class labels to be transmitted through the network.
Consequently, the net is not encouraged to preserve a
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Fig. 8 a The closure effect for the final eleven layers of the Inception
architecture. Previously, we assessed closure only at layer “Mixed 7c”,
but the lower layers also show varying degrees of closure. b The

closure effect for each layer of the small ConvNet. Previous results
have read out from the “fc finale” layer. In both graphs, variability over
images in the strength of closure is shown with uncertainty shading

shape representation through all layers, and the net possibly
discards irrelevant shape information in order to optimize
inter-class discrimination.

In Fig. 8b, we depict the closure curves for layers of the
simple net, from the shallowest hidden layer, “conv2d 1”,
to the penultimate layer, “fc finale”. For this architecture,
only the penultimate layer shows closure. In the penultimate
layer, each neuron can respond to information anywhere in
the visual field.

Consistent across Inception and the simple net, represen-
tations at the shallow layers are not sufficiently abstract to
encode Gestalt closure. This follows from the local feed-
forward connectivity of the architectures and gradual col-
lapsing (pooling) of information across increasingly wider
receptive fields at deeper stages of both architectures.

Although filling in phenomena are observed in early
stages of visual cortex (von der Heydt et al. 1984), it
is possible that these effects are not causally related to
Gestalt perception or are due to feedback projections, which
our models lack. But our results are otherwise consistent
with the view that lower stages of neural nets capture
spatially local, low-order statistics whereas higher stages
capture spatially global, high-order statistics (Bau et al.
2017; Mozer 1991).

Discussion

Our work follows a long tradition in computational mod-
eling of using neural network models to explain qualita-
tive aspects of human perception (e.g., Rumelhart et al.
1988; Mozer 1991). The strength of computational methods
over behavioral or neuroscientific methods as an investiga-
tive tool is that models can be precisely manipulated to
determine the specific model properties and inputs that are

necessary and sufficient to explain a phenomenon. Further,
we can do more than merely observe a model’s input-
output behavior; we can probe its internal representations
and directly determine what it is computing.

We began with the conjecture that Gestalt laws need
not be considered as primitive assumptions underlying
perception, but rather, that the laws themselves may arise
from a more fundamental principle: adaptation to statistics
of the environment. We sought support for this conjecture
through the detailed study of a key Gestalt phenomenon,
closure. Using a state-of-the-art deep neural network model
that was pretrained to classify images, we showed that in the
model:

– Closure depends on natural image statistics. Closure
is obtained for large neural networks trained to
classify objects, and even for a smaller net trained to
discriminate only a few object classes, but it is not
obtained when a net is trained on white noise images
or shuffled-pixel images. While shuffled-pixels have
the same statistics as natural images, networks with
local receptive fields are unable to extract spatially local
structure due to the fact that the pixel neighborhood has
been randomly dispersed in a shuffled image.

– Closure depends on learning to categorize the world
in a meaningful way. Networks trained to associate
images with their correct categorical label produce
much larger closure effects than networks trained to
associate images with random labels. In the former
case, the labels offer a clue about what features should
be learned to systematically discriminate categories
(Lupyan 2012). In the latter case, the labels misdirect
the net to discover features that, by chance, happen to
be present in a random collection of images that were
assigned the same label.
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– Closure depends on the architecture of convolutional
networks. The extraction of image regularities is
facilitated by two properties of ConvNets: spatially
local receptive fields and equivariance. Fully connected
networks, which lack these forms of inductive bias, do
not obtain closure. The inductive biases are sufficiently
strong that even an untrained ConvNet obtains a weak
degree of closure, indicative of a synergy between
innate structures and experience.

Our simulation experiments suggest that these three
dependencies are necessary and sufficient conditions for a
computational system to produce closure. The system need
not be prewired to perform closure, nor does it need to learn
closure per se. Rather, closure emerges as a synergy between
architectural structures and learning to represent real-world
objects and categories.

