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Abstract

To create systems that understand the sounds that humans are expivsed to
everyday life, we need to represent sounds with features that camndiste
among many different sound classes. Here, we use a sound-rankingwork
to quantitatively evaluate such representations in a large scale task. \We hav
adapted a machine-vision method, the “passive-aggressive model foe ireag
trieval” (PAMIR), which efficiently learns a linear mapping from a very krg
sparse feature space to a large query-term space. Using this dppreamm-
pare different auditory front ends and different ways of extracsiparse features
from high-dimensional auditory images. We tested auditory models that uge ada
tive pole—zero filter cascade (PZFC) auditory filterbank and spade-feature
extraction from stabilized auditory images via multiple vector quantizers. In ad-
dition to auditory image models, we also compare a family of more conventional
Mel-Frequency Cepstral Coefficient (MFCC) front ends. The gxpental re-
sults show a significant advantage for the auditory models over vectmtigaed
MFCCs. Ranking thousands of sound files with a query vocabulary oftrs
of words, the best precision at top-1 was 73% and the average presiag35%,
reflecting a 18% improvement over the best competing MFCC frontend.

1 Introduction

Machine Hearingis a field aiming to develop systems that can process, igeatitl
classify the full set of sounds that people are exposed te inachine vision, machine



hearing involves multiple problems: from auditory scenalgsis, through “auditory

object” recognition to speech processing and recognitidthile considerable effort

has been devoted to speech and music related research,dfeange of sounds that
people —and machines — may encounter in their everydaydseeen far less studied.
Such sounds cover a wide variety of objects, actions, evantscommunications: from

natural ambient sounds, through animal and human vocalimtto artificial sounds

that are abundant in today’s environment.

Building an artificial system that processes and classifiesyntygpes of sounds
poses two major challenges. First, we need to develop efficilgorithms that can
learn to classify or rank a large set of different sound caieg. Recent developments
in machine learning, and particularly progress in largdeso@ethods (Bottou et al.,
2007), provide several efficient algorithms for this taskcéhd, and sometimes more
challenging, we need to develop a representation of solmadsaptures the full range
of auditory features that humans use to discriminate anatifgedifferent sounds, so
that machines have a chance to do so as well. Unfortunatalgusrent understanding
of how the plethora of naturally encountered sounds shoellcepresented is still very
limited.

To evaluate and compare auditory representations, we es¢-world task of content-
based ranking sound documents given text queries. In tipkcagon, a user enters a
textual search query, and in response is presented withdameaf list of sound docu-
ments, ranked by relevance to the query. For instance, ayseg “dog” will receive
an ordered set of files, where the top ones should contairdsafrbarking dogs. Im-
portantly, ordering the sound documents is based solelyconstic content: no text
annotations or other metadata are used at retrieval timéeRait training time, a set of
annotated sound documents (sound files with textual tagsed, allowing the system
to learn to match the acoustic features of a dog bark to theagxdog”, and similarly
for a large set of potential sound-related text queries.his way, a small labeled set
can be used to enable content-based retrieval from a mugdr]amlabeled set.

Several previous studies have addressed the problem ofrtdmised sound re-
trieval, focusing mostly on the machine-learning and infation-retrieval aspects of
that task, using standard acoustic representations (WhinRifkin, 2002; Slaney,
2002; Barrington et al., 2007; Turnbull et al., 2008; Checlhiilnle 2008). Here we
focus on the complementary problem, of finding a good reptasen of sounds using
a given learning algorithm.

The current paper proposes a representation of soundsstbhased on models of



the mammalian auditory system. Unlike many commonly uspdesentations, it em-

phasizes fine timing relations rather than spectral aralysfe test this representation
in a quantitative task: ranking sounds in response to teatigs. This is achieved us-
ing a scalable online machine learning approach to rankiig find that the auditory

representation outperforms standard MFCC features, negpinécision above 73% for
the top-ranked sound, compared to about 60% for standard MIFA®7% for the best

MFCC variant we found. The following section describes thditauy representation

that we use, Section 3 describes the learning approach anidisé our experimental

results. Our findings are discussed in Section 5.

2 Modeling sounds

In this paper we focus on a class of representations thatrimlhabased on models
of the auditory system, and compare these representabastaridard mel-frequency
cepstral coefficients (MFCCs). The motivation for using augitmodels follows from
the observation that the auditory system is very effectivelentifying many sounds,
and this may be partially attributed to the acoustic feattiat are extracted at the early
stages of auditory processing.

We extract features with a four-step process, illustrateHig. 1: (1) A nonlinear
filterbank with half-wave rectified output. (2) Strobed tesrgd integration, that yields
a stabilized auditory imagéSAl). (3) Sparse coding using vector quantization. (4)
Aggregate all frames features to represent the full audouoh@nt.

The first two steps, filterbank and strobed temporal integnaare firmly rooted in
auditory physiology and psychoacoustics (Lyon, 1990; lRogpFay, 1992; Patterson,
2000). The third processing step, sparse coding, is in daogce with some properties
of neural coding (Olshausen & Field, 2004), and has sigmficamputational benefits
that allow us to train large scale models. The fourth stepdak “bag of features”
approach which is common in machine vision and informatedrieval. The remainder
of this section describes these three steps in detalil.

2.1 Cochlear model filterbank

The first processing step is a cascade filterbank inspiresdlylear dynamics, known
as the pole-zero filter cascade (PZFC) (Lyon, 1998). It preslacbank of bandpass-
filtered, half-wave rectified output signals that simuldte butput of the inner hair
cells along the length of the cochlea. The PZFC can be vieweapproximating the
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Figure 1. The systems for generating sparse codes from audio usigdéory frontend. It
consists of four steps: (1) Cochlea simulation, (2) Stabilized Auditory imeeggion (3) Sparse
coding (4) Aggregate into a document representation.

auditory nerve’s instantaneous firing rate as a functioroohear place, modeling both
the frequency filtering and the compressiveaatomatic gain controtharacteristics of
the human cochlea (Lyon, 1990).

