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Abstract

To create systems that understand the sounds that humans are exposed toin

everyday life, we need to represent sounds with features that can discriminate

among many different sound classes. Here, we use a sound-ranking framework

to quantitatively evaluate such representations in a large scale task. We have

adapted a machine-vision method, the “passive-aggressive model for image re-

trieval” (PAMIR), which efficiently learns a linear mapping from a very large

sparse feature space to a large query-term space. Using this approach we com-

pare different auditory front ends and different ways of extractingsparse features

from high-dimensional auditory images. We tested auditory models that use adap-

tive pole–zero filter cascade (PZFC) auditory filterbank and sparse-code feature

extraction from stabilized auditory images via multiple vector quantizers. In ad-

dition to auditory image models, we also compare a family of more conventional

Mel-Frequency Cepstral Coefficient (MFCC) front ends. The experimental re-

sults show a significant advantage for the auditory models over vector-quantized

MFCCs. Ranking thousands of sound files with a query vocabulary of thousands

of words, the best precision at top-1 was 73% and the average precision was 35%,

reflecting a 18% improvement over the best competing MFCC frontend.

1 Introduction

Machine Hearingis a field aiming to develop systems that can process, identify and

classify the full set of sounds that people are exposed to. Like machine vision, machine



hearing involves multiple problems: from auditory scene analysis, through “auditory

object” recognition to speech processing and recognition.While considerable effort

has been devoted to speech and music related research, the wide range of sounds that

people – and machines – may encounter in their everyday life has been far less studied.

Such sounds cover a wide variety of objects, actions, events, and communications: from

natural ambient sounds, through animal and human vocalizations, to artificial sounds

that are abundant in today’s environment.

Building an artificial system that processes and classifies many types of sounds

poses two major challenges. First, we need to develop efficient algorithms that can

learn to classify or rank a large set of different sound categories. Recent developments

in machine learning, and particularly progress in large scale methods (Bottou et al.,

2007), provide several efficient algorithms for this task. Second, and sometimes more

challenging, we need to develop a representation of sounds that captures the full range

of auditory features that humans use to discriminate and identify different sounds, so

that machines have a chance to do so as well. Unfortunately, our current understanding

of how the plethora of naturally encountered sounds should be represented is still very

limited.

To evaluate and compare auditory representations, we use a real-world task of content-

based ranking sound documents given text queries. In this application, a user enters a

textual search query, and in response is presented with an ordered list of sound docu-

ments, ranked by relevance to the query. For instance, a usertyping “dog” will receive

an ordered set of files, where the top ones should contain sounds of barking dogs. Im-

portantly, ordering the sound documents is based solely on acoustic content: no text

annotations or other metadata are used at retrieval time. Rather, at training time, a set of

annotated sound documents (sound files with textual tags) isused, allowing the system

to learn to match the acoustic features of a dog bark to the text tag “dog”, and similarly

for a large set of potential sound-related text queries. In this way, a small labeled set

can be used to enable content-based retrieval from a much larger, unlabeled set.

Several previous studies have addressed the problem of content-based sound re-

trieval, focusing mostly on the machine-learning and information-retrieval aspects of

that task, using standard acoustic representations (Whitman & Rifkin, 2002; Slaney,

2002; Barrington et al., 2007; Turnbull et al., 2008; Chechik et al., 2008). Here we

focus on the complementary problem, of finding a good representation of sounds using

a given learning algorithm.

The current paper proposes a representation of sounds that is based on models of

2



the mammalian auditory system. Unlike many commonly used representations, it em-

phasizes fine timing relations rather than spectral analysis. We test this representation

in a quantitative task: ranking sounds in response to text queries. This is achieved us-

ing a scalable online machine learning approach to ranking.We find that the auditory

representation outperforms standard MFCC features, reaching precision above 73% for

the top-ranked sound, compared to about 60% for standard MFCCand 67% for the best

MFCC variant we found. The following section describes the auditory representation

that we use, Section 3 describes the learning approach and Section 4 our experimental

results. Our findings are discussed in Section 5.

2 Modeling sounds

In this paper we focus on a class of representations that is partially based on models

of the auditory system, and compare these representations to standard mel-frequency

cepstral coefficients (MFCCs). The motivation for using auditory models follows from

the observation that the auditory system is very effective at identifying many sounds,

and this may be partially attributed to the acoustic features that are extracted at the early

stages of auditory processing.

We extract features with a four-step process, illustrated in Fig. 1: (1) A nonlinear

filterbank with half-wave rectified output. (2) Strobed temporal integration, that yields

a stabilized auditory image(SAI). (3) Sparse coding using vector quantization. (4)

Aggregate all frames features to represent the full audio document.

The first two steps, filterbank and strobed temporal integration, are firmly rooted in

auditory physiology and psychoacoustics (Lyon, 1990; Popper & Fay, 1992; Patterson,

2000). The third processing step, sparse coding, is in accordance with some properties

of neural coding (Olshausen & Field, 2004), and has significant computational benefits

that allow us to train large scale models. The fourth step takes a “bag of features”

approach which is common in machine vision and information retrieval. The remainder

of this section describes these three steps in detail.

2.1 Cochlear model filterbank

The first processing step is a cascade filterbank inspired by cochlear dynamics, known

as the pole–zero filter cascade (PZFC) (Lyon, 1998). It produces a bank of bandpass-

filtered, half-wave rectified output signals that simulate the output of the inner hair

cells along the length of the cochlea. The PZFC can be viewed as approximating the
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Figure 1: The systems for generating sparse codes from audio using anauditory frontend. It

consists of four steps: (1) Cochlea simulation, (2) Stabilized Auditory image creation (3) Sparse

coding (4) Aggregate into a document representation.

auditory nerve’s instantaneous firing rate as a function of cochlear place, modeling both

the frequency filtering and the compressive orautomatic gain controlcharacteristics of

the human cochlea (Lyon, 1990).

