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Abstract

Modeling music involves capturing long-term dependencies in time series, which
has proved very difficult to achieve with traditional statistical methods. The same
problem occurs when only considering rhythms. In this paper, we introduce a
generative model for rhythms based on the distributions of distances between sub-
sequences. A specific implementation of the model when considering Hamming
distances over a simple rhythm representation is described. The proposed model
consistently outperforms a standard Hidden Markov Model in terms of conditional
prediction accuracy on two different music databases.

1 Introduction

Generative models for music would be useful in a broad range of applications, from contextual mu-
sic generation to on-line music recommendation and retrieval. However, modeling music involves
capturing long-term dependencies in time series, which has proved very difficult to achieve with
traditional statistical methods. Note that the problem of long-term dependencies is not limited to
music, nor to one particular probabilistic model [1].

Music is characterized by strong hierarchical dependencies determined in large part by meter, the
sense of strong and weak beats that arises from the interaction among hierarchical levels of se-
quences having nested periodic components. Such a hierarchy is implied in western music notation,
where different levels are indicated by kinds of notes (whole notes, half notes, quarter notes, etc.)
and where bars establish measures of an equal number of beats. Meter and rhythm provide a frame-
work for developing musical melody. For example, a long melody is often composed by repeating
with variation shorter sequences that fit into the metrical hierarchy (e.g. sequences of 4, 8 or 16
measures). It is well know in music theory that distance patterns are more important than the actual
choice of notes in order to create coherent music [2]. In this work, distance patterns refer to dis-
tances between subsequences of equal lenght in particular positions. For instance, measure 1 maybe
always similar to measure 5 in a particular musical genre. In fact, even random music can sound
structured and melodic if it is built by repeating and varying random subsequences.

In this paper, we focus on modeling rhythmic sequences, ignoring for the moment other aspects of
music such as pitch, timbre and dynamics. However, by capturing aspects of global temporal struc-
ture in music, this model should be valuable for full melodic prediction and generation: combined
with an audio transcription algorithm, it should help improve the poor performance of state-of-the-
art transcription systems; it could as well be included in genre classifiers or automatic composition
systems [3]; used to generate rhythms, the model could act as a drum machine or automatic accom-
paniment system which learns by example.
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Our main contribution is to propose a generative model for distance patterns, specifically designed
for capturing long-term dependencies in rhythms. In Section 2, we describe the model, detail its
implementation and present an algorithm using this model for rhythm prediction. The algorithm
solves a constrained optimization problem, where the distance model is used to filter out rhythms that
do not comply with the inferred structure. The proposed model is evaluated in terms of conditional
prediction error on two distinct databases in Section 3 and a discussion follows.

2 Distance Model

In this Section, we present a generative model for distance patterns and its application to rhythm
sequences. Such a model is appropriate for most music data, where distances between subsequences
of data exhibit strong regularities.

2.1 Motivation

Let xl = (xl
1, . . . , x

l
m) ∈ Rm be the l-th rhythm sequence in a dataset X = {x1, . . . ,xn} where

all the sequences contain m elements. Suppose that we construct a partition of this sequence by
dividing it into ρ parts defined by yl

i = (xl
1+(i−1)m/ρ, . . . , x

l
im/ρ) with i ∈ {1, . . . , ρ}. We are

interested in modeling the distances between these subsequences, given a suitable metric d(yi, yj) :
Rm/ρ × Rm/ρ → R. As was pointed out in Section 1, the distribution of d(yi, yj) for each specific
choice of i and j may be more important when modeling rhythms (and music in general) than the
actual choice of subsequences yi.

Hidden Markov Models (HMM) [4] are commonly used to model temporal data. In principle,
HMMs are able to capture complex regularities in patterns between subsequences of data, provided
their number of hidden states is large enough. However, when dealing with music, such a model
would lead to a learning process requiring a prohibitive amount of data: in order to learn long range
interactions, the training set should be representative of the joint distribution of subsequences. To
overcome this problem, we summarize the joint distribution of subsequences by the distribution of
distances between these subsequences. This summary is clearly not a sufficient statistics for the
distribution of subsequences, but its distribution can be learned from a limited number of examples.
The resulting model, which generates distances, is then used to recover subsequences.