More specifically, small segments of the cochlea act as ldtais on waves prop-
agating down its length. This local behavior is modeled gisitascade of simple filter
stages, each stage defined by just a complex pole pair (aaes®nand a complex zero
pair (an anti-resonance). The sound signal is fed into thkdst-frequency stage; the
output of this stage is passed as the input to the next stagescaon down the cascade
(see Fig. 2). The poles and zeros of each stage are arrangedhst the peak gains
of the stages go from high frequency to low frequency. Thdinear mapping of fre-
quency to place is chosen such that a constant incremenacoé gbne filter channel)
corresponds to a frequency difference proportional to thelpophysicakquivalent
rectangular bandwidt{ERB) (Glasberg & Moore, 1990). Such nonlinear mappings,
including the mel and bark scales, are common in auditoryatmogl The pole and zero
positioning for the PZFC stages is similar to the “two-pdes-zero, sharper” arrange-
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Figure 2: Schematic of the PZFC design. The cascaded filter stage®)aivovide a variable
gain, which is controlled by the automatic gain control (AGC) smoothing net@malow).

ment described in (Lyon, 1998), resulting in a peak gain tegesof only about +5 dB,
followed by a valley of about -10 dB. The cascade of many sumipest results in a large
gain peak followed by a steep cutoff at each tap of the filtekd@eyond the first few.

The PZFC also models the adaptive and frequency dependerthgais observed
in the human cochlea, thereby makingautomatic gain contro{AGC) system. De-
tails on this system, including specific parameters of oud@ware discussed in Ap-
pendix A.

2.2 Strobe finding and image stabilization

The second processing stegirobed temporal integratiofSTI), is based on human
perception of sounds, rather than purely on the physiolddlyeoauditory system (Pat-
terson & Holdsworth, 1996). In this step, PZFC output is pdsthrough a strobe-
finding process, which determines the position of “imparftgreaks in the output in
each channel. These strobe points are used to initiate t@miptegration processes
in each channel, adding another dimension to representdatasy from the strobe, or
trigger, points. Intuitively, this step “stabilizes” thgsal, in the same way that the trig-
ger mechanism in an oscilloscope makes a stable picturedroomgoing time-domain
waveform.

The end result of this processing is a series of two-dimeasirames of real-



valued data (a “movie”), known as a “stabilized auditory gea(SAl). Each frame
in this “movie” is indexed by cochlear channel number on tedtigal axis and lags
relative to identified strobe times on the horizontal axigafgples of such frames are
illustrated in Fig. 3 and Fig. 4.
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Figure 3: Example of one SAIl frame (from an SAI “movie”) in response twman vowel.
The moving image will look steady (hence “stabilized”) when the audio sostedsly, as is the
case with the steady vowel sound.
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Figure 4: Example of an SAIl frame from the sound of a telephone ringihg. picture shows
that the sound is less periodic than the voice sound, but has some retatoigre.

The STI process can be viewed as a modified form of autoctioelaln autocor-
relation, a signal is cross-correlated with itself at vasialelay “lags”. The zero-lag is
at the center of the output, and the autocorrelation fundbeing symmetrical about
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the center. In STI, the signal is instead cross-correlatiéal avsparse function that is
zero everywhere except at certain times called strobe galitte height of the signal at
these strobe points determines the “weight” with which timaé interval is represented
in the output. STI is more efficient computationally thancaatrelation, since one of
the signals is “sparse”. The resulting output is no longenrsetrical about the zero-
lag point (Patterson & Irino, 1997). The details of our s&rabtegration are given in
Appendix B.

The filterbank and SAI stages described above represenuont best attempt to
combine the good properties of the Slaney/Lyon “correlogréSlaney & Lyon, 1993)
and the Patterson/Irino “stabilized auditory image.” {®a&on & Irino, 1997). The
PZFC filterbank can be seen as intermediate between thave#ssg-wave” cascade-
parallel model and the “active short-wave” all-pole filte&rscade of (Slaney & Lyon,
1993), while the stabilization mechanism is closer to Psties triggered temporal
integration, which maintains time-domain asymmetry inrégulting SAI (Patterson &
Irino, 1997; Patterson, 2000), as opposed to the Slaneg/aytocorrelogram approach
that forces all sounds to produce symmetric images.

2.3 Sparse coding of an SAI

The third processing step transforms the content of SAl @&ainto a sparse code that
captures repeating local patterns in each SA image. Spadsshave become preva-
lent in the characterization of neural sensory systemsh@lsen & Field, 2004; OI-
shausen et al., 1996). A sparse code is a high-dimensiontirvec R? that contains
mostly zeros, and only a few non-zero entrijesy = £ < d. As such it provides
a powerful representation that can capture complex strestn data, while providing
computational efficiency. Specifically, sparse codes cande on typical patterns that
frequently occur in the data, and use their presence toseptéhe data efficiently.

In a previous work (Chechik et al., 2008) we compared sounkimgrsystems that
use dense and sparse features. The main conclusion fromaimparison was that
sparse representations obtain a comparable level ofvateecision, but achieve it
with only the fraction of the time needed for training. Fastience, training on a dataset
of 3431 files took only 3 hours instead of 960 hours (40 daysjréoning a Gaussian
Mixture model. The reason for the improved computationfitiehcy is (as we show
below) that the learning approach we have chosen (PAMIR, egesection) has com-
putational complexity that depends on the number of non-¥aluesk, rather than the
full dimensionalityd. Building on these results, this paper focuses on sparse codig
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A second important aspect of sparse codes, is that theydeaviayer of nonlin-
earity that maps the raw input into a representation thatucag typical patterns in the
data.

Our sparse code is based on identifying the typical patterttse set of SAls, and
representing each given SAIl frame, or sequence of framésg ashistogram of the
patterns that appear in it. This histogram is usually spaisee each sound typically
only contains a relatively small number of patterns. Tag-of-patternsepresentation
is similar to the common use bhg-of-wordgepresentation of text documents bag-
of-visual-termssometimes used in machine vision. However, unlike machiserv
problems in which images are somewhat translation invgrieamely, similar patterns
could be found at different parts of an image, the SAl is irdEy frequency and delay
lag. As a result, different positions in the SAI correspoaatiditory objects that are
perceptually different. To handle this, instead of lookingglobal patterns across the
whole SA image, we search for more local patterns at difftgparts of the SAI. More
specifically, the sparse coding step has two sub-stepg; &afne a set of overlapping
rectangular patches that cover each SAIl frame. Secondgamielocal region using its
own sparse-encoder.