More specifically, small segments of the cochlea act as localfilters on waves prop-

agating down its length. This local behavior is modeled using a cascade of simple filter

stages, each stage defined by just a complex pole pair (a resonance) and a complex zero

pair (an anti-resonance). The sound signal is fed into the highest-frequency stage; the

output of this stage is passed as the input to the next stage, and so on down the cascade

(see Fig. 2). The poles and zeros of each stage are arranged such that the peak gains

of the stages go from high frequency to low frequency. The nonlinear mapping of fre-

quency to place is chosen such that a constant increment of place (one filter channel)

corresponds to a frequency difference proportional to the psychophysicalequivalent

rectangular bandwidth(ERB) (Glasberg & Moore, 1990). Such nonlinear mappings,

including the mel and bark scales, are common in auditory modeling. The pole and zero

positioning for the PZFC stages is similar to the “two-pole–two-zero, sharper” arrange-
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Figure 2: Schematic of the PZFC design. The cascaded filter stages (above) provide a variable

gain, which is controlled by the automatic gain control (AGC) smoothing network(below).

ment described in (Lyon, 1998), resulting in a peak gain per stage of only about +5 dB,

followed by a valley of about -10 dB. The cascade of many such stages results in a large

gain peak followed by a steep cutoff at each tap of the filterbank beyond the first few.

The PZFC also models the adaptive and frequency dependent gain that is observed

in the human cochlea, thereby making anautomatic gain control(AGC) system. De-

tails on this system, including specific parameters of our models are discussed in Ap-

pendix A.

2.2 Strobe finding and image stabilization

The second processing step,strobed temporal integration(STI), is based on human

perception of sounds, rather than purely on the physiology of the auditory system (Pat-

terson & Holdsworth, 1996). In this step, PZFC output is passed through a strobe-

finding process, which determines the position of “important” peaks in the output in

each channel. These strobe points are used to initiate temporal integration processes

in each channel, adding another dimension to represent timedelay from the strobe, or

trigger, points. Intuitively, this step “stabilizes” the signal, in the same way that the trig-

ger mechanism in an oscilloscope makes a stable picture froman ongoing time-domain

waveform.

The end result of this processing is a series of two-dimensional frames of real-
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valued data (a “movie”), known as a “stabilized auditory image” (SAI). Each frame

in this “movie” is indexed by cochlear channel number on the vertical axis and lags

relative to identified strobe times on the horizontal axis. Examples of such frames are

illustrated in Fig. 3 and Fig. 4.
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Figure 3: Example of one SAI frame (from an SAI “movie”) in response to ahuman vowel.

The moving image will look steady (hence “stabilized”) when the audio soundssteady, as is the

case with the steady vowel sound.
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Figure 4: Example of an SAI frame from the sound of a telephone ringing. The picture shows

that the sound is less periodic than the voice sound, but has some repeatingstructure.

The STI process can be viewed as a modified form of autocorrelation. In autocor-

relation, a signal is cross-correlated with itself at various delay “lags”. The zero-lag is

at the center of the output, and the autocorrelation function being symmetrical about

6



the center. In STI, the signal is instead cross-correlated with a sparse function that is

zero everywhere except at certain times called strobe points. The height of the signal at

these strobe points determines the “weight” with which thattime interval is represented

in the output. STI is more efficient computationally than autocorrelation, since one of

the signals is “sparse”. The resulting output is no longer symmetrical about the zero-

lag point (Patterson & Irino, 1997). The details of our strobe integration are given in

Appendix B.

The filterbank and SAI stages described above represent our current best attempt to

combine the good properties of the Slaney/Lyon “correlogram” (Slaney & Lyon, 1993)

and the Patterson/Irino “stabilized auditory image.” (Patterson & Irino, 1997). The

PZFC filterbank can be seen as intermediate between the “passive long-wave” cascade-

parallel model and the “active short-wave” all-pole filter cascade of (Slaney & Lyon,

1993), while the stabilization mechanism is closer to Patterson’s triggered temporal

integration, which maintains time-domain asymmetry in theresulting SAI (Patterson &

Irino, 1997; Patterson, 2000), as opposed to the Slaney/Lyon autocorrelogram approach

that forces all sounds to produce symmetric images.

2.3 Sparse coding of an SAI

The third processing step transforms the content of SAI frames into a sparse code that

captures repeating local patterns in each SA image. Sparse codes have become preva-

lent in the characterization of neural sensory systems (Olshausen & Field, 2004; Ol-

shausen et al., 1996). A sparse code is a high-dimensional vector a ∈ R
d that contains

mostly zeros, and only a few non-zero entries‖a‖0 = k ≪ d. As such it provides

a powerful representation that can capture complex structures in data, while providing

computational efficiency. Specifically, sparse codes can focuse on typical patterns that

frequently occur in the data, and use their presence to represent the data efficiently.

In a previous work (Chechik et al., 2008) we compared sound ranking systems that

use dense and sparse features. The main conclusion from thiscomparison was that

sparse representations obtain a comparable level of retrieval precision, but achieve it

with only the fraction of the time needed for training. For instance, training on a dataset

of 3431 files took only 3 hours instead of 960 hours (40 days) for training a Gaussian

Mixture model. The reason for the improved computational efficiency is (as we show

below) that the learning approach we have chosen (PAMIR, see next section) has com-

putational complexity that depends on the number of non-zero valuesk, rather than the

full dimensionalityd. Building on these results, this paper focuses on sparse codes only.
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A second important aspect of sparse codes, is that they provide a layer of nonlin-

earity that maps the raw input into a representation that captures typical patterns in the

data.

Our sparse code is based on identifying the typical patternsin the set of SAIs, and

representing each given SAI frame, or sequence of frames, using a histogram of the

patterns that appear in it. This histogram is usually sparse, since each sound typically

only contains a relatively small number of patterns. Thisbag-of-patternsrepresentation

is similar to the common use ofbag-of-wordsrepresentation of text documents, orbag-

of-visual-termssometimes used in machine vision. However, unlike machine vision

problems in which images are somewhat translation invariant, namely, similar patterns

could be found at different parts of an image, the SAI is indexed by frequency and delay

lag. As a result, different positions in the SAI correspond to auditory objects that are

perceptually different. To handle this, instead of lookingfor global patterns across the

whole SA image, we search for more local patterns at different parts of the SAI. More

specifically, the sparse coding step has two sub-steps: First, define a set of overlapping

rectangular patches that cover each SAI frame. Second, codeeach local region using its

own sparse-encoder.

For selecting the rectangular local patches, we systematically tried several approaches

and tested the precision obtained with each approach in a sound ranking task, as de-

scribed below. We also tested a few approaches for representing the content of each

rectangle, in a compact way. The details are given in Appendix C.