One limitation of our work is that our model does not
“produce closure” per se. That is, we have not fleshed
out a full-fledged cognitive model that can replicate
human behavioral responses in a particular experimental
paradigm. Nonetheless, the model—in producing readily
discriminable representations for aligned versus disordered
fragments—is consistent with neural signatures of closure
identified in electrophysiological studies (Brodeur et al.
2006; Marini and Marzi 2016; Pitts et al. 2012). Further, it
is not much of a stretch to imagine read-out mechanisms
that would explain behavioral data. For example, Elder
and Zucker (1993) studied closure in a visual-search task,
finding that latency to detect a target formed from aligned
fragments is faster than one formed from non-aligned
fragments, and the more of the edges that are present, the
faster detection is. To account for such data, one might make
two assumptions. First, add an output unit to the model
that detects a complete triangle (much as Baker et al. 2018,
added output units for fat and thin squares). Second, allow
this output to drive a drift-diffusion process (Ratcliff and
McKoon 2008) that guides attention or initiates a response.
More activation of the complete triangle unit will lead
to shorter latencies. Due to the similarity structure in the
model, aligned fragments will yield shorter latencies than
disordered fragments, and as the edge length of the aligned
fragments is increased, latencies will drop, consistent with
the behavioral data.

Although our argument has been focused specifically
on closure, the same argument should apply to other
Gestalt laws that have underpinnings in natural scene
statistics (Brunswik and Kamiya 1953; 2001; Elder and
Goldberg 2002; Geisler et al. 2001; Krüger 1998; Sigman
et al. 2001). In support of this proposition are simulations
conducted by Amanatiadis et al. (2018) contemporaneously
with ours. Their work is a nice complement to ours in
that they aim for a breadth of coverage, whereas we

aimed for depth. They examined pretrained ConvNets to
evaluate their sensitivity to a range of Gestalt laws—not
only closure but also proximity, continuation, similarity,
figure-ground, and symmetry. They find that the ConvNets
exhibit behavior consistent with a sensitivity to all these
Gestalt laws. They use classification accuracy of a perturbed
image as a measure of Gestalt law sensitivity rather
than examining internal representations. This measure
has limitations (e.g., they cannot test novel shapes as
we have), and their experiments lack some important
control experiments that we have done (e.g., comparing to
disordered fragments, and failing to rule out pixel overlap
as an explanation). Nonetheless, both their work and ours
suggest that the Gestalt laws can emerge via adaptation to
the statistical structure of the environment. Given structure
in the environment and the existence of powerful learning
architectures and mechanisms, one need not consider the
Gestalt laws as primitives.

In the late 1980s, the Connectionist movement focused
on the role of learning in perception and cognition,
demonstrating that abilities that one might previously have
thought to have been built into a cognitive system could
emerge as a consequence of simple learning rules. Most
connectionist architectures were fairly generic—typically
fully connected neural networks with one hidden layer.
While such architectures showed promise, it was far from
clear that these architectures could scale up to human-level
cognitive abilities. Modern deep learning architectures have
clearly scaled in a manner most did not imagine in the
1980s. Large language models show subtle linguistic skills
and can express surprisingly broad knowledge about the
world (Raffel et al. 2019); large vision models arguably
match or surpass human abilities to label images (Xie
et al. 2019). Our work suggests that in the modern era,
the combination of a sophisticated neural architecture
(e.g., a ConvNet) and scaling the size of models may be
sufficient to broaden the range of cognitive phenomena
that are emergent from more basic principles of learning
and adaptation. Our work bridges the gap between analyses
indicating that perceptual mechanisms are consistent with
natural scene statistics (Burge et al. 2010; Brunswik
and Kamiya 1953) and claims that statistical learning is
essential to understanding human information processing
(Frost et al. 2019). The synthesis leads to a view of the
human perceptual system that is even more elegant than the
Gestaltists imagined: a single principle—adaptation to the
statistical structure of the environment—might suffice as
fundamental.
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