For selecting the rectangular local patches, we systeatigticded several approaches
and tested the precision obtained with each approach in@ds@nking task, as de-
scribed below. We also tested a few approaches for repregehe content of each
rectangle, in a compact way. The details are given in Appe@di

In the second sub-step, we represent all the vectors thedseqt the rectangular
areas in an SAI using sparse codes. We tested two sparsey@ujmoachesvector
guantization(VQ) (Gersho & Gray, 1992) anthatching pursuifMP) (Bergeaud &
Mallat, 1995; Mallat & Zhang, 1993). In VQ, a dense featuretoeis approximated
by the closest vector from a codebook (in Euclidean sensee@he best match has
been chosen, the representation can be encoded as a spisector, with a length
equal to the size of the codebook, that consists of all zesaept for a single "one” at
the index position of the chosen code word.

In MP, each vector (representing a rectangle) is projeatéalthe codebook vectors,
the largest projection is selected, the signed scalar \&ltigat projection is added to
the sparse vector representation (in the appropriate ipdsition), and the vector val-
ued projection is subtracted from the original vector, pidg a residual vector. The
process is then repeated until the magnitude of the largeggiion becomes smaller
than a given threshold. For both matching pursuit and vesuiantization we learn in-



dividual codebooks tailored to represent the rectanglesel specific position in the
SAIl. The codebook was learned from the full set of rectanglése data using a stan-
dard k-means algorithm, which yields a codebook that istted to vector quantization.
The problem of finding a codebook that is specifically optedizor MP is very hard,
and we chose to use the same codebook for both VQ and MP. Teelioe size of the
codebook (number of k-means clusters), we tested sevduasvaf this parameter. The
complete set of codebook sizes tested is described in Appénd

Once each rectangle has been converted into a sparse caug\(estor quantiza-
tion or matching pursuit) these codes are concatenate@ndwery-high-dimensional
sparse-code vector, representing the entire SAI frameh Wé default parameter set,
using vector quantization, a codebook size of 256 was usezhfth of the 49 rectangles,
leading to a feature vector of length x 256 = 12544, with 49 nonzero entries.

At each frame time, this feature vector of mostly zeros, witles (in the VQ case)
or amplitude coefficients (in the matching pursuit case) aparse set of locations,
can be thought of as a histogram of feature occurrences ifrahee. To represent an
entire sound file, we combine the sparse vectors repregemsitograms of individual
frames into a unified histogram—equivalent to simply addipgall the frame feature
vectors. In the interpretation as a histogram, it shows hmguently each abstract
feature occurs in the sound file. The resulting histogramoves still largely sparse
and is used to represent the sound file to the learning systsorided in the following
section.

The process described in this section involves multipl@ipaters. In our exper-
iments, we varied these parameters and tested how they dfeeprecision of sound
ranking. More details are given in Sec. 5 and Sec. D.

3 Ranking sounds given text queries

We now address the problem of ranking sound documents biyridevance to a text
query. Practical uses of such a system include searchingolamd files or specific
moments in the sound track of a movie. For instance, a usermayterested to find
vocalizations of monkeys to be included in a presentatiautthe rain-forest, or to
locate the specific scene in a video where a breaking glasbedieard. A similar
task is “musical query-by-description”, in which a relatis learned between audio
documents and words (Whitman & Rifkin, 2002).

We solve the ranking task in two steps. In the first step, salondiments are rep-



resented as sparse vectors, following the procedure descebove. In the second
step, we train a machine learning system to rank the documesihg the extracted
features. In a previous study (Chechik et al., 2008), we evatudifferent machine
learning methods for the second step, while the first step achgeved using stan-
dard MFCC features. The methods that we evaluated were Gausskture models
(GMM), support vector machines (SVM), and the passive-eggive model for image
retrieval (PAMIR). While all three models achieved similae@sion at the ranking
task, PAMIR was significantly faster, and the only one thalest to large data sets. It
is therefore suitable for handling large collections ofrsg) such as indexing a large
fraction of the sound documents on the world wide web. Fa tbason, in this study
we use the PAMIR method as a learning algorithm. The remainfi¢his section
describes the PAMIR learning algorithm (Grangier & Bengif0@&), recast from the
image application to the audio application.

3.1 PAMIR for audio documents

Consider a text query represented by a sparse veetdR? whered, is the number of
possible words that can be used in queries (the query dastydnAlso consider a set

of audio documentst c R, where each audio document is represented as a feature
vector,a € R%, andd, is the dimensionality of the audio feature vector. Bt) C A

be the set of audio documents Anthat are relevant to the quegy A ranking system
provides a scoring functiofi(q, a) that allows ranking of all documentse A for any
given queryg. An ideal scoring function would rank all the documeats A that are
relevant forg ahead of the irrelevant ones:

S(q,a®) > S(q,a™) VateR(q),a €R(q) . (1)

whereR(q) is the set of sounds that is not relevanttérhe simplest score of PAMIR
uses a bilinear parametric score:

Sw(q,a) = ¢" Wa (2)

whereW ¢ R%*d The matrixW can be viewed as a linear mapping from audio
features to query words. Namely, the prod¥¢t: is viewed as a “bag of words” de-
scription of the audio document, and the dot product of thg df words with the query
wordsq gives the score.

Wheng anda are sparse, the scofgy can be computed very efficiently even when
the dimensionsi, andd, are large. This is because the matrix multiplication only
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requiresO(|¢||a|) operations wherég;| and|a| are the number of non-zero valuesgin
anda respectively.

To learn the scoring functiofiyy we use an algorithm based on the passive—aggressive
(PA) family of learning algorithms introduced by (Crammeragt 2006). Here we
consider a variant that uses tripléts, a;", a; ), consisting of a text query and two au-
dio documents: one that is relevant to the quety, € R(g;), and one that is not,

a; € R(q:).

The learning goal is to tune the paramet@vsof the scoring function such that the
relevant document achieves a score that is larger thanrgdeviant one, with a safety
margin:

Swqi,al) > Swi(g,a; ) +1 V(qz,az, Z) . (3)

To achieve this goal we define the hinge loss function forrgléts:

Z lW QZyaZ y z (4)

(a0 a7)

! (%a%ﬂ% ) = max (0 1 - SW(an a; )+ SW(QH a,; )) .

The sum inLyy is typically over a set that is too large to be evaluated, itan use an

online algorithm that nevertheless converges to its minimWe first initializeW,, to

0. Then, the algorithm follows a set of optimization iteoa. At each training iteration
i, we randomly select a triplét;, o, a; ), and solve the following convex optimization
problem with soft margin:

W = arguin -Hw W, 1|2, + Clw (g, a ,ay) )

where ||-|| -, is the Frobenius norm. At each iterationoptimizing W, achieves a
trade-off between remaining close to the previous paramd¥,_; and minimizing
the loss on the current triplé§ (¢;, a; , a; ). Theaggressivenegsarameter” controls
this trade-off. The problem in Eq. (5) can be solved anadtiycand yields a very
efficient parameter update rule, described in Fig. 5. Thevatgon of this analytical
solution follows closely the derivation of the original pag—aggressive algorithm (so
named because the update rule is passive when the hingelosstalready zero, and
aggressively tries to make it zero when it is not).