In the second sub-step, we represent all the vectors that represent the rectangular

areas in an SAI using sparse codes. We tested two sparse coding approaches:vector

quantization(VQ) (Gersho & Gray, 1992) andmatching pursuit(MP) (Bergeaud &

Mallat, 1995; Mallat & Zhang, 1993). In VQ, a dense feature vector is approximated

by the closest vector from a codebook (in Euclidean sense). Once the best match has

been chosen, the representation can be encoded as a sparse code vector, with a length

equal to the size of the codebook, that consists of all zeros,except for a single ”one” at

the index position of the chosen code word.

In MP, each vector (representing a rectangle) is projected onto the codebook vectors,

the largest projection is selected, the signed scalar valueof that projection is added to

the sparse vector representation (in the appropriate indexposition), and the vector val-

ued projection is subtracted from the original vector, producing a residual vector. The

process is then repeated until the magnitude of the largest projection becomes smaller

than a given threshold. For both matching pursuit and vectorquantization we learn in-
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dividual codebooks tailored to represent the rectangles ateach specific position in the

SAI. The codebook was learned from the full set of rectanglesin the data using a stan-

dard k-means algorithm, which yields a codebook that is tailored to vector quantization.

The problem of finding a codebook that is specifically optimized for MP is very hard,

and we chose to use the same codebook for both VQ and MP. To choose the size of the

codebook (number of k-means clusters), we tested several values of this parameter. The

complete set of codebook sizes tested is described in Appendix D.

Once each rectangle has been converted into a sparse code (using vector quantiza-

tion or matching pursuit) these codes are concatenated intoone very-high-dimensional

sparse-code vector, representing the entire SAI frame. With the default parameter set,

using vector quantization, a codebook size of 256 was used for each of the 49 rectangles,

leading to a feature vector of length49 × 256 = 12544, with 49 nonzero entries.

At each frame time, this feature vector of mostly zeros, withones (in the VQ case)

or amplitude coefficients (in the matching pursuit case) at asparse set of locations,

can be thought of as a histogram of feature occurrences in theframe. To represent an

entire sound file, we combine the sparse vectors representing histograms of individual

frames into a unified histogram—equivalent to simply addingup all the frame feature

vectors. In the interpretation as a histogram, it shows how frequently each abstract

feature occurs in the sound file. The resulting histogram vector is still largely sparse

and is used to represent the sound file to the learning system described in the following

section.

The process described in this section involves multiple parameters. In our exper-

iments, we varied these parameters and tested how they affect the precision of sound

ranking. More details are given in Sec. 5 and Sec. D.

3 Ranking sounds given text queries

We now address the problem of ranking sound documents by their relevance to a text

query. Practical uses of such a system include searching forsound files or specific

moments in the sound track of a movie. For instance, a user maybe interested to find

vocalizations of monkeys to be included in a presentation about the rain-forest, or to

locate the specific scene in a video where a breaking glass canbe heard. A similar

task is “musical query-by-description”, in which a relation is learned between audio

documents and words (Whitman & Rifkin, 2002).

We solve the ranking task in two steps. In the first step, sounddocuments are rep-
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resented as sparse vectors, following the procedure described above. In the second

step, we train a machine learning system to rank the documents using the extracted

features. In a previous study (Chechik et al., 2008), we evaluated different machine

learning methods for the second step, while the first step wasachieved using stan-

dard MFCC features. The methods that we evaluated were Gaussian mixture models

(GMM), support vector machines (SVM), and the passive–aggressive model for image

retrieval (PAMIR). While all three models achieved similar precision at the ranking

task, PAMIR was significantly faster, and the only one that scaled to large data sets. It

is therefore suitable for handling large collections of sounds, such as indexing a large

fraction of the sound documents on the world wide web. For this reason, in this study

we use the PAMIR method as a learning algorithm. The remainder of this section

describes the PAMIR learning algorithm (Grangier & Bengio, 2008), recast from the

image application to the audio application.

3.1 PAMIR for audio documents

Consider a text query represented by a sparse vectorq ∈ R
dq wheredq is the number of

possible words that can be used in queries (the query dictionary). Also consider a set

of audio documentsA ⊂ R
da, where each audio document is represented as a feature

vector,a ∈ R
da, andda is the dimensionality of the audio feature vector. LetR(q) ⊂ A

be the set of audio documents inA that are relevant to the queryq. A ranking system

provides a scoring functionS(q, a) that allows ranking of all documentsa ∈ A for any

given queryq. An ideal scoring function would rank all the documentsa ∈ A that are

relevant forq ahead of the irrelevant ones:

S(q, a+) > S(q, a−) ∀a+∈R(q), a−∈R(q) . (1)

whereR(q) is the set of sounds that is not relevant toq. The simplest score of PAMIR

uses a bilinear parametric score:

SW(q, a) = qT
Wa (2)

whereW ∈ R
dq×da. The matrixW can be viewed as a linear mapping from audio

features to query words. Namely, the productWa is viewed as a “bag of words” de-

scription of the audio document, and the dot product of this bag of words with the query

wordsq gives the score.

Whenq anda are sparse, the scoreSW can be computed very efficiently even when

the dimensionsda and dq are large. This is because the matrix multiplication only
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requiresO(|q||a|) operations where|q| and|a| are the number of non-zero values inq

anda respectively.

To learn the scoring functionSW we use an algorithm based on the passive–aggressive

(PA) family of learning algorithms introduced by (Crammer etal., 2006). Here we

consider a variant that uses triplets(qi, a
+
i , a−

i ), consisting of a text query and two au-

dio documents: one that is relevant to the query,a+
i ∈ R(qi), and one that is not,

a−
i ∈ R̄(qi).

The learning goal is to tune the parametersW of the scoring function such that the

relevant document achieves a score that is larger than the irrelevant one, with a safety

margin:

SW(qi, a
+
i ) > SW(qi, a

−
i ) + 1 ∀

(

qi, a
+
i , a−

i

)

. (3)

To achieve this goal we define the hinge loss function for all triplets:

LW =
∑

(qi,a
+

i
,a−

i
)

lW(qi, a
+
i , a−

i ) (4)

lW(qi, a
+
i , a−

i ) = max
(

0, 1 − SW(qi, a
+
i ) + SW(qi, a

−
i )

)

.