2.2 Decomposition of Distances

Let D(xl) = (dl
i,j)ρ×ρ be the distance matrix associated with each sequence xl, where dl

i,j =
d(yl

i, y
l
j). Since D(xl) is symmetric and contains only zeros on the diagonal, it is completely char-

acterized by the upper triangular matrix of distances without the diagonal. Hence,

p(D(xl)) =
ρ−1∏
i=1

ρ∏
j=i+1

p(dl
i,j |{dl

r,s : (1 < s < j and 1 ≤ r < s) or (s = j and 1 ≤ r < i)}) . (1)

In words, we order the elements column-wise and do a standard factorization, where each random
variable depends on the previous elements in the ordering. Hence, we do not assume any conditional
independence between the distances.

Since d(yi, yj) is a metric, we have that d(yi, yj) ≤ d(yi, yk)+d(yk, yj) for all i, j, k ∈ {1, . . . , ρ}.
This inequality is usually referred to as the triangle inequality. Defining

αl
i,j = min

k∈{1,...,(i−1)}
(dl

k,j + dl
i,k) and

βl
i,j = max

k∈{1,...,(i−1)}
(|dl

k,j − dl
i,k|) ,

(2)

we know that given previously observed (or sampled) distances, constraints imposed by the triangle
inequality on dl

i,j are simply
βl

i,j ≤ dl
i,j ≤ αl

i,j . (3)
One may observe that the boundaries given in Eq. (2) contain a subset of the distances that are on
the conditioning side of each factor in Eq. (1) for each indexes i and j. Thus, constraints imposed by
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Figure 1: Each circle represents the random variable associated with the corresponding factor in
Eq. (1), when ρ = 4. For instance, the conditional distribution for dl

2,4 possibly depends on the
variables associated to the grey circles.

the triangle inequality can be taken into account when modeling each factor of p(D(xl)): each dl
i,j

must lie in the interval imposed by previously observed/sampled distances given in Eq. (3). Figure 1
shows an example where ρ = 4. Using Eq. (1), the distribution of dl

2,4 would be conditioned on
dl
1,2, dl

1,3, dl
2,3, and dl

1,4, and Eq. (3) reads |dl
1,2−dl

1,4| ≤ dl
2,4 ≤ dl

1,2 +dl
1,4. Then, if subsequences

yl
1 and yl

2 are close and yl
1 and yl

4 are also close, we know that yl
2 and yl

4 cannot be far. Conversely,
if subsequences yl

1 and yl
2 are far and yl

1 and yl
4 are close, we know that yl

2 and yl
4 cannot be close.

2.3 Modeling Relative Distances Between Rhythms

We want to model rhythms in a music dataset X consisting of melodies of the same musical genre.
We first quantize the database by dividing each song in m time steps and associate each note to
the nearest time step, such that all melodies have the same length m1. It is then possible to repre-
sent rhythms by sequences containing potentially three different symbols: 1) Note onset, 2) Note
continuation, and 3) Silence. When using quantization, there is a one to one mapping between this
representation and the set of all possible rhythms. Using this representation, symbol 2 can never
follow symbol 3. Let A = {1, 2, 3}; in the remaining of this paper, we assume that xl ∈ Am for all
xl ∈ X .

When using this representation, dl
i,j can simply be chosen to be the Hamming distance (i.e. counting

the number of positions on which corresponding symbols are different.) One could think of using
more general edit distance such as the Levenshtein distance. However, this approach would not
make sense psycho-acoustically: doing an insertion or a deletion in a rhythm produces a translation
that alters dramatically the nature of the sequence. Putting it another way, rhythm perception heavily
depends on the position on which rhythmic events occur. In the remainder of this paper, we assume
that dl

i,j is the Hamming distance between subsequences yi and yj .