In practice, the hyper parametércan be set using cross validation. For a stopping
criterion, it is a common practice to continuously trace peeformance of the trained
model on a held out set, and stop training when this perfoomao longer improves.
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PAMIR to Rank Audio Documents from Text Queries
Initialization:
Initialize Wy =0
Iterations
repeat
Sample a query;, and audio documents” anda; ,
such that™ € R(q;) > a~ € R(q,).
UpdateW, = W,_; + 7;V;

. lw,; ia) ,a;
wherer; = min {C, twi g (@507 0;) )}

V]2
andV; = ¢;(af —a;)T
until (stopping criterion)

Figure 5: Pseudo-code of the PAMIR algorithm. The subsdriptthe iteration index. The

matrix V; is the outer produdt; = (g (a — a7 ),..., ¢ (a; — a;")]”, where the superscripts

3 7 K3

ong; indicate selected components of the query vector.

Sampling a triplet can be done efficiently: We keep a list afiauwlocuments that are
relevant for each text query. Given a text query, this allowso sample uniformly
among all the relevant documents. To sample an irrelevatibaocument.—, we re-
peatedly sample an audio document from the set of all audiardents until we find
one that is not relevant to the given query. Since our datasigasficantly more irrel-
evant documents than relevant document for any query, alevant audio document
can be found with high probability within a few iterationggically one).

4 Experiments

We evaluate the auditory representation in a quantitatim&ing task using a large set
of audio recordings that cover a wide variety of sounds. Wapare sound retrieval
based on the SAIl with standard MFCC features. In what followslescribe the dataset
and the experimental setup.

4.1 The dataset

We collected a data set that consists of 8638 sound effeats multiple sources.
Close to half of the sounds (3855) were collected from comiakyavailable sound
effect collections. Of those, 1455 are from the BBC sound t&ffébrary. The re-
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maining 4783 sounds are taken from a variety of web site@ay.findsounds.corpart-
ners in rhymeacoustica.conilovewavs.conpsimplythebest.ngtvav-sounds.comvav-
source.comandwavlist.com Most of the sounds contain only a single “auditory ob-
ject”, and contain the “prototypical” sample of an auditeategory. Most sounds are a
few seconds long but there are a few that extend to severaitesn

We manually labeled all of the sound effects by listeninghient and typing in a
handful of tags for each sound. This was used for adding agsisting tags (from
www.findsounds.conand to tag the non-labeled files from other sources. Whert-labe
ing, the original file name was displayed, so the labelingsiec was influenced by
the description given by the original author of the souneédcff We restricted our tags
to a somewhat limited set of terms. We also added high legs ta each file. For
instance, files with tags such as ‘rain’, ‘thunder’ and ‘wimeere also given the tags
‘ambient’ and ‘nature’. Files tagged ‘cat’, ‘dog’, and ‘mkay’ were augmented with
tags of ‘mammal’ and ‘animal’. These higher level terms stdsi retrieval by inducing
structure over the label space. All terms are stemmed, tiseBorter stemmer for En-
glish. After stemming, we are left with 3268 unique tags. §band documents have
an average of 3.2 tags each.

4.2 The Experimental Setup

We used standard cross validation to estimate performdnbe 2arned ranker. Specif-
ically, we split the set of audio documents in three equatsparsing two thirds for
training and the remaining third for testing. Training aedting was repeated for all
three splits of the data, such that we obtained an estimdtegferformance on all the
documents. We removed from the training and the test setepuirat had fewer than
k = 5 documents in either the training set or the test set, andvedibe corresponding
documents if these contained no other tag.

We used a second level of cross validation to determine theesaf the hyper
parameters: the aggressiveness paraniet@and the number of training iterations. In
general performance was good as longCasvas not too high, and lower' values
required longer training. We selected a valu€'of= 0.1, which was also found to work
well in other applications (Grangier & Bengio, 2008), and 1@&tations. From our
experience the system is not very sensitive to the valuessitiparameters.

To evaluate the quality of the ranking obtained by the ledinmedel we used the
precision (fraction of positives) within the tdpaudio documents from the test set as
ranked for each query.
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4.3 SAl and sparse coding parameters

The process of transformation of SAI frames into sparse £bds several parameters
which can be varied. We defined a default parameter set amdpivdormed experi-
ments in which one or a few parameters were varied from tHeudteset.

The default parameters cut the SAI into rectangles stawiitly the smallest size
of 16 lags by 32 channels, leading to a total of 49 rectangMisthe rectangles were
reduced to 48 marginal values each, and for each box a coklebsize 256, for a total
of 49 x 256 = 12544 feature dimensions, as described in Sec. 2.3.

Using this default experiment as a baseline for compariseesmade systematic
variations to several parameters and studied their effeth®retrieval precision. First,
we modified two parameters that determine the shape of th€RiltEr: Pdampand
Zdamp Then, we modified the smallest rectangle size used forsgagmentation and
by limiting the maximum number of rectangles used for thespaegmentation (with
variations favoring smaller rectangles and larger redem)gFurther variants used sys-
tematic variation of the codebook sizes used in sparse gqdsing both standard vec-
tor quantization and matching pursuit). The values of @l ékperimental parameters
used are tabulated in Appendix D.

4.4 Comparisons with MFCC

We used standard Mel frequency cepstral coefficients (MFC@Giglwwe turned into
a sparse code in the same way as for the SAls. MFCCs were comymiteda Ham-
ming window. We added the first and second derivatives agiaddi features of each
frame (“delta” and “delta-delta”). We set the MFCC parameteaised on a configura-
tion that was optimized for speech, and further systemtivaried three parameters
of the MFCCs: the number of cepstral coefficients (traditignaB for speech), the
length of each frame (traditionally 25ms) and the numbeiodiebooks used to sparsify
the MFCC of each frame. Optimal performance was obtained aviimgle codebook
of size 5000, 40ms frames and 40 cepstral coefficients (see5%e Using a single
codebook was different from the multi-codebook approaelwe took with the SAIs.
The optimal configuration corresponds to much higher fraqueesolution than the
standard MFCC features used for speech.
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Figure 6:(A) Precision at top 1 as a function of tRelampparameter(B) Precision at top 1
as a function of th&@dampparameter.