The sum inLW is typically over a set that is too large to be evaluated, but we can use an

online algorithm that nevertheless converges to its minimum. We first initializeW0 to

0. Then, the algorithm follows a set of optimization iterations. At each training iteration

i, we randomly select a triplet(qi, a
+
i , a−

i ), and solve the following convex optimization

problem with soft margin:

Wi = argmin
W

1

2
‖W − Wi−1‖

2
Fro + ClW(qi, a

+
i , a−

i ) (5)

where‖·‖Fro is the Frobenius norm. At each iterationi, optimizing Wi achieves a

trade-off between remaining close to the previous parameters Wi−1 and minimizing

the loss on the current tripletlW(qi, a
+
i , a−

i ). TheaggressivenessparameterC controls

this trade-off. The problem in Eq. (5) can be solved analytically and yields a very

efficient parameter update rule, described in Fig. 5. The derivation of this analytical

solution follows closely the derivation of the original passive–aggressive algorithm (so

named because the update rule is passive when the hinge loss term is already zero, and

aggressively tries to make it zero when it is not).

In practice, the hyper parameterC can be set using cross validation. For a stopping

criterion, it is a common practice to continuously trace theperformance of the trained

model on a held out set, and stop training when this performance no longer improves.
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PAMIR to Rank Audio Documents from Text Queries

Initialization:

Initialize W0 = 0

Iterations

repeat

Sample a queryqi, and audio documentsa+
i anda−

i ,

such thata+ ∈ R(qi) > a− ∈ R̄(qi).

UpdateWi = Wi−1 + τiVi

whereτi = min

{

C,
lWi−1

(qi,a
+

i
,a−

i
)

‖Vi‖2

}

andVi = qi(a
+
i − a−

i )T

until (stopping criterion)

Figure 5: Pseudo-code of the PAMIR algorithm. The subscripti is the iteration index. The

matrixVi is the outer productVi = ([q1
i (a

+
i − a−i ), . . . , q

dq

i (a+
i − a−i )]T , where the superscripts

on qi indicate selected components of the query vector.

Sampling a triplet can be done efficiently: We keep a list of audio documents that are

relevant for each text query. Given a text query, this allowsus to sample uniformly

among all the relevant documents. To sample an irrelevant audio documenta−, we re-

peatedly sample an audio document from the set of all audio documents until we find

one that is not relevant to the given query. Since our data hassignificantly more irrel-

evant documents than relevant document for any query, an irrelevant audio document

can be found with high probability within a few iterations (typically one).

4 Experiments

We evaluate the auditory representation in a quantitative ranking task using a large set

of audio recordings that cover a wide variety of sounds. We compare sound retrieval

based on the SAI with standard MFCC features. In what follows we describe the dataset

and the experimental setup.

4.1 The dataset

We collected a data set that consists of 8638 sound effects from multiple sources.

Close to half of the sounds (3855) were collected from commercially available sound

effect collections. Of those, 1455 are from the BBC sound effects library. The re-
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maining 4783 sounds are taken from a variety of web sites;www.findsounds.com, part-

ners in rhyme, acoustica.com, ilovewavs.com, simplythebest.net, wav-sounds.com, wav-

source.com, andwavlist.com. Most of the sounds contain only a single “auditory ob-

ject”, and contain the “prototypical” sample of an auditorycategory. Most sounds are a

few seconds long but there are a few that extend to several minutes.

We manually labeled all of the sound effects by listening to them and typing in a

handful of tags for each sound. This was used for adding tags to existing tags (from

www.findsounds.com) and to tag the non-labeled files from other sources. When label-

ing, the original file name was displayed, so the labeling decision was influenced by

the description given by the original author of the sound effect. We restricted our tags

to a somewhat limited set of terms. We also added high level tags to each file. For

instance, files with tags such as ‘rain’, ‘thunder’ and ‘wind’ were also given the tags

‘ambient’ and ‘nature’. Files tagged ‘cat’, ‘dog’, and ‘monkey’ were augmented with

tags of ‘mammal’ and ‘animal’. These higher level terms assist in retrieval by inducing

structure over the label space. All terms are stemmed, usingthe Porter stemmer for En-

glish. After stemming, we are left with 3268 unique tags. Thesound documents have

an average of 3.2 tags each.

4.2 The Experimental Setup

We used standard cross validation to estimate performance of the learned ranker. Specif-

ically, we split the set of audio documents in three equal parts, using two thirds for

training and the remaining third for testing. Training and testing was repeated for all

three splits of the data, such that we obtained an estimate ofthe performance on all the

documents. We removed from the training and the test set queries that had fewer than

k = 5 documents in either the training set or the test set, and removed the corresponding

documents if these contained no other tag.

We used a second level of cross validation to determine the values of the hyper

parameters: the aggressiveness parameterC, and the number of training iterations. In

general performance was good as long asC was not too high, and lowerC values

required longer training. We selected a value ofC = 0.1, which was also found to work

well in other applications (Grangier & Bengio, 2008), and 10Miterations. From our

experience the system is not very sensitive to the value of these parameters.

To evaluate the quality of the ranking obtained by the learned model we used the

precision (fraction of positives) within the topk audio documents from the test set as

ranked for each query.
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4.3 SAI and sparse coding parameters

The process of transformation of SAI frames into sparse codes has several parameters

which can be varied. We defined a default parameter set and then performed experi-

ments in which one or a few parameters were varied from this default set.

The default parameters cut the SAI into rectangles startingwith the smallest size

of 16 lags by 32 channels, leading to a total of 49 rectangles.All the rectangles were

reduced to 48 marginal values each, and for each box a codebook of size 256, for a total

of 49 × 256 = 12544 feature dimensions, as described in Sec. 2.3.

Using this default experiment as a baseline for comparisons, we made systematic

variations to several parameters and studied their effect on the retrieval precision. First,

we modified two parameters that determine the shape of the PZFC filter: Pdampand

Zdamp. Then, we modified the smallest rectangle size used for sparse segmentation and

by limiting the maximum number of rectangles used for the sparse segmentation (with

variations favoring smaller rectangles and larger rectangles). Further variants used sys-

tematic variation of the codebook sizes used in sparse coding (using both standard vec-

tor quantization and matching pursuit). The values of all the experimental parameters

used are tabulated in Appendix D.