We now have to encode our belief that melodies of the same musical genre have a common distance
structure. For instance, drum beats in rock music can be very repetitive, except in the endings of
every four measures, without regard to the actual beats being played. This should be accounted in
the distributions of the corresponding dl

i,j . With Hamming distances, the conditional distributions
of dl

i,j in Eq. (1) should be modeled by discrete distributions, whose range of possible values must
obey Eq. (3). Hence, we assume that the random variables (dl

i,j − βl
i,j)/(αl

i,j − βl
i,j) should be

identically distributed for l = 1, . . . , n. Empirical inspection of data supports this assumption. As
an example, suppose that measures 1 and 4 always tend to be far away, that measures 1 and 3 are
close, and that measures 3 and 4 are close; Triangle inequality states that 1 and 4 should be close in
this case, but the desired model would still favor a solution with the greatest distance possible within
the constrains imposed by triangle inequalities.

All these requirements are fulfilled if we model di,j − βi,j by a binomial distribution of parameters
(αi,j − βi,j , pi,j), where pi,j is the probability that two symbols of subsequences yi and yj differ.

1This hypothesis is not fundamental in the proposed model and could easily be avoided if one would have
to deal with more general datasets.
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With this choice, the conditional probability of getting di,j = βi,j + δ would be

B(δ, αi,j , βi,j , pi,j) =
(

αi,j − βi,j

δ

)
(pi,j)δ(1− pi,j)(αi,j−βi,j−δ) , (4)

with 0 ≤ pi,j ≤ 1. If pi,j is close to zero/one, the relative distance between subsequences yi and yj

is small/large. However, the binomial distribution is not flexible enough since there is no indication
that the distribution of di,j − βi,j is unimodal. We thus model each di,j − βi,j with a binomial
mixture distribution in order to allow multiple modes. We thus use

p(di,j = βi,j + δ|{dr,s : (1 < s < j and 1 ≤ r < s) or (s = j and 1 ≤ r < i)}) =
c∑

k=1

w
(k)
i,j B(δ, αi,j , βi,j , p

(k)
i,j ) (5)

with w
(k)
i,j ≥ 0 and

∑c
k=1 w

(k)
i,j = 1 for every indexes i and j. Parameters

θi,j = {w(1)
i,j , . . . , w

(c−1)
i,j } ∪ {p(1)

i,j , . . . , p
(c)
i,j }

can be learned with the EM algorithm [5] on rhythm data in a specific music style. We choose
w

(c)
i,j = 1−

∑c−1
k=1 w

(k)
i,j so that the weights sum to unity.

In words, we model the difference between the observed distance dl
i,j between two subsequences

and the minimum possible value βi,j for such a difference by a binomial mixture.

The parameters θi,j can be initialized to arbitrary values before applying the EM algorithm. How-
ever, as the likelihood of mixture models is not a convex function, one may get better models and
speed up the learning process by choosing sensible values for the initial parameters. In the exper-
iments reported in Section 3, the k-means algorithm for clustering [6] was used. More precisely,
k-means was used to partition the values (dl

i,j − βl
i,j)/(αl

i,j − βl
i,j) into c clusters corresponding to

each component of the mixture in Eq. (5). Let {µ(1)
i,j , . . . , µ

(c)
i,j } be the centroids and {n(1)

i,j , . . . , n
(c)
i,j }

the number of elements in each of these clusters. We initialize the parameters θi,j with

w
(k)
i,j =

n
(k)
i,j

n
and p

(k)
i,j = µ

(k)
i,j .