5 Results

We first performed a series of experiments to identify thesparameters that achieve
the most accurate sound retrieval. We started by testingffieet of several PZFC
parameters on test-set retrieval precision. Specificaléylooked at te effect of two
parameters that determine the shape of the PZFC fltermpandZdamp whose effect
is discussed in details in section A. Figure 6(A) plots e at top-1 retrieved result,
averaged over all queries, as a function offlgampparameter, witZdampfixed at the
baseline value of 0.2 (see Fig. 11 to understand how theaengders affect the shape of
the filter). Precision is quite insensitive to the value & glarameter, with an optimum
obtained near 0.12, our baseline value. This parametettseigole damping in the
small-signal limit (that is, for very quiet sound input) daie AGC largely takes out the
effect of this parameter, so the relative insensitivity @ surprising, and corresponds
roughly to a relative insensitivity to input sound level @i

We also tested the effect of t@&lampparameter, the zero damping, which remains
fixed, independent of the AGC action. Precision is best foalae/near 0.06, which is
less than the baseline value of 0.2 used in other tests, budiference is not highly
significant. The loweZdampcorresponds to a steeper high-side cutoff of the filter
shapes. Figure 6(B) plots precision as a function ofatiampparameter.

We further tested the effect of various parameters of thef8atlire extraction pro-
cedure on the test-set precision. Fig. 7 plots the precisidhe top ranked sound file
against the length of the sparse feature vector, for all gpeements. Each set of ex-
periments has their own marker. For instance, the serigais show precision for a set
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Figure 7: Ranking precision at the tapsound plotted against feature count, for all experiments
run. Selected experiment names are plotted on the figure near each p@mifféhent experi-
ment sets are denoted by different markers. The convex hull joiningetstepgerforming points

is plotted as a solid linemeansstands for the size of the dictionary (number of centroids used
in the k-means algorithmMP stands for Matching Pursuit.

of experiments where the number of means (size of the codt¢limearied. The rest
of the parameters do not change from one star to the othenvarelset at the default
parameters defined in Sec. 2.3.

top-+ || SAl | MFCC | percent error reduction

1 27 | 33 18%
2 39 |44 12%
5 60 | 62 4%

10 72 |74 3%
20 81 | 84 4%

Table 1: Comparison of error at tdpfor best SAl and MFCC configurations (error defined as
one minus precision).

Interestingly, performance saturates with a very large memof features~ 105,
resulting from using 4000 code words per codebook, and hab#® codebooks. This
parameter configuration achieved 73% at the top ranked silend/hich was signifi-
cantly better than the best MFCC result which achieved 67%g@won test for equal
mediansp-value =0.0078). This reflects about 18% smaller error (from 33% to 27%
error). SAl features also achieve better precision-atit@pnsistently for all values of
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k, although with lower relative precision improvement (Tap. It should be stressed
however that the parameters that we found (and the auditodeharchitecture in gen-
eral) are not guaranteed to be “optimal”, and it is possitée turther refinement could
further improve the retrieval precision. Also, the relbtipoor performance of MP
could be due to the fact that the dictiontionary we used maypemptimal for MP.

Importantly, although the best sparse codes use very higbrdiional vectors, the
actual data lives in a much lower dimensional subspace<if®ady, eventhough each
SAl is represented by a vector of length x 4000, only 49 values in this represen-
tation are non-zero. Since subsequent frames have sirhigaacteristics, the overall
representation of a sound file typically has only a few hudslief non zero values.

Table 2 shows three sample queries together with the toptSdesd documents
returned by the best SAI-based and MFCC-based trained sysi@uesments that were
labeled as relevant are marked with [R]. The three queriessiaere selected such that
both systems performed significantly differently on them shown in Fig. 8. While
being a very small sample of the data, it shows that both systeehave reasonably
well, most often returning good documents, or at least desusithat appear not-too-
far from the expected answer. For instance, the SAl-bassi@syreturns document
“water-dripping” for the query “gulp”, which, while being nong, is admittedly not
far from the mark. Similarly, the document “45-Crowd-Appdall is returned by the
MFCC-based system for query “applaus-audienc”, despitegingbdabeled as relevant
for that query.

The performance that we calculated was based on textuabtagsh are often noisy
and incomplete. In particular, people may use differemhgeto describe very similar
concepts. Also, the same sound may be described acrosedifespects. For instance
a music piece may be described by the playing instrumenaifgi) or the mood it
conveys (“soothing”) or the name of the piece. This mulidbproblem is common in
content based retrieval, being shared by image searchesdaor example.

Table 3 shows queries that consistently “confused” ouresysind caused retrieval
of sounds with a different label. For each pair of quetieandg, we measure confu-
sion, by counting the number of sound files that were rankekinvihe top# files for
queryq:, but not forg, even thoughy, was identical to their labels. For example, there
were 7 sound files that were labeledil laughbut were not ranked within the tap
documents for the quemvil laugh and at the same time ranked highly faugh

As can be seen from the table, the repeated “mistakes” ai@atiypdue to labeling
imprecision: when a sound labelkdighis retrieved for a quergvil laugh the system
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Query || SAlfile (labels) MFCC file (labels)
tarzan | Tarzan-2 (tarzan, yell) [R] TARZAN (tarzan, yell) [R]
tarzan2 (tarzan, yell) [R] 1750rgs (steam, whistl)
203 (tarzan) [R] mosquito-2 (mosquito)
wolf (mammal, wolves, wolf, ...) evil-witch-laugh (witch, laugh, evil)
morse (mors, code) Man-Screams (horror, scream, man
applaus| 27-Applause-from-audience [R] 26-Applause-from-audience [R]
audienc|| 30-Applause-from-audience [R] phaserl (trek, phaser, star)
golf50 (golf) fanfare2 (fanfar, trumpet)
firecracker 45-Crowd-Applause (crowd, applau
53-ApplauseLargeAudienceSFX [R]golf50
gulp tite-flamn (hit, drum, roll) GULPS (gulp, drink) [R]
water-dripping (water, drip) drink (gulp, drink) [R]
Monster-growling california-myotis-search (blip)
(horror, monster, growl)
Pouring (pour, soda) jaguar-1 (bigcat, jaguar, mammal,..|

n

Table 2: Top documents obtained for queries that performed very diffigrbetween the SAI

and MFCC feature based systems.