4.4 Comparisons with MFCC

We used standard Mel frequency cepstral coefficients (MFCC), which we turned into

a sparse code in the same way as for the SAIs. MFCCs were computedusing a Ham-

ming window. We added the first and second derivatives as additional features of each

frame (“delta” and “delta-delta”). We set the MFCC parameters based on a configura-

tion that was optimized for speech, and further systematically varied three parameters

of the MFCCs: the number of cepstral coefficients (traditionally 13 for speech), the

length of each frame (traditionally 25ms) and the number of codebooks used to sparsify

the MFCC of each frame. Optimal performance was obtained witha single codebook

of size 5000, 40ms frames and 40 cepstral coefficients (see Sec. 5). Using a single

codebook was different from the multi-codebook approach that we took with the SAIs.

The optimal configuration corresponds to much higher frequency resolution than the

standard MFCC features used for speech.
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Figure 6:(A) Precision at top 1 as a function of thePdampparameter.(B) Precision at top 1

as a function of theZdampparameter.

5 Results

We first performed a series of experiments to identify the setof parameters that achieve

the most accurate sound retrieval. We started by testing theeffect of several PZFC

parameters on test-set retrieval precision. Specifically,we looked at te effect of two

parameters that determine the shape of the PZFC filter,PdampandZdamp, whose effect

is discussed in details in section A. Figure 6(A) plots precision at top-1 retrieved result,

averaged over all queries, as a function of thePdampparameter, withZdampfixed at the

baseline value of 0.2 (see Fig. 11 to understand how these parameters affect the shape of

the filter). Precision is quite insensitive to the value of the parameter, with an optimum

obtained near 0.12, our baseline value. This parameter setsthe pole damping in the

small-signal limit (that is, for very quiet sound input), and the AGC largely takes out the

effect of this parameter, so the relative insensitivity is not surprising, and corresponds

roughly to a relative insensitivity to input sound level or gain.

We also tested the effect of theZdampparameter, the zero damping, which remains

fixed, independent of the AGC action. Precision is best for a value near 0.06, which is

less than the baseline value of 0.2 used in other tests, but the difference is not highly

significant. The lowerZdampcorresponds to a steeper high-side cutoff of the filter

shapes. Figure 6(B) plots precision as a function of theZdampparameter.

We further tested the effect of various parameters of the SAIfeature extraction pro-

cedure on the test-set precision. Fig. 7 plots the precisionof the top ranked sound file

against the length of the sparse feature vector, for all our experiments. Each set of ex-

periments has their own marker. For instance, the series of stars show precision for a set
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Figure 7: Ranking precision at the top-1 sound plotted against feature count, for all experiments

run. Selected experiment names are plotted on the figure near each point. The different experi-

ment sets are denoted by different markers. The convex hull joining the best-performing points

is plotted as a solid line.meansstands for the size of the dictionary (number of centroids used

in the k-means algorithm).MP stands for Matching Pursuit.

of experiments where the number of means (size of the codebook) is varied. The rest

of the parameters do not change from one star to the other, andwere set at the default

parameters defined in Sec. 2.3.

top-k SAI MFCC percent error reduction

1 27 33 18%

2 39 44 12%

5 60 62 4%

10 72 74 3%

20 81 84 4%

Table 1: Comparison of error at top-k for best SAI and MFCC configurations (error defined as

one minus precision).

Interestingly, performance saturates with a very large number of features∼ 105,

resulting from using 4000 code words per codebook, and a total of 49 codebooks. This

parameter configuration achieved 73% at the top ranked soundfile, which was signifi-

cantly better than the best MFCC result which achieved 67% (wilcoxon test for equal

mediansp-value =0.0078). This reflects about 18% smaller error (from 33% to 27%

error). SAI features also achieve better precision-at-top-k consistently for all values of
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k, although with lower relative precision improvement (Tab.1). It should be stressed

however that the parameters that we found (and the auditory model architecture in gen-

eral) are not guaranteed to be “optimal”, and it is possible that further refinement could

further improve the retrieval precision. Also, the relatiely poor performance of MP

could be due to the fact that the dictiontionary we used may not be optimal for MP.

Importantly, although the best sparse codes use very high dimensional vectors, the

actual data lives in a much lower dimensional subspaces. Specificaly, eventhough each

SAI is represented by a vector of length49 × 4000, only 49 values in this represen-

tation are non-zero. Since subsequent frames have similar characteristics, the overall

representation of a sound file typically has only a few hundreds of non zero values.

Table 2 shows three sample queries together with the top 5 test sound documents

returned by the best SAI-based and MFCC-based trained systems. Documents that were

labeled as relevant are marked with [R]. The three queries shown were selected such that

both systems performed significantly differently on them, as shown in Fig. 8. While

being a very small sample of the data, it shows that both systems behave reasonably

well, most often returning good documents, or at least documents that appear not-too-

far from the expected answer. For instance, the SAI-based system returns document

“water-dripping” for the query “gulp”, which, while being wrong, is admittedly not

far from the mark. Similarly, the document “45-Crowd-Applause” is returned by the

MFCC-based system for query “applaus-audienc”, despite not being labeled as relevant

for that query.

The performance that we calculated was based on textual tags, which are often noisy

and incomplete. In particular, people may use different terms to describe very similar

concepts. Also, the same sound may be described across different aspects. For instance

a music piece may be described by the playing instrument (“piano”) or the mood it

conveys (“soothing”) or the name of the piece. This multi-label problem is common in

content based retrieval, being shared by image search engines, for example.

Table 3 shows queries that consistently “confused” our system and caused retrieval

of sounds with a different label. For each pair of queriesq1 andq2 we measure confu-

sion, by counting the number of sound files that were ranked within the top-k files for

queryq1, but not forq2 even thoughq2 was identical to their labels. For example, there

were 7 sound files that were labeledevil laughbut were not ranked within the topk

documents for the queryevil laugh, and at the same time ranked highly forlaugh.