We then follow a standard approach [7] to apply the EM algorithm to the binomial mixture in Eq. (5).
Let zl

i,j ∈ {1, . . . , c} be a hidden variable telling which component density generated dl
i,j . For every

iteration of the EM algorithm, we first compute

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j) =

ŵ
(k)
i,j B(dl

i,j , α
l
i,j , β

l
i,j , p

(k))∑c
t=1 ŵ

(t)
i,j B(dl

i,j , α
l
i,j , β

l
i,j , p

(t))

where θ̂i,j are the parameters estimated in the previous iteration, or the parameters guessed with
k-means on the first iteration of EM. Then, the parameters can be updated with

p
(k)
i,j =

∑n
l=1(d

l
i,j − βl

i,j)p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)∑n

l=1(α
l
i,j − βl

i,j)p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)

and

w
(k)
i,j =

1
n

n∑
l=1

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j).

This process is repeated until convergence.

As stated in Section 1, musical patterns form hierarchical structures closely related to meter [2].
Thus, the distribution of p(D(xl)) can be computed for many numbers of partitions within each
rhythmic sequence. Let P = {ρ1, . . . ρh} be a set of numbers of partitions to be considered by our
model, where h is the number of such numbers of partitions. The choice ofP depends on the domain
of application. Following meter, P may have dyadic2 tree-like structure when modeling music (e.g.

2Even when considering non-dyadic measures (e.g. a three-beat waltz), the very large majority of the
hierarchical levels in metric structures follow dyadic patterns [2] in most tonal music.
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Figure 2: Hidden Markov Model. Each node is associated to a random variable and arrows denote
conditional dependencies. During training of the model, white nodes are hidden while grey nodes
are observed.

P = {2, 4, 8, 16}). Let Dρr (x
l) be the distance matrix associated with sequence xl divided into ρr

parts. Estimating the joint probability
∏h

r=1 p(Dρr (x
l)) with the EM algorithm as described in this

section leads to a model of the distance structures in music datasets. Suppose we consider 16 bars
songs with four beats per bar. Using P = {8, 16} would mean that we consider pairs of distances
between every group of two measures (ρ = 8), and every single measures (ρ = 16).

One may argue that our proposed model for long-term dependencies is rather unorthodox. However,
simpler models like Poisson or Bernoulli process (we are working in discrete time) defined over
the whole sequence would not be flexible enough to represent the particular long-term structures in
music.

2.4 Conditional Prediction

For most music applications, it would be particularly helpful to know which sequence x̂s, . . . , x̂m

maximizes p(x̂s, . . . , x̂m|x1, . . . , xs−1). Knowing which musical events are the most likely given
the past s − 1 observations would be useful both for prediction and generation. Note that in the
remaining of the paper, we refer to prediction of musical events given past observations only for
notational simplicity. The distance model presented in this paper could be used to predict any part
of a music sequence given any other part with only minor modifications.

While the described modeling approach captures long range interactions in the music signal, it has
two shortcomings. First, it does not model local dependencies: it does not predict how the distances
in the smallest subsequences (i.e. with length smaller than m/ max(P)) are distributed on the events
contained in these subsequences. Second, as the mapping from sequences to distances is many to
one, there exists several admissible sequences xl for a given set of distances. These limitations are
addressed by using another sequence learner designed to capture short-term dependencies between
musical events. Here, we use a standard Hidden Markov Model (HMM) [4] displayed in Figure 2,
following standard graphical model formalism. Each node is associated to a random variable and
arrows denote conditional dependencies. Learning the parameters of the HMM can be done as usual
with the EM algorithm.

