
Journal of Machine Learning Research 17 (2016) 1-24 Submitted 7/14; Revised 5/15; Published 3/16

LLORMA: Local Low-Rank Matrix Approximation

Joonseok Lee joonseok2010@gmail.com

Seungyeon Kim seungyeonk@google.com

Google Research, Mountain View, CA USA

Guy Lebanon glebanon@gmail.com

LinkedIn, Mountain View, CA USA

Yoram Singer singer@google.com

Samy Bengio bengio@google.com

Google Research, Mountain View, CA USA

Editor: Jeff Bilmes

Abstract

Matrix approximation is a common tool in recommendation systems, text mining, and
computer vision. A prevalent assumption in constructing matrix approximations is that
the partially observed matrix is low-rank. In this paper, we propose, analyze, and experi-
ment with two procedures, one parallel and the other global, for constructing local matrix
approximations. The two approaches approximate the observed matrix as a weighted sum
of low-rank matrices. These matrices are limited to a local region of the observed matrix.
We analyze the accuracy of the proposed local low-rank modeling. Our experiments show
improvements in prediction accuracy over classical approaches for recommendation tasks.

Keywords: Matrix approximation, non-parametric methods, kernel smoothing, collabo-
rative Filtering, recommender systems.

1. Introduction

Matrix approximation and completion are prevalent tasks in machine learning. Given few
observed matrix entries {Ma1,b1 , . . . ,Mam,bm}, matrix completion constructs a matrix M̂
that approximates M at its unobserved entries. Matrix approximation is used heavily in
recommendation systems, text processing, computer vision, and bioinformatics. In recom-
mendation systems, for example, the matrix M corresponds to ratings of items (columns)
by users (rows). Matrix approximation in this case corresponds to predicting the ratings of
all users on all items based on a few observed ratings. In many cases, matrix approximation
leads to state-of-the-art models that are used in industrial settings.

In general, the problem of completing a matrix M based on a few observed entries is
ill-posed. There are uncountably infinite number of matrices that perfectly agree with the
observed entries of M . Therefore, without additional assumptions, selecting or constructing
the completion matrix M̂ is under-specified and thus ill-defined. A popular assumption is
that M is a low-rank matrix, which suggests that it is reasonable to assume that the
completed matrix M̂ has low-rank. More formally, we approximate a matrix M ∈ Rn1×n2

by a rank r matrix M̂ = UV >, where U ∈ Rn1×r, V ∈ Rn2×r, and r � min(n1, n2). In

c©2016 Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer and Samy Bengio.

Lee, Kim, Lebanon, Singer and Bengio

many real datasets, the low-rank assumption is realistic. Further, low-rank approximations
often yield matrices that generalize well to the unobserved entries.

In this paper, we extend low-rank matrix approximation in a way that significantly
relaxes the low-rank assumption. Instead of assuming that M can be globally approximated
by a low-rank matrix, we assume that M behaves as a low-rank matrix in the vicinity of
certain row-column combinations. We therefore construct several low-rank approximations
of M , each being accurate in a particular region of the matrix. We express our estimator
as a smoothed convex combination of low-rank matrices each of which approximates M in
a local region.

The local low-rank assumption can also be motivated as follows. In numerous settings
there are a few key latent factors which determine whether a user would like an item or
not. In the movie domain such factors may include the main actress, director, released
year, genre, and more. However, the number of latent variable is typically limited to no
more than twenty. These factors are tacitly learned and automatically constructed as we
do not assume that information such as genre or actors are available. For example, if the
rank is 5 the ratings given to an item by a user is the inner product of a vector of length
5 which describes the user preferences with a vector of length 5 that describes the item
characteristics (these two vectors are the rows of U, V). The same assumption holds in the
local low-rank case with the exception that the linear basis underlying the latent factors
may change across different groups of users and different types of items.

We use techniques from non-parametric kernel smoothing to achieve two goals. The first
goal is to formally develop a notion of local low-rank approximation, and the second is the
aggregation of several local models into unified matrix approximation. Standard low-rank
matrix approximation techniques achieve consistency in the limit of large data (convergence
to the data generating process) assuming that M is low-rank. Our local method achieves
consistency without the low-rank assumption. Instead, we require that sufficient number of
samples is available in increasingly small neighborhoods. Our analysis mirrors the theory
of non-parametric kernel smoothing that was primarily developed for continuous spaces.
We also adapt and generalize well-known compressed sensing results to our setting. Our
experiments show that local low-rank modeling is significantly more accurate than global
low-rank modeling in the context of recommendation systems.

The rest of the paper is organized as follows. We introduce notations and briefly re-
view low-rank matrix approximation in Section 2. In Section 3 we describe our proposed
methods. Section 4 provides formal analysis of the proposed approach. Sections 5 and 6
describe in details the two low-rank approximation algorithms. These sections are followed
by experimental evaluations described in Sections 7. We then discuss our contribution in
the context of related work in Section 8 and conclude with a summary in Section 9.

2. Background: Low-rank matrix approximation

We describe in this section two standard approaches for low-rank matrix approximation
(LRMA). We start by establishing the notation used throughout the paper. We denote
matrices using upper case letters. The original (partially observed) matrix is denoted by
M ∈ Rn1×n2 . A low-rank approximation of M is denoted by M̂ = UV >, where U ∈ Rn1×r,
V ∈ Rn2×r, and r � min(n1, n2). The set of integers {1, . . . , n} is abbreviated as [n]. The

2

LLORMA: Local Low-Rank Matrix Approximation

Notation Explanation

n1 Number of users.
n2 Number of items.
m Number of available ratings.
r Rank of approximation matrix.
M Rating matrix, M ∈ Rn1×n2

U “Users” profile matrix, U ∈ Rn1×r

V “Items” profile matrix, V ∈ Rn2×r

Ω Observed entries of M .
PΩ(M) Projection operator onto observed entries of Ω.

T̂ (a, b) Local approximation of M centered at (a, b).
ˆ̂T (a, b) Global approximation of M centered at (a, b).
A�B Hadamard product of matrices A and B.
‖X‖F Frobenius norm of matrix X.
‖X‖∗ Nuclear (trace) norm of matrix X.
‖X‖∞ Sup-norm of matrix X.

[n] Set of natural numbers {1, . . . , n}.

Table 1: Summary of Notations and Matrix Operators.

set of indices of the observed entries of M is denoted by Ω
def
= {(a1, b1), . . . , (am, bm)} ⊆

[n1]× [n2]. The training set is therefore {Ma,b : (a, b) ∈ Ω}. Mappings from matrix indices
to a matrix space are denoted in calligraphic letters, e.g. T , and are operators of the form
T : [n1] × [n2] → Rn1×n2 . We denote the entry (i, j) of the matrix T(a, b) as Ti,j(a, b). A
projection PA with respect to a set of matrix indices A is the function PA : Rn1×n2 → Rn1×n2

defined by

[PΩ(M)]a,b
def
=

{
Ma,b (a, b) ∈ Ω

0 otherwise.

We denote by � the entry-wise product (also known as the Hadamard or Schur products)
of two matrices [A�B]i,j = Ai,jBi,j . We use in this paper three matrix norms:

Frobenius norm ‖X‖F def
=
√∑

i

∑
j X

2
i,j

Sup-norm ‖X‖∞ def
= supi,j |Xi,j |

Nuclear (trace) norm ‖X‖∗ def
=
∑r

i=1 σi(X)

For the nuclear norm σi(X) is the i’th singular value of X where for symmetric matrices
‖X‖∗ = trace(X). Table 1 summarizes notations and matrix operators used throughout
the paper.