As can be seen from the table, the repeated “mistakes” are typically due to labeling

imprecision: when a sound labeledlaugh is retrieved for a queryevil laugh, the system
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Query SAI file (labels) MFCC file (labels)

tarzan Tarzan-2 (tarzan, yell) [R] TARZAN (tarzan, yell) [R]

tarzan2 (tarzan, yell) [R] 175orgs (steam, whistl)

203 (tarzan) [R] mosquito-2 (mosquito)

wolf (mammal, wolves, wolf, ...) evil-witch-laugh (witch, laugh, evil)

morse (mors, code) Man-Screams (horror, scream, man)

applaus 27-Applause-from-audience [R] 26-Applause-from-audience [R]

audienc 30-Applause-from-audience [R] phaser1 (trek, phaser, star)

golf50 (golf) fanfare2 (fanfar, trumpet)

firecracker 45-Crowd-Applause (crowd, applaus)

53-ApplauseLargeAudienceSFX [R]golf50

gulp tite-flamn (hit, drum, roll) GULPS (gulp, drink) [R]

water-dripping (water, drip) drink (gulp, drink) [R]

Monster-growling california-myotis-search (blip)

(horror, monster, growl)

Pouring (pour, soda) jaguar-1 (bigcat, jaguar, mammal,...)

Table 2: Top documents obtained for queries that performed very differently between the SAI

and MFCC feature based systems.

counts it as a mistake, even though this is likely to be a relevant match. In general we

find that confused queries are often semantically similar tothe sound label, hence the

errors made by the ranking systems actually reflect the fact that the sound files have

partial or inconsistent labeling. This demonstrates a strength of content-based sound

ranking: it can identify relevant sounds even if their textual labels are incomplete, wrong

or maybe even maliciously spammed.

query, label total number of errors (SAI + MFCC)

clock-tick cuckoo 8

door knock door 8

evil laugh laugh 7

laugh witch laugh 7

bell-bicycl bell 7

bee-insect insect 7

Table 3: Error analysis. Queries that were repeatedly confused for another query. All pairs of

true-label and confused labels with total count above seven are listed.
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Fig. 8 summarizes the performance of the SAI and MFCC systems with respect to

their average precision on the set of all test queries. The graph shows queries either by

their label or a “plus” sign (showing all queries would have resulted in a very difficult

figure to read), positioned according to the performance of each system with respect to

that query, over the test set. As can be seen, there are more queries above the separating

line than below, which means that overall the SAI-based system yielded a better average

precision than the MFCC-based system.
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Figure 8: Comparison of average precisions between SAI and MFCC based systems. Each

‘plus’ sign or label corresponds to a single query, which coordinates provides the test average

precisions for both systems. Queries are stemmed and spaces have been replaced by under-

scores. More queries appear above they = x line, showing that the SAI based system obtained

a high mean average precision.

6 Conclusion

We described a content-based sound ranking system that usesbiologically inspired au-

ditory features and successfully learns a matching betweenacoustics and known text

labels.
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We have previously shown that the PAMIR learning algorithm,applied over a sparse

representation of sounds (Chechik et al., 2008) is an efficient framework for large-scale

retrieval and ranking of media documents from text queries.Here we used PAMIR to

study systematically many alternative sparse-feature representations (“front ends”).

Our findings support the hypothesis a front end that mimics several aspects of the

human auditory system provides an effective representation for machine hearing. These

aspects include a realistic nonlinear adaptive filterbank and a stage that exploits tempo-

ral fine structure at the filterbank output (modeling the cochlear nerve) via the concept

of the stabilized auditory image. Importantly however, theauditory model described

in this paper may not be always optimal, and future work on characterizing the opti-

mal parameters and architecture of auditory models is expected to further improve the

precision, depending on the task at hand.

One approach to feature construction would have been to manually construct fea-

tures that are expected to discriminate well between specific classes of sounds. For

instance, periodicity could be a good discriminator between wind in the trees and a

howling wolf. However, as number of classes grows, such careful design of discrimina-

tive features may become infeasible. Here we take an opposite approach, assuming that

perceptual differences rely on lower level cochlear feature extraction, we use models

inspired by cochlear processing to obtain a very high dimensional representation, and

let the learning algorithm identify the features that are most discriminative.

The auditory model representation we use do not take into account long-term tem-

poral relationships, by analogy with the “bag of words” approach common in text doc-

ument retrieval. The SAI features capture a short window of time, up to about 50 msec

for the biggest box features, which is comparable to but a bitless than that captured by

MFCC with double deltas. Longer correlations are likely to bealso useful for sound

retrieval and it remains an interesting research directionto study how they should be

estimated and used.

The auditory models that we used to represent sounds involvemultiple nonlinear

complex components. This could be one reason why the features generated using this

system are more discriminative than standard MFCC features for a test database of

sounds. However, it is hard to assess what aspects of our testsounds are better repre-

sented by the features from the auditory model.

One difference between SAI and MFCC representations is that SAIs retain fine tim-

ing information, while MFCC preserves fine spectral structure, at least when the number

of coefficients is large. However, the two representations differ by numerous other prop-
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erties, including the cepstral transform, and the AGC. Further study will be needed to

gain more specific insights into exactly what properties of the different auditory models

and sparse feature extraction schemes are the key to good performance.

Since our system currently uses only features from short windows, we envision

future work to incorporate more dynamics of the sound over longer times, either as a

bag-of-patternsusing patterns that represent more temporal context, or through other

methods. We also envision future work to test our hypothesisthat, in our retrieval task,

the system using local SAI patterns will be more robust to interfering sounds than a

system using more traditional spectral features such as MFCC.
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A Automatic gain control in PZFC

The damping of the pole pair in each stage is varied to modify the peak gain (and to a

lesser extent the bandwidth) of that stage, down to about +1 dB. This system of gain

and bandwidth modification by manipulation of pole dampings(or Q values) is a re-

finement of that described in (Lyon & Mead, 1988; Slaney & Lyon, 1993), which used

an all-pole filter cascade, and in (Lyon, 1998), which introduced the two-pole–two-zero

stage, which we now call the PZFC. The poles are modified dynamically by feedback

from a spatial/temporal loop filter, or smoothing network, thereby making anautomatic

gain control(AGC) system. The smoothing network takes the half-wave rectified out-

put of all channels, applies smoothing both in the time and cochlear place dimensions,

and uses both global and local averages of the filterbank response to proportionately in-

crease the pole damping of each stage. This coupled AGC smoothing network descends

from one first described in (Lyon, 1982) (in that work, the loop filter directly controlled

a post-filterbank gain rather than a pole damping as in the present work). The PZFC

filterbank architecture can be seen as intermediate betweenthe all-pole filter cascade

(Slaney & Lyon, 1993) on one hand and cascade-parallel models on the other hand.