counts it as a mistake, even though this is likely to be a aglematch. In general we

find that confused queries are often semantically simildhéosound label, hence the

errors made by the ranking systems actually reflect the Fattthe sound files have

partial or inconsistent labeling. This demonstrates angtte of content-based sound

ranking: it can identify relevant sounds even if their tettabels are incomplete, wrong

or maybe even maliciously spammed.

query, label total number of errors (SAlI + MFCQC)
clock-tick  cuckoo| 8
door knock door |8
evil laugh laugh | 7
laugh witch laugh | 7
bell-bicycl  bell 7
bee-insect  insect| 7

Table 3: Error analysis. Queries that were repeatedly confusechédher query. All pairs of

true-label and confused labels with total count above seven are listed.
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Fig. 8 summarizes the performance of the SAl and MFCC systeithsr@spect to
their average precision on the set of all test queries. Taplgshows queries either by
their label or a “plus” sign (showing all queries would haesulted in a very difficult
figure to read), positioned according to the performanceoheystem with respect to
that query, over the test set. As can be seen, there are menesjabove the separating
line than below, which means that overall the SAl-basedsystielded a better average
precision than the MFCC-based system.

Comparing Average Precisions Between SAlI and MFCC Feature-Based Systems
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Figure 8: Comparison of average precisions between SAl and MFC&ll®stems. Each
‘plus’ sign or label corresponds to a single query, which coordinate@ges the test average
precisions for both systems. Queries are stemmed and spaces haveflaead by under-
scores. More queries appear abovejgthe z line, showing that the SAI based system obtained
a high mean average precision.

6 Conclusion

We described a content-based sound ranking system thabuegically inspired au-
ditory features and successfully learns a matching betweenstics and known text
labels.
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We have previously shown that the PAMIR learning algorithpplied over a sparse
representation of sounds (Chechik et al., 2008) is an effii@amework for large-scale
retrieval and ranking of media documents from text queriésre we used PAMIR to
study systematically many alternative sparse-featunesgmtations (“front ends”).

Our findings support the hypothesis a front end that mimigsrsé aspects of the
human auditory system provides an effective representédianachine hearing. These
aspects include a realistic nonlinear adaptive filterbamkaastage that exploits tempo-
ral fine structure at the filterbank output (modeling the ¢eahnerve) via the concept
of the stabilized auditory image. Importantly however, ghalitory model described
in this paper may not be always optimal, and future work orrattarizing the opti-
mal parameters and architecture of auditory models is ¢ggddo further improve the
precision, depending on the task at hand.

One approach to feature construction would have been to atigraonstruct fea-
tures that are expected to discriminate well between speddisses of sounds. For
instance, periodicity could be a good discriminator betwegnd in the trees and a
howling wolf. However, as number of classes grows, suchfebdesign of discrimina-
tive features may become infeasible. Here we take an ogpasiiroach, assuming that
perceptual differences rely on lower level cochlear feaxtraction, we use models
inspired by cochlear processing to obtain a very high dinogré representation, and
let the learning algorithm identify the features that areshaiscriminative.

The auditory model representation we use do not take intouatdong-term tem-
poral relationships, by analogy with the “bag of words” aggarth common in text doc-
ument retrieval. The SAIl features capture a short windownaét up to about 50 msec
for the biggest box features, which is comparable to but keb# than that captured by
MFCC with double deltas. Longer correlations are likely todtso useful for sound
retrieval and it remains an interesting research diredtostudy how they should be
estimated and used.

The auditory models that we used to represent sounds involugple nonlinear
complex components. This could be one reason why the feagi@eerated using this
system are more discriminative than standard MFCC features test database of
sounds. However, it is hard to assess what aspects of owsaests are better repre-
sented by the features from the auditory model.

One difference between SAl and MFCC representations is thigti®tain fine tim-
ing information, while MFCC preserves fine spectral strugtat least when the number
of coefficients is large. However, the two representatidffisrdy numerous other prop-
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erties, including the cepstral transform, and the AGC. Faurgtudy will be needed to
gain more specific insights into exactly what propertiedhefdifferent auditory models
and sparse feature extraction schemes are the key to gdodmpance.

Since our system currently uses only features from shortovirs, we envision
future work to incorporate more dynamics of the sound ovegés times, either as a
bag-of-patternaising patterns that represent more temporal context, ougfir other
methods. We also envision future work to test our hypothésis in our retrieval task,
the system using local SAI patterns will be more robust terfiering sounds than a
system using more traditional spectral features such as MFCC.
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A Automatic gain control in PZFC

The damping of the pole pair in each stage is varied to mot#ypeak gain (and to a
lesser extent the bandwidth) of that stage, down to aboutB:ITtis system of gain
and bandwidth modification by manipulation of pole dampit@sQ values) is a re-
finement of that described in (Lyon & Mead, 1988; Slaney & Lyd893), which used
an all-pole filter cascade, and in (Lyon, 1998), which introed the two-pole—two-zero
stage, which we now call the PZFC. The poles are modified dycaliniby feedback
from a spatial/temporal loop filter, or smoothing netwohereby making aautomatic
gain control(AGC) system. The smoothing network takes the half-wavefredtout-
put of all channels, applies smoothing both in the time ardhigar place dimensions,
and uses both global and local averages of the filterbanknsso proportionately in-
crease the pole damping of each stage. This coupled AGC bingatetwork descends
from one first described in (Lyon, 1982) (in that work, thepdtter directly controlled
a post-filterbank gain rather than a pole damping as in theeptewvork). The PZFC
filterbank architecture can be seen as intermediate bettieeall-pole filter cascade
(Slaney & Lyon, 1993) on one hand and cascade-parallel raamtelthe other hand.
The compression exhibited by the PZFC includes both a @steaAGC part, similar
to that of the “dynamic compressive gammachirp” (Irino &teton, 2006) and an in-
stantaneous part, from an odd-order nonlinearity simdahat in the “dual-resonance,
nonlinear” (DRNL) model (Lopez-Poveda & Meddis, 2001).