The two models are trained separately using their respective version of the EM algorithm. For
predicting the continuation of new sequences, they are combined by choosing the sequence that is
most likely according to the local HMM model, provided it is also plausible regarding the model of
long-term dependencies. Let pHMM(xl) be the probability of observing sequence xl estimated by
the HMM after training. The final predicted sequence is the solution of the following optimization
problem: 

max
x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1)

subject to
h∏

r=1

p(Dρr (x
l)) ≥ P0 ,

(6)

where P0 is a threshold. In practice, one solves a Lagrangian formulation of problem (6), where we
use log-probabilities for obvious computational reasons:

max
x̃s,...,x̃m

log pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1) + λ

h∑
r=1

log p(Dρr (x
l)) , (7)

where tuning λ has the same effect as choosing a threshold P0 in Eq. (6) and can be done by
cross-validation.
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1. Initialize x̂s, . . . , x̂m using Eq. (8);
2. Set j = s and set end = true;
3. Set x̂j = arg max

a∈A
log pHMM(x̂s, . . . , x̂j−1, a, x̂j+1, . . . , x̂m|x1, . . . , xs−1) +
λ

∑h
r=1 log p(Dρr (x

∗))
where x∗ = (x1, . . . , xs−1, x̂s, . . . , x̂j−1, a, x̂j+1, . . . , x̂m).

4. If x̂j has been modified in the last step, set end = false.
5. If j = m and end = false, go to 2;
6. If j < m, set j = j + 1 and go to 3;
7. Return x̂s, . . . , x̂m.

Figure 3: Simple optimization algorithm to maximize p(x̂i, . . . , x̂m|x1, . . . , xi−1)

Multidimensional Scaling (MDS) is an algorithm that tries to embed points (here “local” subse-
quences) into a potentially lower dimensional space while trying to be faithful to the pairwise affini-
ties given by a “global” distance matrix. Here, we propose to consider the prediction problem as
finding sequences that maximize the likelihood of a “local” model of subsequences under the con-
straints imposed by a “global” generative model of distances between subsequences. In other words,
solving problem (6) is similar to finding points between which distances are as close as possible to a
given set of distances (i.e. minimizing a stress function in MDS). Naively trying all possible subse-
quences to maximize (7) leads to O(|A|(m−s+1)) computations. Instead, we propose to search the
space of sequences using a variant of the Greedy Max Cut (GMC) method [8] that has proven to be
optimal in terms of running time and performance for binary MDS optimization.

The subsequence x̂s, . . . , x̂m can be simply initialized with

(x̂s, . . . , x̂m) = max
x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1) (8)

using the local HMM model. The complete optimization algorithm is described in Figure 3. For each
position, we try every admissible symbol of the alphabet and test if a change increases the probability
of the sequence. We stop when no further change can increase the value of the utility function.
Obviously, many other methods could have been used to search the space of possible sequences
x̂s, . . . , x̂m, such as simulated annealing [9]. We chose the algorithm described in Figure 3 for its
simplicity and the fact that it yields excellent results, as reported in the following section.

3 Experiments

Two rhythm databases from different musical genres were used to evaluate the proposed model.
Firstly, 47 jazz standards melodies [10] were interpreted and recorded by the first author in MIDI
format. Appropriate rhythmic representations as described in Section 2.3 have been extracted from
these files. The complexity of the rhythm sequences found in this corpus is representative of the
complexity of common jazz and pop music. We used the last 16 bars of each song to train the
models, with four beats per bar. Two rhythmic observations were made for each beat, yielding
observed sequences of length 128. We also used a subset of the Nottingham database 3 consisting
of 53 traditional British folk dance tunes called “hornpipes”. In this case, we used the first 16 bars
of each song to train the models, with four beats per bar. Three rhythmic observations were made
for each beat, yielding observed sequences of length 192. The sequences from this second database
contain no silence (i.e. rests), leading to sequences with binary states.

The goal of the proposed model is to predict or generate rhythms given previously observed rhythm
patterns. As pointed out in Section 1, such a model could be particularly useful for music infor-
mation retrieval, transcription, or music generation applications. Let εt

i = 1 if x̂t
i = xt

i, and 0
otherwise, with xt = (xt

1, . . . , x
t
m) a test sequence, and x̂t

i the output of the evaluated prediction
model on the i-th position when given (xt

1, . . . , x
t
s) with s < i. Assume that the dataset is divided

into K folds T1, . . . , TK (each containing different sequences), and that the k-th fold Tk contains

3http://www.cs.nott.ac.uk/˜ef/music/database.htm.
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Table 1: Accuracy (the higher the better) for best models on two different database: jazz standards
on the left, and hornpipes on the right.