The compression exhibited by the PZFC includes both a fast-acting AGC part, similar

to that of the “dynamic compressive gammachirp” (Irino & Patterson, 2006) and an in-

stantaneous part, from an odd-order nonlinearity similar to that in the “dual-resonance,

nonlinear” (DRNL) model (Lopez-Poveda & Meddis, 2001).

The complex transfer function of one stage of the filter cascade is a rational function

of the Laplace transform variables, of second order in both numerator and denominator,

corresponding to a pair of zeros (roots of the numerator) anda pair of poles (roots of

the denominator):

H(s) =
s2/ω2

z + 2ζzs/ωz + 1

s2/ω2
p + 2ζps/ωp + 1

(6)

whereωp andωz are the natural frequencies, andζp andζz are the damping ratios, of

the poles and zeros, respectively. The natural frequenciesare constants, decreasing

from each stage to the next, along a cochlear frequency–place map, or ERB-rate scale

(Glasberg & Moore, 1990); for the present experiments, at each stageωz is fixed at

1.4ωp, and theωp decreases by one-third of the ERB at each stage. The filters are

implemented as discrete-time approximations at 22050 Hz sample rate (fs) by mapping

the poles and zeros to thez plane usingz = es/fs as is conventional in the simple

“pole–zero mapping” or “pole–zero matching” method of digital filter design.

25



Two parameters of the PZFC,PdampandZdamp, are of special interest since they

determine the shape of the filter’s transfer function by setting the damping ratiosζp and

ζz. TheZdampparameter directly sets the zero damping

ζz = Zdamp (7)

while the pole damping varies dynamically as

ζp = (1 + AGC)Pdamp (8)

whereAGC is an automatic-gain-control feedback term proportional to the smoothed

half-wave rectified filterbank output. In other versions of the model (not tried in the

present work)ζz may also vary with the AGC feedback.

Fig. 11(A) shows the effect of the varyingAGC term on the filter gain magnitude

of a single filter stage, in the baseline case ofPdamp = 0.12 andZdamp = 0.2.

In the complexs plane of Fig. 11(B), the damping ratioζ is defined as the distance

of the poles or zeros from the imaginarys axis, relative to their distanceω from the

origin. Theζp, and therefore thePdampparameter, affects mainly the width and peak

gain of the filter, with lower damping values giving narrowerand higher-gain filters.

The Zdampparameter sets the damping of the zeros and affects the symmetry of the

filter, with lower values giving steeper high-side cutoff.

Fig. 11(C) shows the effect of these two parameters on the shape of the filter cas-

cade’s gain magnitude. The apparent large variation in peakgain is partially compen-

sated by the AGC action that adjusts pole damping and compresses the output level

variation.
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Figure 9: Adaptation of the overall filterbank response at each output tap. The plot on the left
shows the initial response of the filterbank before adaptation. The plot onthe right shows the
response after adaptation to a human /a/ vowel of 0.6 sec duration. The plots show that the
adaptation affects the peak gains (the upper envelope of the filter curvesshown), while the tails,
behaving linearly, remain fixed.

Fig. 9 show the transfer function gain of the all the outputs of the filter cascade, in

the case of silence and as adapted to a vowel sound at moderatelevel.
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Figure 10: Impulse response of the smoothing network used as the AGC loopfilter of the PZFC.
An impulse in one channel spreads out into adjacent channels and dies away over time. There
are four such filters in parallel in the AGC, each with a different decay constant; the slower
ones have more spatial spread before the signal decays. The filter adaptation, controlled by pole
damping, in a channel of the PZFC is based on a weighted sum of the activitiesfrom each of the
four smoothing filters at that channel.

Fig. 10 shows the impulse response in time and space of the smoothing filter in the

automatic-gain-control loop that averages the half-wave rectified outputs of the filter-

bank to produce theAGC signal that controls the pole damping in each channel. The

multiple channels of these feedback filters are coupled through the space dimension

(cochlear place axis), such that each channel’s damping is affected by the output of

other nearby channels.

All the filterbank parameters were chosen to obtain a filterbank behavior that is

roughly similar to that of the human cochlea, but parameterswere not directly learned

from data. The filter bandwidths and shapes are close to thoseof the asymmetric “gam-

machirp” filters that have been fitted to human data on detection of tones in notched-

noise maskers (Unoki et al., 2006). The detailed values of all parameters are provided

with the accompanying code that we make available online athttp://www.acousticscale.org/link/AIM-

PZFC.

B Strobed temporal Integration

To choose strobe points, the signal in each channel is multiplied point-wise by a win-

dowing function, a parabola of 40ms width. The maximum pointin the windowed
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Figure 11:(A) Frequency response of a single PZFC stage as the pole damping and stagepeak
gain change in response to sound level via the AGC feedback changing the pole damping; the
peak gain changes by only a few dB.(B) The pole and zero positioning for a single stage of the
PZFC, in the complexs plane; crosses show starting positions of the poles at low signal levels;
circles show the fixed positions of the zeros. The poles move dynamically along the dotted
paths (on circles of constant natural frequency) as theirQ or damping parameters are changed,
thereby varying the filter peak gain. The low-frequency tail gain remains fixed, passing lower
frequencies transparently to later stages. The pole and zero positions shown by heavy black
symbols represent a default model that we study in the experiments below asa “baseline model”.
The lighter color circles represent alternatives to that default, obtained by varying thePdamp
andZdampparameters. The ratio between the natural frequency (distance from theorigin) of
the zeros and that of the poles is fixed at 1.4, putting the dip in the response about a half octave
above the peak frequency.(C) The magnitude transfer function, in the small-signal limit, of
one channel (the output after a cascade of 60 stages in this example) of the PZFC cochlear
filterbank, with center frequency near 1 kHz, for several values ofPdampandZdamp. The solid
red–orange curves show variation ofPdampthrough values 0.06 (highest curve), 0.12, and 0.24.
The dashed blue–green curves show variation ofZdamp, for values 0.01 (lowest dashed curve),
0.1, 0.2 and 0.3. The dashed and solid curves coincide for the baseline parameters.

signal is the strobe point. The window is then shifted by 4ms and the process is re-

peated. Thus, there is guaranteed to be an average of one strobe point every 4ms, or

five per 20ms frame; it is possible for multiple strobes to occur at one point in the

signal, since the windows overlap. Each SAI channel is then calculated as the cross-

correlation between the original signal and a signal composed of delta-functions at the

identified strobe points. This cross-correlation is accomplished efficiently by simply

sliding a piece of the waveform for each channel to move the strobe point to the center,

and adding up the five copies for the five strobe points in the frame. The SAI has its

zero-lag line at the center of the time-interval axis and is truncated at plus and minus

±26.6ms. A value in this region is a common choice for the maximum of the SAI lag

axis, as it corresponds approximately to the lower frequency limit (maximum period)

of human pitch perception.