The complex transfer function of one stage of the filter cdsds a rational function
of the Laplace transform variabieof second order in both numerator and denominator,
corresponding to a pair of zeros (roots of the numerator)aapdir of poles (roots of
the denominator):

Sl 20/ w. + 1

H(s) = 82w + 20,8 /w, + 1 ©)

wherew, andw, are the natural frequencies, agdand(, are the damping ratios, of
the poles and zeros, respectively. The natural frequergonstants, decreasing
from each stage to the next, along a cochlear frequencye-pieap, or ERB-rate scale
(Glasberg & Moore, 1990); for the present experiments, ahetagev, is fixed at
1.4w,, and thew, decreases by one-third of the ERB at each stage. The filters are
implemented as discrete-time approximations at 22050 Hpkarate () by mapping

the poles and zeros to theplane using: = e¥/ as is conventional in the simple
“pole—zero mapping” or “pole—zero matching” method of thgjfilter design.
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Two parameters of the PZF@dampandZdamp are of special interest since they
determine the shape of the filter’s transfer function byisgthe damping ratios, and
(.. TheZdampparameter directly sets the zero damping

(., = Zdamp (7)
while the pole damping varies dynamically as
G = (1+ AGC)Pdamp (8)

where AGC' is an automatic-gain-control feedback term proportionghe smoothed
half-wave rectified filterbank output. In other versions loé tmodel (not tried in the
present work).. may also vary with the AGC feedback.

Fig. 11(A) shows the effect of the varyingGC' term on the filter gain magnitude
of a single filter stage, in the baseline casé’dfvmp = 0.12 andZdamp = 0.2.

In the complexs plane of Fig. 11(B), the damping rat{ois defined as the distance
of the poles or zeros from the imaginasyaxis, relative to their distance from the
origin. The(,, and therefore thedampparameter, affects mainly the width and peak
gain of the filter, with lower damping values giving narrovasrd higher-gain filters.
The Zdampparameter sets the damping of the zeros and affects the dyynafi¢he
filter, with lower values giving steeper high-side cutoff.

Fig. 11(C) shows the effect of these two parameters on theestigihe filter cas-
cade’s gain magnitude. The apparent large variation in geakis partially compen-
sated by the AGC action that adjusts pole damping and cosgsebe output level
variation.
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Figure 9. Adaptation of the overall filterbank response at each outpufltae plot on the left
shows the initial response of the filterbank before adaptation. The pltiteoright shows the
response after adaptation to a human /a/ vowel of 0.6 sec duration. Tiseshlaw that the
adaptation affects the peak gains (the upper envelope of the filter airges), while the tails,
behaving linearly, remain fixed.

Fig. 9 show the transfer function gain of the all the outpdtthe filter cascade, in
the case of silence and as adapted to a vowel sound at mobeite
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Figure 10: Impulse response of the smoothing network used as the AG@lteopf the PZFC.

An impulse in one channel spreads out into adjacent channels and digoaer time. There
are four such filters in parallel in the AGC, each with a different decaystamt; the slower
ones have more spatial spread before the signal decays. The filpeataia, controlled by pole
damping, in a channel of the PZFC is based on a weighted sum of the acfidtiesach of the
four smoothing filters at that channel.

Fig. 10 shows the impulse response in time and space of thetemg filter in the
automatic-gain-control loop that averages the half-waeifted outputs of the filter-
bank to produce thelGC signal that controls the pole damping in each channel. The
multiple channels of these feedback filters are coupledutitrtahe space dimension
(cochlear place axis), such that each channel's dampinffasted by the output of
other nearby channels.

All the filterbank parameters were chosen to obtain a filtekblaehavior that is
roughly similar to that of the human cochlea, but parameten® not directly learned
from data. The filter bandwidths and shapes are close to tifdke asymmetric “gam-
machirp” filters that have been fitted to human data on detecif tones in notched-
noise maskers (Unoki et al., 2006). The detailed values| gfammeters are provided
with the accompanying code that we make available onlih&pt//www.acousticscale.org/link/AIM-
PZFC.

B Strobed temporal Integration

To choose strobe points, the signal in each channel is metipoint-wise by a win-
dowing function, a parabola of 40ms width. The maximum pamnthe windowed
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Figure 11:(A) Frequency response of a single PZFC stage as the pole damping anpestkige
gain change in response to sound level via the AGC feedback changimmplin damping; the
peak gain changes by only a few dB) The pole and zero positioning for a single stage of the
PZFC, in the complex plane; crosses show starting positions of the poles at low signal levels;
circles show the fixed positions of the zeros. The poles move dynamicallg #hendotted
paths (on circles of constant natural frequency) as Qeir damping parameters are changed,
thereby varying the filter peak gain. The low-frequency tail gain remaxesl fipassing lower
frequencies transparently to later stages. The pole and zero positions bly heavy black
symbols represent a default model that we study in the experiments beddibaseline model”.
The lighter color circles represent alternatives to that default, obtaipegying thePdamp
andZdampparameters. The ratio between the natural frequency (distance froomigire) of

the zeros and that of the poles is fixed at 1.4, putting the dip in the respbostaahalf octave
above the peak frequenc{C) The magnitude transfer function, in the small-signal limit, of
one channel (the output after a cascade of 60 stages in this example BEZEFC cochlear
filterbank, with center frequency near 1 kHz, for several valuéddaimpandZdamp The solid
red—orange curves show variationRidampthrough values 0.06 (highest curve), 0.12, and 0.24.
The dashed blue—green curves show variatioAdzmp for values 0.01 (lowest dashed curve),
0.1, 0.2 and 0.3. The dashed and solid curves coincide for the baselareqiars.

signal is the strobe point. The window is then shifted by 4md thhe process is re-
peated. Thus, there is guaranteed to be an average of obe gt every 4ms, or
five per 20ms frame; it is possible for multiple strobes tourcat one point in the
signal, since the windows overlap. Each SAI channel is tlaoutated as the cross-
correlation between the original signal and a signal corepad delta-functions at the
identified strobe points. This cross-correlation is accishpd efficiently by simply
sliding a piece of the waveform for each channel to move tlabstpoint to the center,
and adding up the five copies for the five strobe points in tamé&. The SAI has its
zero-lag line at the center of the time-interval axis andustated at plus and minus
+26.6ms. A value in this region is a common choice for the maxmof the SAI lag
axis, as it corresponds approximately to the lower frequdintit (maximum period)
of human pitch perception.