We describe below two popular approaches for constructing a low-rank approximation
M̂ of M . The first one, incomplete SVD, is based on minimizing the Frobenius norm of
PA(M − M̂), while the second one is based on minimizing the nuclear norm of a matrix
satisfying constraints constructed from the training set.

3

Lee, Kim, Lebanon, Singer and Bengio

A1: Incomplete SVD. The incomplete SVD method constructs a low-rank approximation
M̂ = UV > by solving the problem

(U, V) = arg min
U,V

∑
(a,b)∈Ω

([UV >]a,b −Ma,b)
2 , (1)

or equivalently

M̂ = arg min
X

‖PΩ(X −M)‖F s.t. rank(X) = r. (2)

A2: Nuclear norm minimization. An alternative to (2) that originated from the compressed
sensing community (Candès and Tao, 2010) is to minimize the nuclear norm of a matrix
subject to constraints constructed from the observed entries:

M̂ = arg min
X

‖X‖∗ s.t. ‖PΩ(X −M)‖F < δ . (3)

Minimizing the nuclear norm ‖X‖∗ is an effective surrogate for minimizing the rank of X,
and solving (3) results in a low-rank matrix M̂ = UV > that approximates the matrix M .
One advantage of A2 over A1 is that we do not need to constrain the rank of M̂ in advance.
Note also that the problem defined by (3), while being convex, may not necessarily scale
up easily to large matrices.

3. Local low-rank matrix approximation

In order to facilitate a local low-rank matrix approximation, we need to assume that there
exists a metric structure over [n1]× [n2]. The distance d((a, b), (a′, b′)) reflects the similarity
between the rows a and a′ and columns b and b′. In the case of recommendation systems,
for example, d((a, b), (a′, b′)) expresses the relationship between users a, a′ and items b, b′.
The distance function may be constructed using the observed ratings PΩ(M) or additional
information such as item-item similarity or side information on the users when available. We
note that distance between two rows (users) or between two columns (items) is independent
of the indices of those rows or columns. As we exchange the order of two rows or columns,
the similarity still remains the same. See Section 5 for further details.

In the global matrix factorization setting in Section 2, we assume that the matrix M ∈
Rn1×n2 has a low-rank structure. In the local setting, however, we assume that the model
is characterized by multiple low-rank n1 × n2 matrices. Specifically, we assume a mapping
T : [n1]× [n2]→ Rn1×n2 that associates with each row-column combination [n1]× [n2] a low
rank matrix that describes the entries of M in its neighborhood (in particular this applies
to the observed entries Ω):

T : [n1]× [n2]→ Rn1×n2 where Ta,b(a, b) = Ma,b .

Without additional assumptions, it is impossible to estimate the mapping T from a set
of m < n1n2 observations. We assume, as is often done in non-parametric statistics, that
the mapping T is slowly varying. Since the domain of T is discrete, the classical definitions
of continuity or differentiability are not applicable in our setting. We assume instead that
T is Hölder continuous (see Definition 1 in Section 4).

4

LLORMA: Local Low-Rank Matrix Approximation

M
s

r

T (r)Rn1⇥n2

T
(s)

Figure 1: The locally low-rank linear assumption assumes an operator that maps matrix
entries to matrices whose image is (a) low-rank, (b) slowly changing, and (c)
agrees locally with the original matrix. We emphasize that we draw the figure as
if adjacent rows (or columns) are semantically similar just for illustration purpose.
In real data, similar users (or items) are usually scattered over the entire space.
See text for more details.

Figures 1 shows a graphic illustration of the locally low-rank linear assumption: the
operator T maps matrix entries to matrices whose image is (a) low-rank, (b) slowly changing,
and (c) agrees locally with the original matrix. Assumption (b) implies that if d(s, r) is
small T (s) is similar to T (r), as shown by their spatial closeness in the embedding Rn1×n2 .
Assumption (c) implies that for all s ∈ [n1]× [n2], the neighborhood {s′ : d(s, s′) < h} in the
original matrix M is approximately described by the corresponding entries of the low-rank
matrix T (s) (shaded regions of M are matched by lines to the corresponding regions in
T (s) that approximate them).

We would like to emphasize that for illustrative purposes, we assume in Figure 1 that
there exists a distance function d whose neighborhood structure coincides with the natural
order on indices. That is, s = (a, b) is similar to r = (c, d) if |a− c| and |b− d| are small.

Figure 2 shows the relationship between the neighboring entries of the original matrix
and the operator image in more detail. The original matrix M (bottom) is described locally
by two low-rank matrices T (t) (near t) and T (r) (near r). The lines connecting the three
matrices identify identical entries: Mt = Tt(t) and Mr = Tr(r). The equation at the top
right shows a relation tying the three patterned entries. Assuming the distance d(t, r) is
small, δ = Tr(t)− Tr(r) = Tr(t)−Mr(r) is small as well.

Following common approaches in non-parametric statistics, we define a smoothing kernel
Kh(s1, s2), s1, s2 ∈ [n1] × [n2], as a non-negative symmetric unimodal function that is

5

Lee, Kim, Lebanon, Singer and Bengio

Mt

M

T (r)

Tt(t)

T (t)
Tr(t) = Tr(r) + ✏ = Mr + ✏

Tr(r)

Mr

Tr(t)

Tt(r)

Figure 2: The relationship between the neighboring entries of the original matrix and the
operator image. See text for more details.

parameterized by a bandwidth parameter h > 0. A large value of h implies that Kh(s, ·) has
a wide spread, while a small h corresponds to narrow spread of Kh(s, ·). Often, it is further
assumed that Kh(x) = K1(x/h)/h and that the kernel integrates to 1:

∫
Kh(x) dx = 1. In

our case, however, we have a discrete domain rather than a continuous domain. See for
instance (Wand and Jones, 1995) for more information on smoothing kernels. Three popular
smoothing kernels are the uniform kernel, the triangular kernel, and the Epanechnikov
kernel, defined respectively as

Kh(s1, s2) ∝ 1[d(s1, s2) < h] (4)

Kh(s1, s2) ∝ (1− h−1d(s1, s2)) 1[d(s1, s2) < h] (5)

Kh(s1, s2) ∝ (1− d(s1, s2)2) 1[d(s1, s2) < h] . (6)

We denote by K
(a,b)
h the matrix whose (i, j)-entry is Kh((a, b), (i, j)).

We describe below the local modifications of incomplete SVD (A1) and nuclear norm
minimization (A2) matrix approximations. Both extensions estimate T (a, b) in the vicinity
of (a, b) ∈ [n1]× [n2] given the samples PΩ(M).
Local-A1: Incomplete SVD

T̂ (a, b) = arg min
X

‖K(a,b)
h � PΩ(X −M)‖F s.t. rank(X) = r . (7)

Local-A2: Nuclear norm minimization

T̂ (a, b) = arg min
X

‖X‖∗ s.t. ‖K(a,b)
h � PΩ(X −M)‖F < δ . (8)

6

LLORMA: Local Low-Rank Matrix Approximation

The two optimization problems above describe how to estimate T̂ (a, b) for a particular
choice of (a, b) ∈ [n1]× [n2]. Conceptually, this technique can be applied at each test entry
(a, b), resulting in the matrix approximation M̂ ≈M where

M̂a,b = T̂a,b(a, b), (a, b) ∈ [n1]× [n2] .