The processes of STI and autocorrelation both produce an image that is strongly
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influenced by the pitch of the sound. The percept of pitch is determined by the repeti-

tion rate of a sound waveform, (the pulse rate in a pulse-resonance sound) with faster

repetition rates corresponding to higher pitches. STI gives a strong peak in the output

function at a lag corresponding to the repetition interval of the waveform (since the sig-

nal is well-correlated with itself at this point). The SAI isexpected to be stable when a

sound is perceived as stable by a human listener. Sounds witha repetition rate of above

about 60Hz are perceived as stable tones, with pitch corresponding to the repetition rate.

As this rate is reduced, the pitch percept gradually disappears and the individual cycles

of the input signal begin to separate out. The lower limit of pitch perception is around

30Hz (Krumbholz et al., 2000). With a lag dimension extending to 26.6ms, sounds with

a repetition rate of above about 38Hz will lead to a stable vertical ridge in the image,

thus providing an a good approximation to the limits of humanperception.

C Details of rectangle selection

To represent each SAI using a sparse code, we first defined a setof local rectangular

patches, that covered the SAI. These Rectangles are used to identify patterns that are

local to some part of the SAI, and they have different sizes inorder to capture informa-

tion at multiple scales. This approach is modeled on methodsthat have been used for

image retrieval, involving various kinds of multi-scale local patterns as image feature

vectors.

We have experimented with several schemes for selecting local rectangles, and the

specific method that we used is based on defining a series of rectangles whose sizes are

repeatedly doubled. For instance, we defined baseline rectangles of size16 × 32, then

multiplied each dimension by powers of two, up to the largestsize that fits in an SAI

frame.

In one group of experiments we varied the details of the box-cutting step. In our

baseline we use rectangles of size16 × 32 and larger, each dimension being multiplied

by powers of two, up to the largest size that fits in an SAI frame. We varied the base

size of the rectangle, starting from the sizes8 × 16 and32 × 64. We also restricted the

number of sizes, by limiting the doublings of each dimension. This restriction serves

to exclude the global features that are taken across a large part of the auditory image

frame. In a separate series of experiments we instead started from a rectangle size

equal to the dimensions of the SAI frame, working downwards by repeatedly cutting

the horizontal and vertical dimensions in half. This set excludes features that are very
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A. Boxes tiled vertically
overlapping by half height
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B. Box height doubled
repeatedly until box
height is more than half
SAI height
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C. Box width doubled
repeatedly. When box
width exceeds half image
width, left edge is
shifted to fit box in image.
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D. Smallest box (black
dashed) and largest box
(gray dashed) used in the
baseline experiment

Figure 12: Defining a set of local rectangle regions. Rectangles are chosen to have different
sizes, to capture multi-scale patterns. See appendix A. In the default set of parameters we used,
the smallest rectangle is 16 samples in the lag dimension and 32 channels high, and the largest
is 1024 samples by 64 channels.

local in the auditory image. While the codebook sizes remained fixed at 256, the total

number of feature dimensions varied, proportional to the number of boxes used, and

performance within each series was found to be monotonic with the total number of

feature dimensions. The complete set of experimental parameters are shown in Table 4.

Given the set of rectangles, we create dense features from each rectangle. The

image inside the rectangle is down sampled to the size of the smallest box (16× 32

with the default parameters). The effect of this rescaling is that large rectangles are

viewed at a coarser resolution. To further reduce the dimensionality of the data we

compute the horizontal and vertical marginals (the averagevalues for each column and

row in the rectangle), and concatenate the two vectors into asingle real-valued vector

per rectangle. In the default case, this approach leaves a16 + 32 = 48 element dense

feature vector for each rectangle.
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This multi-scale feature-extraction approach is a way to reduce the very high di-

mensional SAI space to set of lower-dimensionality local features at different scales,

as a step toward making sparse features. Different box sizesand shapes capture both

the large-scale image structure, corresponding to pitch and temporal coherence, and

the microstructure corresponding to the resonances following each pulse. Wide boxes

capture long-term temporal patterns; a smaller height on these restricts the temporal

pattern features to a localized frequency region and captures local spectral shape. Tall

boxes capture overall spectral shape; smaller widths on these include different scales of

temporal pattern with the spectral pattern. Intermediate sizes and shapes capture a vari-

ety of localized features, such that even when multiple sounds are present, some of the

features corresponding to regions of the SAI dominated by one sound or the other will

often still show a recognizable pattern. The use of the marginals of each box reduces the

dimensionality into the following sparse-code extractionstep, while preserving much

of the important information about spectral and temporal structure; even with this re-

duction, the dimensionality into the sparse code extractors is high, for example 48 with

the default parameters.

D Summary of Experiments

Table 4: Parameters used for the SAI experiments
Parameter Smallest Total Means VQ Box
Set Box Boxes Per Box MP Cutting

Default “baseline” 32×16 49 256 VQ Up
Codebook Sizes 32×16 49 4, 16, 64, 256, VQ Up

512, 1024, 2048,
3000, 4000 6000 8000

Matching Pursuit 32×16 49 4, 16, 64, 256, MP Up
1024, 2048, 3000

Box Sizes (Down) 16×8 1, 8, 33, 44, 66 256 VQ Down
32×16 8, 12, 20, 24
64×32 1, 2, 3, 4, 5, 6

Box Sizes (Up) 16×8 32, 54, 72, 90, 108 256 VQ Up
32×16 5, 14, 28, 35, 42
64×32 2, 4, 6, 10, 12
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