The processes of STI and autocorrelation both produce agertiat is strongly
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influenced by the pitch of the sound. The percept of pitch terdeined by the repeti-
tion rate of a sound waveform, (the pulse rate in a pulsenaste sound) with faster
repetition rates corresponding to higher pitches. STIgastrong peak in the output
function at a lag corresponding to the repetition interyahe waveform (since the sig-
nal is well-correlated with itself at this point). The SAlegpected to be stable when a
sound is perceived as stable by a human listener. Soundsineéibetition rate of above
about 60Hz are perceived as stable tones, with pitch carnelipg to the repetition rate.
As this rate is reduced, the pitch percept gradually disaggpend the individual cycles
of the input signal begin to separate out. The lower limitibéhpperception is around
30Hz (Krumbholz et al., 2000). With a lag dimension extegdm26.6ms, sounds with
a repetition rate of above about 38Hz will lead to a stabléicarridge in the image,
thus providing an a good approximation to the limits of hurparception.

C Details of rectangle selection

To represent each SAI using a sparse code, we first definedad leetal rectangular
patches, that covered the SAI. These Rectangles are useentifycpatterns that are
local to some part of the SAI, and they have different sizesder to capture informa-
tion at multiple scales. This approach is modeled on metkiwatshave been used for
image retrieval, involving various kinds of multi-scaleeéd patterns as image feature
vectors.

We have experimented with several schemes for selectirad tectangles, and the
specific method that we used is based on defining a seriestahgges whose sizes are
repeatedly doubled. For instance, we defined baselinenglesof sizel6 x 32, then
multiplied each dimension by powers of two, up to the largézt that fits in an SAl
frame.

In one group of experiments we varied the details of the hdkng step. In our
baseline we use rectangles of sifex 32 and larger, each dimension being multiplied
by powers of two, up to the largest size that fits in an SAl fraM& varied the base
size of the rectangle, starting from the siZes 16 and32 x 64. We also restricted the
number of sizes, by limiting the doublings of each dimensidhis restriction serves
to exclude the global features that are taken across a lagepthe auditory image
frame. In a separate series of experiments we instead o a rectangle size
equal to the dimensions of the SAI frame, working downwaryglsdpeatedly cutting
the horizontal and vertical dimensions in half. This setledes features that are very

29



A. Boxes tiled vertically B. Box height doubled
10r overlapping by half height 1 10r repeatedly until box
height is more than half
5 20 5 20} SAlheight ‘
€ 30l Il I I | = i Ut Il Il
S 9V \ \ I ‘ E 30 ‘ I ‘
g |l i Il i it 2 ‘ \\ 1\‘ I i
T 40§ ‘ ‘ 1 @ 40 ‘
% 50 | \ | | | % 50 | i | i
< 1 <
0 0 L 1 L h}\x I L
g oo L |
< ! = ]
S 70f ] 8 70f
O O
80 80
90 90r
=20 -10 0 10 20 -20 -10 0 10 20
Lag (ms) Lag (ms)
L
C. Box width doubled D. Smallest box (black ::
10t repeatedly. When box ] 10t dashed) and largest box l:
width exceeds half image (gray dashed) used in the :.
= 20} width, left edge is il = 20+ baseline experiment " il
L shifted l(“il’ fit box i |‘ma ge. lH | g “ f li || I |
€ 30l ‘u ‘ i £ 30|l il ‘ l_ l I
2l \\ % !‘)“ | 2 7 \\ = i = =l - T =
E 40 ‘ 1 g 40 | 3
e | N | VDO VI £ . |
S50 r 3 s 50
|| R \ / [ g \\ . 111
g 60 . 1 g 60
= . ' = !
8 70r 1 1 8 70f
O ! O
80  t--mm-m----- u - 80|
90 ] 9
-20 -10 0 10 20 -20 -10 0 10 20
Lag (ms) Lag (ms)

Figure 12: Defining a set of local rectangle regions. Rectangles asento have different
sizes, to capture multi-scale patterns. See appendix A. In the defaultgsameters we used,
the smallest rectangle is 16 samples in the lag dimension and 32 channels Higfie targest

is 1024 samples by 64 channels.

local in the auditory image. While the codebook sizes renthfineed at 256, the total
number of feature dimensions varied, proportional to thenlmer of boxes used, and
performance within each series was found to be monotonia thi¢ total number of
feature dimensions. The complete set of experimental peteasiare shown in Table 4.

Given the set of rectangles, we create dense features fromreatangle. The
image inside the rectangle is down sampled to the size ofrtfalest box (16x 32
with the default parameters). The effect of this rescalm¢hat large rectangles are
viewed at a coarser resolution. To further reduce the dimeabty of the data we
compute the horizontal and vertical marginals (the avevaiges for each column and
row in the rectangle), and concatenate the two vectors isiogle real-valued vector
per rectangle. In the default case, this approach leavésta32 = 48 element dense
feature vector for each rectangle.
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This multi-scale feature-extraction approach is a way thuce the very high di-
mensional SAI space to set of lower-dimensionality localdees at different scales,
as a step toward making sparse features. Different box aizéshapes capture both
the large-scale image structure, corresponding to pitchtamporal coherence, and
the microstructure corresponding to the resonances foltpwach pulse. Wide boxes
capture long-term temporal patterns; a smaller height esdhrestricts the temporal
pattern features to a localized frequency region and ceptiocal spectral shape. Tall
boxes capture overall spectral shape; smaller widths aetimelude different scales of
temporal pattern with the spectral pattern. Intermediatessand shapes capture a vari-
ety of localized features, such that even when multiple dewame present, some of the
features corresponding to regions of the SAlI dominated lgysmund or the other will
often still show a recognizable pattern. The use of the matgiof each box reduces the
dimensionality into the following sparse-code extractstep, while preserving much
of the important information about spectral and temponaicstire; even with this re-
duction, the dimensionality into the sparse code extradsohnigh, for example 48 with
the default parameters.

D Summary of Experiments

Table 4: Parameters used for the SAIl experiments

Parameter Smallest| Total Means VQ | Box
Set Box Boxes Per Box MP | Cutting
Default “baseline”| 32x16 | 49 256 VQ | Up
Codebook Sizes | 32x16 | 49 4,16, 64, 256, VQ | Up

512, 1024, 2048,
3000, 4000 6000 8000

Matching Pursuit | 32x16 | 49 4,16, 64, 256, MP | Up
1024, 2048, 3000
Box Sizes (Down) 16x8 1,8, 33, 44, 66 256 VQ | Down

32x16 | 8,12, 20,24
64x32 |1,2,3,4,5,6

Box Sizes (Up) | 16x8 | 32, 54, 72, 90, 108 256 VQ [ Up
32x16 | 5, 14, 28, 35, 42
64x32 |2, 4,6,10,12
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