However, such a construction would require solving an optimization problem for each ma-
trix entry (a, b) and is thus computationally prohibitive. Instead, we describe in the next
subsection how to use a set of q local models T̂ (s1), . . . , T̂ (sq), s1, . . . , sq ∈ [n1] × [n2] to

obtain a computationally efficient estimate ˆ̂T (s) for all s ∈ [n1]× [n2].

3.1 Global Approximation

The problem of recovering a mapping T from q values without imposing a strong parametric
form is known as non-parametric regression. We propose using a variation of locally constant
kernel regression (Wand and Jones, 1995), also known as Nadaraya-Watson regression

ˆ̂T (s) =

q∑
i=1

Kh(si, s)∑q
j=1Kh(sj , s)

T̂ (si) . (9)

Equation (9) is simply a weighted average of T̂ (s1), . . . , T̂ (sq), where the weights ensure that
values of T̂ at indices close to s contribute more than those further away from s. Note that
both the left-hand side and the right-hand side of (9) denote matrices. The denominator
in (9) ensures that the weights sum to one.

In contrast to T̂ , the estimate ˆ̂T can be computed for all s ∈ [n1]× [n2] efficiently since

computing ˆ̂T (s) simply requires evaluating and averaging T̂ (si), i = 1, . . . , q. The resulting

matrix approximation is ˆ̂Ma,b = ˆ̂Ta,b(a, b) and (a, b) ∈ [n1]× [n2].

The accuracy of ˆ̂T as an estimator of T̂ improves with the number of local models q

and the degree of continuity of T̂ . The accuracy of ˆ̂T as an estimator of T is limited by the
quality of the local estimators T̂ (s1), . . . , T̂ (sq). However, assuming that T̂ (s1), . . . , T̂ (sq)
are accurate in the neighborhoods of s1, . . . , sq, and q is sufficiently large, the estimation

error ˆ̂T a,b(a, b)− Ta,b(a, b) is likely to be small as we analyze in the next section. We term
the resulting approach LLORMA standing for Local LOw Rank Matrix Approximation.

4. Estimation accuracy

In this section we analyze the estimation accuracy of LLORMA. Our analysis consists of two
parts. In the first we analyze the large deviation of T̂ from T . Then, based on this analysis,

we derive a deviation bound on the global approximation ˆ̂T . Our analysis technique is based
on the seminal paper of Candès and Tao (2010). The goal of this section is to underscore
the characteristics of estimation error in terms of parameters such as the train set size,
matrix dimensions, and kernel bandwidth.

4.1 Analysis of T̂ − T
Candès and Tao (2010) established that it is possible to estimate an n1 × n2 matrix M
of rank r if the number of observations m ≥ Cµrn log6 n, where n = min(n1, n2), C is a

7

Lee, Kim, Lebanon, Singer and Bengio

constant, and µ is the strong incoherence property parameter described in Candès and Tao
(2010). This bound is tight in the sense that it is close to the information theoretic limit of
Ω(r n log n). As in Candès and Tao (2010), we assume that the observed entries are sampled
at random without replacement, avoiding trivial situations in which a row or a column is
unsampled.

The aforementioned result is not applicable in our case since the matrix M is not neces-
sarily of low-rank. Concretely, when r = O(n) the bound above degenerates into a sample
complexity of O(n2 log n) which is clearly larger than the number of entries in the matrix
M . We develop below a variation on the results in Candès and Tao (2010) and Candès and
Plan (2010) that applies to the local-A2 compressed-sensing estimator T̂ .

Definition 1. Let X be a metric space. A function f : X → Rn1×n2 is Hölder continuous
with parameters α, β > 0 if

∀x, x′ ∈ X : ‖f(x)− f(x′)‖F ≤ αdβ(x, x′) . (10)

In our analysis we make the following assumptions: (i) T is Hölder continuous, (ii) T (s)
is a rank r matrix that satisfies the strong incoherence property, and (iii) the kernel Kh is
a uniform kernel based on a product distance function. The Hölder continuity assumption
on T can be replaced by the following weaker condition without affecting the results

‖Ks
h � (T (s)− T (s′))‖F ≤ αdβ(s, s′). (11)

We denote by Bh(s) the neighborhood of indices near s, Bh(s)
def
= {s′ ∈ [n1] × [n2] :

d(s, s′) < h} and we use n1(h, s) and n2(h, s) to denote the number of unique row and
column indices, respectively, in Bh(s). Finally, we denote γ = min(n1(h, s), n2(h, s)).

The proposition below provides a bound on the average squared-error within a neigh-
borhood of s

E(T̂)(s, h) =

√√√√ 1

|Bh(s)|
∑

s′∈Bh(s)

(
T̂s′(s)− Ts′(s)

)2
.

Proposition 1. If |Ω ∩Bh(s)| ≥ Cµ2γr log6 γ, then with probability of at least 1− δ,

E(T̂)(s, h) ≤ αhβ√
|Bh(s)|

(
4

√
γ(2 + p)

p
+ 2

)
,

where γ = 3
√

1/δ and p = |Ω ∩Bh(s)|/|Bh(s)|.

Proof Assumptions (i) and (iii) above imply that if Kh(s, s′) > 0 then

‖Ks
h � (T (s)− T (s′))‖∞ < αhβ .

We can thus assume that if d(s, s′) < h, an observation Ms′ = Ts′(s′) is equal to Ts′(s) + Z
where Z is a random variable whose absolute value is bounded by αhβ. This means that we
can use observations Ms′ = Ts′(s′) for estimating the local model T (s) as long as we admit
a noisy measurement process.

8

LLORMA: Local Low-Rank Matrix Approximation

Since K is a uniform kernel based on a product distance by assumption (iii), the set
Bh(s) is a Cartesian product set. We view this product set as a matrix of dimensions
n1(h, s)×n2(h, s) that we approximate. (Note that n1(h, s) and n2(h, s) are monotonically
increasing with h, and as h → ∞, n1(h, s) = n1, n2(h, s) = n2.) The number of observed
entries in this matrix approximation problem is |Ω ∩Bh(s)|.

Applying Theorem 7 in Candès and Plan (2010) to the matrix completion problem
described above, we get that if |Ω ∩ Bh(s)| ≥ Cµ2γr log6 γ, then with probability greater
than 1− γ−3,

‖Ks
h � (T (s)− T̂ (s))‖F ≤ αhβ

(
4

√
γ(2 + p)

p
+ 2

)
,

where p = |Ω∩Bh(s)|
|Bh(s)| is the density of observed samples. Dividing by

√
|Bh(s)| concludes the

proof.

When the observed samples are uniformly spread over the matrix, we get p = m/(n1n2), so

4

√
γ

2 + p

p
+ 2 = 4

√
γ

2 +m/(n1n2)

m/(n1n2)
+ 2

= 4

√
γ(2n1n2 +m)

m
+ 2.

Multiplying αhβ/
√
|Bh(s)| yields Corollary 1.

Corollary 1. Assume that the conditions of Proposition 1 hold and in addition the observed
samples are spread uniformly with respect to d. Then, the following inequality holds

E(T̂)(s, h) ≤ 4αhβ√
|Bh(s)|

√
γ(2n1n2 + m)

m
+

2αhβ√
|Bh(s)|

.

If in addition the matrix M is squared (n1 = n2 = n) and the distribution of distances
d is uniform, then n1(h, s) = n2(h, s) = n/h, |Bh(s)| = (n/h)2, and γ = n/h. In this case,
the bound on E(T̂)(s, h) becomes

4αhβ+1/2

√
2n

m
+

1

n
+

2αhβ+1

n
. (12)

In the case of a square matrix with uniformly spread samples, it is instructive to
view n,m, h as monotonically increasing sequences, indexed by k ∈ N and assume that
limk→∞ n[k] = limk→∞m[k] = ∞. In other words, we consider the limit of matrices of
increasing sizes with an increasing number of samples. In the case of uniformly distributed
distances, the bound (12) will converge to zero if

lim
k→∞

hβ+1
[k]

n[k]
= lim

k→∞

h2β+1
[k]

n[k]
= lim

k→∞

h2β+1
[k] n[k]

m[k]
= 0.

9

Lee, Kim, Lebanon, Singer and Bengio

4.2 Analysis of ˆ̂T − T
We start by showing that T̂ is Hölder continuous with high probability, and then proceed

to analyze the estimation error of ˆ̂T .

Proposition 2. If d(s, s′) < h and Proposition 1 holds at s, s′, then with probability at least
1− δ,

‖Ks
h � (T̂ (s)− T̂ (s′))‖F ≤ αhβ

(
8

√
γ(2 + p)

p
+ 5

)
.

where γ = 3
√

2/δ.

Proof Using the triangle inequality for ‖ · ‖F ,

‖Ks
h � (T̂ (s)− T̂ (s′))‖F ≤ ‖Ks

h � (T̂ (s)− T (s))‖F
+ ‖Ks

h � (T̂ (s′)− T (s′))‖F
+ ‖Ks

h � (T (s)− T (s′))‖F .
We apply the bound from Proposition 1 to the first two terms and use the assumption that
T is Hölder continuous to bound the third term. The adjustment to the confidence level
2γ−3 is obtained using the union bound.

Proposition 3. Assume that Proposition 1 holds. Then, with probability of at least 1− δ,

E(ˆ̂T)(s, h) ≤ αhβ√
|Bh(s)|

(
12

√
γ(2 + p)

p
+ 7

)
.

where γ = 3
√

(2|Ω ∩Bh(s)|+ 1)/δ.

Proof Using the triangle inequality we get

‖Ks
h � (ˆ̂T (s)− T (s))‖F ≤ (13)

‖Ks
h � (T̂ (s)− T (s))‖F + ‖Ks

h � (ˆ̂T (s)− T̂ (s))‖F .

We bound the first term using Proposition 1. Since ˆ̂T (s) is a weighted average of T̂ (si),
i = 1, . . . , q with si ∈ Bh(s), the second term is bounded by

‖Ks
h�(ˆ̂T (s)− T̂ (s))‖F

=
∥∥∥Ks

h �
(∑

i

wi∑
j wj
T̂ (si)− T̂ (s)

)∥∥∥
F

=
∥∥∥Ks

h �
∑
i

wi∑
j wj

(T̂ (si)− T̂ (s))
∥∥∥
F

≤
∑
i

∥∥∥∥∥ wi∑
j wj

Ks
h � (T̂ (si)− T̂ (s))

∥∥∥∥∥
F

≤
∑
i

wi∑
j wj
‖Ks

h � (T̂ (si)− T̂ (s))‖F .

10

LLORMA: Local Low-Rank Matrix Approximation

There are |Ω ∩Bh(s)| summands in the above term. We bound each of them using Propo-
sition 2. Together with the bound (13) this gives the desired result (after dividing by√
|Bh(s)|). The adjustment to the confidence level (2|Ω ∩Bh(s)|+ 1)γ−3 is obtained using

the union bound.

5. The Parallel LLORMA Algorithm

In the previous sections, we assumed a general kernel function Kh(s1, s2), where s1, s2 ∈
[n1]× [n2]. This kernel function may be defined in several ways. For simplicity, we assume
a product form Kh((a, b), (c, d)) = Kh1(a, c)K ′h2(b, d) where K and K ′ are kernels on the
spaces [n1] and [n2], respectively. We used the Epanechnikov kernel (6) for both K,K ′ as
it achieves the lowest integrated squared error (Wand and Jones, 1995), but other choices
are possible as well.

The distance d in (6) can be defined using additional information from an outside source
describing row (user) similarity or column (item) similarity. If there is no such information
available (as is the case in our experiments), d can be computed solely based on the partially
observed matrix M . In that case, we may use any distance measure between two row vectors
(for K) or two column vectors (for K ′). Empirically, we found that standard distance
measures such as the 2-norm or cosine similarity do not perform well when M is sparse.

We therefore instead factorize M using standard incomplete SVD (1) M ≈ UV >. Then,
we proceed to compute d based on the distances between the rows of factor matrices U (and
V). Concretely, we used arc-cosine between users a and c (and items b and d):

d(a, c) = arccos

(〈Ua, Uc〉
‖Ua‖ · ‖Uc‖

)
d(b, d) = arccos

(〈Va, Vd〉
‖Vb‖ · ‖Vd‖

)
(14)

where Ui, Vi are the ith row of the matrix U and V . We tried numerous other distances
and similarity scores such as the Euclidean distance and cosine similarity. The arc-cosine
score empirically performed better than the other scores we experimented with.

Besides of the distance metric, the anchor points (s1, . . . , sq) that define ˆ̂T also play a
significant role. There are several ways of choosing the anchor points. We randomly choose
among training data points unless stated otherwise. Detailed discussion is on Section 7.3.

Algorithm 1 describes the learning algorithm for estimating the local models at the
anchor points T̂ (si), with i = 1, . . . , q. In line 14, we solve a weighted (by Kh1 and Kh2)
SVD problem with L2 regularization. This minimization problem can be computed with
gradient-based methods. After these models are estimated, they are combined using (9) to

create the estimate ˆ̂T (s) for all s ∈ [n1]× [n2].

Algorithm 1 can actually run faster than vanilla SVD since (a) the q loops may be
computed in parallel, and (b) the rank of the our local models can be significantly lower than
the rank of global SVD for similar performance (see Section 7). Also, as the kernel Kh has
limited support, (c) Kh(s, s′) will have few non-zero entries. The weighted SVD problem at
line 14 should be sparser than the global SVD, which should result in an additional speedup.

11

Lee, Kim, Lebanon, Singer and Bengio

Algorithm 1 The Parallel LLORMA Algorithm

1: input: M ∈ Rn1×n2 whose entries are defined over Ω
2: parameters: kernel function K(·) of widths h1 and h2

3: rank r and number of local models q
4: regularization values λU , λV
5: for all t = 1, . . . , q parallel do
6: select (at, bt) at random from Ω
7: for all i = 1, . . . , n1 do
8: construct entry i: [Kat]i := Kh1(at, i)
9: end for

10: for all j = 1,= . . . , n2 do
11: construct entry j: [Kbt]j := Kh2(bt, j)
12: end for
13: set (U (t), V (t)) to be the minimizer of:

14:
∑

(i,j)∈Ω

[K(at)]i [K(bt)]j

(
[U V >]i,j −Mi,j

)2
+ λU

∑
i,k

U2
i,k + λV

∑
j,k

V 2
j,k

15: end for
16: output:

{
at, bt, U

(t), V (t)
}q
t=1

6. Global LLORMA

Recall that the parallel LLORMA algorithm from Section 5 constructs q local models based
on q different anchor points. It then combines the models via kernel regression to produce
M̂ using (9) which yields the following approximation,

M̂u,i =

q∑
t=1

K(ut, u)K(it, i)∑
sK(us, u)K(is, i)

[U (t)V (t)>]u,i. (15)

That is, the algorithm learns each local model independently based on different subsets of
the matrix (with some potential overlap). Alternatively, we can directly optimize a joint
loss using all local models while bearing in mind the form of the final model as given by (15).
In this section we describe an algorithmic alternative that minimizes the following loss with
respect to {U (t), V (t)}qt=1,∑

(u,i)∈Ω

(M̂u,i −Mu,i)
2 =

∑
(u,i)∈Ω

(
q∑
t=1

K(ut, u)K(it, i)∑
sK(us, u)K(is, i)

[(U (t)V (t)>]u,i −Mu,i

)2

. (16)

This optimization problem can be solved using gradient-based methods, as we use for
the global incomplete SVD. Hence, we solve jointly multiple SVD problems with differ-
ent weights (K(ut, u)K(it, i)) multiplying the original matrix. Since we can decompose M
into weighted sums,

Mu,i =

∑
tK(ut, u)K(it, i)∑
sK(us, u)K(is, i)

Mu,i ,

12

LLORMA: Local Low-Rank Matrix Approximation

the objective function given by (16) can be rewritten as follows,

∑
(u,i)∈Ω

(
q∑
t=1

K(ut, u)K(it, i)∑
sK(us, u)K(is, i)

[(U (t)V (t)>]u,i −
q∑
t=1

K(ut, u)K(it, i)∑
sK(us, u)K(is, i)

Mu,i

)2

=
∑

(u,i)∈Ω

(
q∑
t=1

K(ut, u)K(it, i)∑
sK(us, u)K(is, i)

(
[(U (t)V (t)>]u,i −Mu,i

))2

. (17)

Let us now examine the difference between the above objective with the one tacitly employed
by parallel LLORMA algorithm, which amounts to,

∑
(u,i)∈Ω

q∑
t=1

K(ut, u)K(it, i)
(

[(U (t)V (t)>]u,i −Mu,i

)2
. (18)

By construction, both objectives are minimized with respect to {U (t), V (t)}qt=1 using the
squared deviation from M . The difference between the two models is that (17) has a
square that encompasses a sum over anchor points. When expanded the term includes
the individual squared terms that appear in (18) as well as additional interaction terms.
Namely, parallel LLORMA minimizes the sum of square deviations while global LLORMA
minimizes the square deviation of sums. In Algorithm 2 we provide the pseudocode of global
LLORMA.

A priori we should expect the global version of LLORMA to result in more accurate
estimates of M than parallel LLORMA described in Section 5. However, since the objective
can no longer be decoupled, the run time global LLORMA is likely to be longer than its
parallel counterpart. We provide experimental results which compare the two versions in
terms of performance and running time in Section 7.2.

7. Experiments

We conducted several experiments with recommendation data. In Section 7.1, we compare
LLORMA to SVD and other state-of-the-art techniques. We also examine in the section
dependency of LLORMA on the rank r, the number of anchor points q, and the training set
size. In Section 7.2, we compare the parallel and global versions of LLORMA. Section 7.3
introduces several anchor point selection schemes and compare them experimentally.

We used four popular recommendation systems datasets. The MovieLens1 dataset is one
of the most popular datasets in the literature. We used all versions of MovieLens dataset,
namely: 100K (1K× 2K with 105 observations), 1M (6K× 4K with 106 observations), and
10M (70K × 10K with 107 observations). We also tested LLORMA on the Netflix dataset
which is of size 480K × 18K with 108 observations and the Bookcrossing dataset (100K ×
300K with 106 observations). These two datasets are much larger than the MovieLens
dataset. We also report results on the Yelp dataset (40K × 10K with 105 observations),
which is a recent dataset that is part of the ACM RecSys 2013 challenge2. The Bookcrossing

1. http://www.grouplens.org/
2. http://recsys.acm.org/recsys13/recsys-2013-challenge-workshop/

13

Lee, Kim, Lebanon, Singer and Bengio

Algorithm 2 The Global LLORMA Algorithm

1: input: M ∈ Rn1×n2 whose entries are defined over Ω
2: parameters: kernel function K(·) of widths h1 and h2

3: rank r and number of local models q
4: regularization values λU , λV
5: for all t = 1, . . . , q do
6: select (at, bt) at random from Ω
7: for all i = 1, . . . , n1 do
8: construct entry i: [Kat]i := Kh1(at, i)
9: end for

10: for all j = 1,= . . . , n2 do
11: construct entry j: [Kbt]j := Kh2(bt, j)
12: end for
13: end for
14: minimize with respect to {(U (t), V (t))}qt=1:

15:
∑

(i,j)∈Ω

(
q∑
t=1

[K(at)]i [K(bt)]j [U (t)V (t)>]i,j∑
s[K

(as)]i [K(bs)]j
−Mi,j

)2

+ λU
∑
i,k

[
U

(t)
i,k

]2
+ λV

∑
j,k

[
V

(t)
j,k

]2

16: Output:
{
at, bt, U

(t), V (t)
}q
t=1

and Yelp datasets reflect a recent trend of very high sparsity, often exhibited in real-world
recommendation systems.

Unless stated otherwise, we randomly divided the available data into training and test
sets such that the ratio of training set size to test set size was 9:1. We created five random
partitions and report the average performance over the five partitions. We used a default
rating of (max+min)/2 for test users or items which lack any rating, where max and min
indicate respectively the maximum and minimum possible rating in the dataset.

In our experiments, we used the Epanechnikov kernel with h1 = h2 = 0.8, a fixed step-
size for gradient descent of µ = 0.01, and a 2-norm regularization value of λU = λV = 0.001.
These values were selected using cross-validation. We set and did not attempt to optimize
the parameters T = 100 (maximum number of iterations), ε = 0.0001 (gradient descent
convergence threshold), and q = 50 (number of anchor points). We selected anchor points
by sampling uniformly users and items from the training points without replacement. We
examine more complex anchor point selection scheme in Section 7.3.

7.1 Performance of Parallel LLORMA

Table 2 lists the performance of LLORMA with 50 anchor points, SVD, and two recent
state-of-the-art methods based on results published in (Mackey et al., 2011). For a fixed
rank r, LLORMA always outperforms SVD. Both LLORMA and SVD perform better as
r increases. Both SVD and LLORMA exhibit diminishing returns as the rank increases.
LLORMA with a modest rank r = 5 outperforms SVD of any rank. We can see that
LLORMA also outperforms the Accelerated Proximal Gradient (APG) and Divide-and-
Conquer Matrix Factorization (DFC) algorithms. For a reference, the Root Mean Square

14

LLORMA: Local Low-Rank Matrix Approximation

Method MovieLens 1M MovieLens 10M Netflix Yelp Bookcrossing

APG – 0.8005 0.8433 – –
DFC-NYS – 0.8085 0.8486 – –
DFC-PROJ – 0.7944 0.8411 – –

Rank SVD LLORMA SVD LLORMA SVD LLORMA SVD LLORMA SVD LLORMA
Rank-1 0.9201 0.9135 0.8723 0.8650 0.9388 0.9295 1.4988 1.4490 3.3747 3.1683
Rank-3 0.8838 0.8670 0.8348 0.8189 0.8928 0.8792 1.4824 1.3133 3.3679 3.0315
Rank-5 0.8737 0.8537 0.8255 0.8049 0.8836 0.8604 1.4775 1.2358 3.3583 2.9482
Rank-7 0.8678 0.8463 0.8234 0.7950 0.8788 0.8541 1.4736 1.1905 3.3488 2.8828
Rank-10 0.8650 0.8396 0.8219 0.7889 0.8765 0.8444 1.4708 1.1526 3.3283 2.8130
Rank-15 0.8652 0.8370 0.8225 0.7830 0.8758 0.8365 1.4685 1.1317 3.3098 2.7573
Rank-20 0.8647 0.8333 0.8220 0.7815 0.8742 0.8337

Table 2: RMSE achieved by different algorithms on five datasets: MovieLens 1M, Movie-
Lens 10M, Netflix, Bookcrossing, and Yelp. Results for APG (Toh and Yun, 2010)
and DFC were taken from (Mackey et al., 2011).

0.80

0.85

0.90

0.95

1 3 5 7 10 15 20

R
M

SE

Rank

SVD

LLORMA

Figure 3: RMSE of LLORMA and SVD as a function of the rank on the Netflix dataset.

Error (RMSE) we achieved (0.8337) is a better score than the goal of Netflix competition
(0.8567).3

As we can see from Figure 3, the improvement in the performance of SVD is rather minor
beyond a rank of 7 while LLORMA’s improvement is still evident until a rank of about
20. Both approaches cease to make substantial improvements beyond the aforementioned
ranks and exhibit diminishing returns for high ranks. As discussed in earlier sections,
the diminishing returns of SVD for high ranks can be interpreted in two ways: (i) The

3. We provide this number merely as reference since we measured our performance on a test set different
from original Netflix test set, which is no longer available. Our result are based on a random sub-sampling
of the Netflix training data as described above. See also the discussion in (Mackey et al., 2011).

15

Lee, Kim, Lebanon, Singer and Bengio

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0 10 20 30 40 50

R
M

SE

Number of Anchor Points

MovieLens 10M

SVD(rank=5)
SVD(rank=7)
SVD(rank=10)
SVD(rank=15)
LLORMA(rank=5)
LLORMA(rank=7)
LLORMA(rank=10)
LLORMA(rank=15)
DFC

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0 10 20 30 40 50

R
M

SE

Number of Anchor Points

Netflix

SVD(rank=5)

SVD(rank=7)

SVD(rank=10)

SVD(rank=15)

LLORMA(rank=5)

LLORMA(rank=7)

LLORMA(rank=10)

LLORMA(rank=15)

DFC

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

0 10 20 30 40 50

R
M

SE

Number of Anchor Points

Yelp

SVD(rank=5)
SVD(rank=7)
SVD(rank=10)
SVD(rank=15)
LLORMA(rank=5)
LLORMA(rank=7)
LLORMA(rank=10)
LLORMA(rank=15)

2.70

2.80

2.90

3.00

3.10

3.20

3.30

3.40

3.50

3.60

0 10 20 30 40 50

R
M

SE

Number of Anchor Points

Bookcrossing

SVD(rank=5)

SVD(rank=7)
SVD(rank=10)

SVD(rank=15)

LLORMA(rank=5)

LLORMA(rank=7)
LLORMA(rank=10)

LLORMA(rank=15)

Figure 4: RMSE of LLORMA, SVD, and two baselines on MovieLens 10M (top-left), Netflix
(top-right), Yelp (bottom-left), and Bookcrossing (bottom-right) datasets. The
results for LLORMA are depicted by thick solid lines, while for SVD with dotted
lines. Models of the same rank are have identical colors.

16

LLORMA: Local Low-Rank Matrix Approximation

10% 30% 50% 70% 90%
0.8

0.85

0.9

0.95

1

1.05

Train Set Size (Ratio)

R
M

S
E

NMF(r=50)

BPMF(r=5)

SVD(r=50)
LLORMA(r=5)

LLORMA(r=10)

LLORMA(r=15)

Figure 5: RMSE of SVD, LLORMA, NMF, and BPMF methods as a function of training
set size for the MovieLens 1M dataset.

global low-rank assumption is correct and the SVD approximates the rating matrix almost
optimally. (ii) The global low-rank assumption is incorrect and the diminishing returns are
due to various deficiencies such as overfitting or reaching an inferior local minimum. Since
LLORMA improves beyond SVD’s best performance, it deems that the second hypothesis
is more plausible. The fact that LLORMA’s performance asymptotes at higher ranks than
SVD may indicate the first hypothesis is to a large extent correct at a local region yet not
globally.

Figure 4 compares the RMSE of LLORMA, SVD, and the DFC method of Mackey
et al. (2011). We plot the RMSE of LLORMA as a function of the number of anchor
points. As in the case of Table 2, both LLORMA and SVD improve as r increases. Here
again LLORMA with local rank of at least 5 outperforms SVD of any rank. Moreover,
LLORMA outperforms SVD even with only a few anchor points. Figure 5 shows the RMSE
of LLORMA as a function of the training set size, and compares it with global SVD of 50. We
also plot results for a few other methods that have shown to achieve very good approximation
accuracy: non-negative matrix factorization (NMF) with rank 50 (Lee and Seung, 2001)
and Bayesian probabilistic matrix factorization (BPMF) with rank 5 (Salakhutdinov and
Mnih, 2008b). The test set size was fixed to 10% of the MovieLens 1M and the RMSE was
averaged over five random train-test splits. The graph shows that all methods improve as
the training set size increases while LLORMA consistently outperforms SVD and the other
baselines.

To recap, the experimental results presented thus far indicate that LLORMA outper-
forms SVD and other state-of-the-art methods even when using relatively lower-rank ap-

17

Lee, Kim, Lebanon, Singer and Bengio

proximation. Moreover, LLORMA is capable of achieving good accuracy with rather small
number of anchor points and seems to perform well across a variety of training set sizes.

7.2 Comparison of Global and Parallel LLORMA

We proposed two implementations of LLORMA in this paper: a decoupled parallel ap-
proach (Section 5) and a global approximation version (Section 6). In earlier sections, we
conjectured that the global version is likely to be more accurate in terms of RMSE as it
directly optimizes the objective function. In terms of computational efficiency, however, we
naturally expected the parallel version to be faster as it can take advantage of multicore
and distributed computing architectures. In this subsection, we experimentally verify the
two conjectures.

We compared the two versions of LLORMA on MovieLens 100K dataset. We tested
local rank values in {1, 3, 5, 7, 10}. The experiment was conducted on a quad-core machine
with 4 threads while suspending any other process. For both versions, we constructed
50 local models and repeated the experiment 5 times with different anchor points. Table 3
reports the average test RMSE and average elapsed time for training. As conjectured, global
LLORMA results in more accurate estimations on unseen data than parallel LLORMA.
However, the performance gap between the two approaches reduces as the rank increases.
The parallel version LLORMA runs about 3 times faster than global LLORMA indicating
that a fairly high utilization of the multicore architecture.

Method Global LLORMA Parallel LLORMA

Rank Test RMSE Time Test RMSE Time

1 0.9072 6:04 0.9426 1:09
3 0.9020 10:27 0.9117 3:20
5 0.8990 14:40 0.9041 5:26
7 0.8986 19:43 0.9010 7:50
10 0.8975 28:59 0.8985 11:49

Table 3: RMSE and training time for Global and Parallel LLORMA on MovieLens 100K.

7.3 Anchor Points Selection

The method for selecting anchor points in LLORMA is important as it may affect the
prediction time as well as generalization performance. If the row and column indices of
the test data are provided in advance, we may choose anchor points from the test set
distribution. However, in most applications the test set is not known apriori, and in fact
is likely to increase and change in time. We therefore confined ourselves to three sampling
methods and one clustering methods based on low-rank representation of the data. In the
rest of the section we use q to denote the number of anchor points. The following are anchor
point selection methods we tried.

Complete: Sample anchor points uniformly from the entire set of indices [n1]× [n2].

Trainset: Sample anchor points uniformly from the observed entries, Ω.

18

LLORMA: Local Low-Rank Matrix Approximation

Coverage: Select anchor points such that no entry in [n1] × [n2] is too distant from the
rest of the anchor points.

k-means: Run k-means clustering on the entries in Ω each represented using the induced
d-dimensional space obtained by SVD with k = q.

The first two sampling methods are straightforward. The third method, termed “Coverage”
was implemented by sampling aq with a > 1 user-item pairs and then adding an anchor
point whose minimum distance to existing anchor points is the largest. The fourth selection
methods that we tested is based on clustering the observed entries. It is based on the
observation that an anchor point need not be an entry in the observation matrix but may
rather consist of a combination of matrix entries. Recall that we weigh each local model
based on user and item similarity. As explained in Section 5, each a user (item) is represented
as a row of a low-rank matrices U (respectively, V) attained by the global SVD, namely,
M ≈ UV >. Denoting the intrinsic dimension of U and V by d, each user and item can be
represented as a d-dimensional vector. Instead of each row of U and V , we can generalize
the space of anchor points to any point in this d-dimensional vector space. A good set
of anchor points may be the q cluster centers of the d-dimensional representations of the
entries of M which is computed using the k-means algorithm.

Table 4 provides performance results of Global LLORMA using different anchor point
selection methods. In the experiments we used the MovieLens 100K datasets with 5 random
train-test partitions. The results we report are based on averages over the 5 random splits.
As one may anticipate, the different selection schemes perform similarly when q is large. For
small values of q (10 or 20), we would like to underscore the following observations. The first
two methods (Complete and Trainset) perform similarly. The clustering-based anchor point
construction generally performs slightly better than the three other methods. Somewhat
surprisingly, the Coverage method performs the worst for small values of q. Nonetheless,
when q is sufficiently large all methods achieve about the same results.

10 Local models 20 Local Models
Rank Complete Trainset Coverage k-means Complete Trainset Coverage k-means

1 0.9276 0.9296 0.9360 0.9230 0.9195 0.9206 0.9235 0.9166
3 0.9245 0.9237 0.9327 0.9208 0.9164 0.9152 0.9189 0.9134
5 0.9240 0.9221 0.9277 0.9190 0.9125 0.9128 0.9154 0.9111
7 0.9231 0.9251 0.9279 0.9202 0.9140 0.9129 0.9163 0.9103
10 0.9242 0.9271 0.9301 0.9236 0.9129 0.9125 0.9141 0.9112

Table 4: RMSE for various anchor point selection schemes on MovieLens 100K datset.

7.4 Comparison to Ensemble of Independent Models

The algebraic form of the parallel estimator ˆ̂T as given by (9) is a linear combination of
local models, each of which focuses on a subset of user-item pairs. This algebraic form is
reminiscent of ensemble methods (Jacobs et al., 1991) such as Bagging (Breiman, 1996),
where the final model is a linear combination of simple models, each weighed by a predefined
coefficient. Ensemble methods such as boosting and Bagging have been shown to be effective
tools for combining models primarily for classification tasks. In this section we examine the

19

Lee, Kim, Lebanon, Singer and Bengio

0.5

0.6

0.7

0.8
0.9

1

1.5
2.5 5

10 25
50 100

0.83

0.84

0.85

0.86

0.5 1 2 4 8 16 32 64

RM
SE

Kernel Bandwidth

Figure 6: Performance of LLORMA as a function of the kernel width. The vertical axis
indicates the approximations’ root mean squared error (RMSE) and the horizontal
axis the kernel width (h1 = h2) in log scale. The dotted blue line shows the
average RMSE of Bagging for reference.

connection between LLORMA and an ensemble method based on Bagging for low rank
matrix approximation.

There are two main differences between Bagging and LLORMA. In Bagging, the dataset
constructed for training each sub-model is uniformly sampled with replacements. In con-
trast, LLORMA’s sampling is based on a non-uniform distribution respecting locality as
defined by the distance metric over user-item pairs. The second difference is that Bagging
assigns equal weights to each base-model. In LLORMA, each local model is associated with
a weight that is proportional to the proximity of the anchor point to the test point. That
is, the weights of the local models vary and are determined at inference time.

We conducted two set of experiments comparing LLORMA with Bagging. In the first
experiment, we varied the kernel widths gradually increasing the widths to the matrix
dimensions, thus ending with a uniform kernel over Ω. We normalized the kernel width so
that a value of 1 corresponds to the full dimension. As the width increases, the overlap
between local models becomes more and more substantial. In addition, the bias of each
local model increases due to the decrease in locality. Analogously, the variance of each
model decreases due to the increase in the actual training set size.

Figure 6 shows performance of LLORMA on MovieLens 100K dataset for various kernel
widths. The best performance is obtained for kernel width between 0.7 and 0.8. The
performance rapidly deteriorates as the width decreases and slowly degrades as the width
increases with an optimal width close to the middle of the range.

In our second experiment, we compared LLORMA with Bagging by taking |Ω| samples
with replacements, which in expectation covers two thirds of the observed entries. Table 5
compares the performance of global SVD of rank 10 and 15, LLORMA with 100 local

20

LLORMA: Local Low-Rank Matrix Approximation

models, and Bagging with 100 models. Each result is the average of 5 random splits of
the dataset. It is apparent from the table that both LLORMA and Bagging outperform
global SVD. Further, LLORMA achieves lower RMSE than Bagging. The improvement of
LLORMA over Bagging is statistically significant based on a paired t-test with p-values of
0.0022 for MovieLens 100K and 0.0014 for MovieLens 1M. These p-values correspond to a
confidence level over 99%. LLORMA also outperforms Bagging with respect to the median
average error (MAE).

Dataset MovieLens 100K MovieLens 1M
Method MAE RMSE MAE RMSE

SVD rank=10 0.7189 0.9108 0.6922 0.8683
SVD rank=15 0.7170 0.9094 0.6913 0.8676
Bagging 0.6985 0.8930 0.6620 0.8481
LLORMA 0.6936 0.8881 0.6577 0.8423

Table 5: Comparison of the median average error (MAE) and root mean squared error
(RMSE) for SVD, Bagging, and LLORMA on MovieLens dataset.

8. Related work

Matrix factorization for recommender systems have been the focus of voluminous amount
of research especially since the Netflix Prize competition. It is clearly impossible to review
all of the existing approaches. We review here a few of the notable approaches. Billsus
and Pazzani (1998) initially proposed applying SVD for collaborative filtering problems.
Salakhutdinov and Mnih (2008a) presented probabilistic matrix factorization (PMF) and
later Salakhutdinov and Mnih (2008b) extended matrix factorization to fully Bayesian ap-
proach. Lawrence and Urtasun (2009) proposed a non-linear version of PMF. Rennie and
Srebro (2005) proposed a maximum-margin approach. Lee et al. (2012b) conducted a
comprehensive experimental study comparing a number of state-of-the-art and traditional
recommendation system methods using the PREA toolkit (Lee et al., 2012c). Further al-
gorithmic improvements in matrix completion were demonstrated in Toh and Yun (2010);
Keshavan et al. (2010). The work that is perhaps the most similar in to LLORMA is
Divide-and-Conquer Matrix Factorization (DFC) (Mackey et al., 2011). DFC also divides
the completion problems into a set of smaller matrix factorization problems. Our approach
differs DFC in that we use a metric structure on [n1]× [n2] and use overlapping partitions.
Another matrix approximation by sub-division based on clustering was reported in Mir-
bakhsh and Ling (2013) for the task of seeking user and item communities. In addition to
monolithic matrix factorization scheme, several ensemble methods have also been proposed.
DeCoste (2006) suggested ensembles of maximum margin matrix factorization (MMMF).
The Netflix Prize winner (Bell et al., 2007; Koren, 2008) used combination of memory-based
and matrix factorization methods. The Netflix Prize runner-up (Sill et al., 2009) devised
Feature-Weighted Least Square (FWLS) solver, using a linear ensemble of learners with
dynamic weights. Lee et al. (2012a) extended FWLS by introducing automatic stage-wise
feature induction. Kumar et al. (2009) and Mackey et al. (2011) applied ensembles to Nys-

21

Lee, Kim, Lebanon, Singer and Bengio

trom method and DFC, respectively. Other local learning paradigms were suggested in the
context dimensionality such as local principal component analysis (Kambhatla and Leen,
1997) and local linear embedding (LLE) (Roweis and Saul, 2000). A relatively recent paper
on matrix completion (Wang et al., 2013) applies low-rank factorization to clusters of points.
Last, we would like to point to the formal work on low-rank matrix Completion that is clos-
est to the analysis presented in this paper. Candès and Tao (2010) derived a bound on the
performance of low-rank matrix completion. As mentioned in previous section our analysis
is based on (Candès and Plan, 2010) who adapted the analysis of Candès and Tao (2010) to
noisy settings. Some more remote related results were presented in (Shalev-Shwartz et al.,
2011; Foygel and Srebro, 2011; Foygel et al., 2012).

9. Summary

We presented a new approach for low-rank matrix approximation based on the assumption
that the matrix is locally low-rank. Our proposed algorithm, called LLORMA, is highly
parallelizable and thus scales well with the number of observations and the dimension of
the problem. Our experiments indicate that LLORMA outperforms several state-of-the-art
methods without a significant computational overhead. We also presented a formal analysis
of LLORMA by deriving bounds that generalize standard compressed sensing results and
express the dependency of the modeling accuracy on the matrix size, training set size, and
locality (kernel bandwidth parameter). Our method is applicable beyond recommendation
systems so long as the locality assumption holds and a reasonable metric space can be
identified.

Acknowledgments

We would like to thank Le Song for insightful discussions. Part of this work was done while
the first and second authors were in Georgia Institute of Technology.

References

R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve
accuracy of large recommender systems. In Proc. of the ACM SIGKDD, 2007.

D. Billsus and M. J. Pazzani. Learning collaborative information filters. In Proc. of the
International Conference on Machine Learning, 1998.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

E.J. Candès and Y. Plan. Matrix completion with noise. Proc. of the IEEE, 98(6):925–936,
2010.

E.J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion.
IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix factor-
izations. In Proc. of the ICML, 2006.

22

LLORMA: Local Low-Rank Matrix Approximation

R. Foygel and N. Srebro. Concentration-based guarantees for low-rank matrix reconstruc-
tion. ArXiv Report arXiv:1102.3923, 2011.

R. Foygel, N. Srebro, and R. Salakhutdinov. Matrix reconstruction with the local max
norm. ArXiv Report arXiv:1210.5196, 2012.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive
mixtures of local experts. Neural computation, 3(1):79–87, 1991.

Nandakishore Kambhatla and Todd K Leen. Dimension reduction by local principal com-
ponent analysis. Neural Computation, 9(7):1493–1516, 1997.

R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy entries. Journal
of Machine Learning Research, 99:2057–2078, 2010.

Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In Proc. of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2008.

S. Kumar, M. Mohri, and A. Talwalkar. Ensemble nystrom method. In Advances in Neural
Information Processing Systems, 2009.

N. D. Lawrence and R. Urtasun. Non-linear matrix factorization with gaussian processes.
In Proc. of the International Conference on Machine Learning, 2009.

D. Lee and H. Seung. Algorithms for non-negative matrix factorization. In Advances in
Neural Information Processing Systems, 2001.

J. Lee, M. Sun, S. Kim, and G. Lebanon. Automatic feature induction for stagewise col-
laborative filtering. In Advances in Neural Information Processing Systems, 2012a.

J. Lee, M. Sun, and G. Lebanon. A comparative study of collaborative filtering algorithms.
ArXiv Report 1205.3193, 2012b.

J. Lee, M. Sun, and G. Lebanon. Prea: Personalized recommendation algorithms toolkit.
Journal of Machine Learning Research, 13:2699–2703, 2012c.

L. W. Mackey, A. S. Talwalkar, and M. I. Jordan. Divide-and-conquer matrix factorization.
In Advances in Neural Information Processing Systems, 2011.

N. Mirbakhsh and C. X. Ling. Clustering-based matrix factorization. ArXiv Report
arXiv:1301.6659, 2013.

J.D.M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative
prediction. In Proc. of the International Conference on Machine Learning, 2005.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290:2323–2326, 2000.

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Advances in Neural
Information Processing Systems, 2008a.

23

Lee, Kim, Lebanon, Singer and Bengio

R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov
chain monte carlo. In Proc. of the International Conference on Machine Learning, 2008b.

S. Shalev-Shwartz, A. Gonen, and O. Shamir. Large-scale convex minimization with a low-
rank constraint. In Proc. of the International Conference on Machine Learning, 2011.

J. Sill, G. Takacs, L. Mackey, and D. Lin. Feature-weighted linear stacking. Arxiv preprint
arXiv:0911.0460, 2009.

K.C. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm reg-
ularized linear least squares problems. Pacific Journal of Optimization, 6(15):615–640,
2010.

M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman and Hall/CRC, 1995.

Yi Wang, Arthur Szlam, and Gilad Lerman. Robust locally linear analysis with applications
to image denoising and blind inpainting. SIAM Journal on Imaging Sciences, 6(1):526–
562, 2013.

24