Jazz Standards
Observed Predicted HMM Global
32 96 34.53% 54.61%
64 64 34.47% 55.55%
96 32 41.56% 47.21%

Hornpipes
Observed Predicted HMM Global
48 144 75.07% 83.02%
96 96 75.59% 82.11%
144 48 76.57% 80.07%

nk test sequences. When using cross-validation, the accuracy Acc of an evaluated model is given by

Acc =
1
K

K∑
k=1

1
nk

∑
t∈Tk

1
m− s

m∑
i=s+1

εt
i . (9)

Note that, while the prediction accuracy is simple to estimate and to interpret, other performance
criteria, such as ratings provided by a panel of experts, should be more appropriate to evaluate the
relevance of music models. We plan to define such an evaluation protocol in future work. We used
5-fold double cross-validation to estimate the accuracies. Double cross-validation is a recursive
application of cross-validation that enables to jointly optimize the hyper-parameters of the model
and evaluate its generalization performance. Standard cross-validation is applied to each subset of
K − 1 folds with each hyper-parameter setting and tested with the best estimated setting on the
remaining hold-out fold. The reported accuracies are the averages of the results of each of the K
applications of simple cross-validation during this process.

For the baseline HMM model, double cross-validation optimizes the number of possible states for
the hidden variables; for the model with distance constraints, referred to as the global model, the
hyper-parameters that were optimized are the number of possible states for hidden variables in the
local HMM model, the Lagrange multiplier λ, the number of components c (common to all dis-
tances) for each binomial mixture , and the choice of P , i.e. which partitions of the sequences to
consider. Since music data commonly shows strong dyadic structure following meter, many subsets
of P = {2, 4, 8, 16} were allowed during double cross-validation. Note that the baseline HMM
model is a poor benchmark on this task, since the predicted sequence, when prediction consists in
choosing the most probable subsequence given previous observations, only depends on the state of
the s-th hidden variable, where s is the index of the last observation. This observation implies that
the number of possible states for the hidden variables of the HMM upper-bounds the number of dif-
ferent sequences that the HMM can predict. Thus, the baseline HMM model can only be expected to
provide incremental improvements compared to choosing the most common symbol in the database.

Results in Table 1 for the jazz standards database show that considering distance patterns signifi-
cantly improves the HMM model. The fact that the baseline HMM model performs much better
when trying to predict the last 32 symbols is due to the fact that this database contains song endings.
Such endings contain many silences and, in terms of accuracy, a useless model predicting silence
at any position performs already well. On the other hand, the endings are generally different from
the rest of the rhythm structures, thus harming the performance of the global model when just trying
to predict the last 32 symbols. Results in Table 1 for the hornpipes database again show that the
prediction accuracy of the global model is consistently better than the prediction accuracy of the
HMM, but the difference is less marked. This is mainly due to the fact that this dataset only con-
tains two symbols, associated to note onset and note continuation. Moreover, the frequency of these
symbols is quite unbalanced, making the HMM model much more accurate when almost always
predicting the most common symbol. In Table 2, the set of partitions P is not optimized by double
cross-validation. Results are shown for different fixed sets of partitions. The best results are reached
with “deeper” dyadic structure. This is a good indication that the basic hypothesis underlying the
proposed model is well-suited to music data, namely that dyadic distance patterns exhibit strong
regularities in music data.

4 Conclusion

The main contribution of this paper is the design and evaluation of a generative model for dis-
tance patterns in temporal data. The model is specifically well-suited to music data, which exhibits
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Table 2: Accuracy over the last 64 positions for many sets of partitions P on the jazz database, given
the first 64 observations. The higher the better

P Global
{2} 49.30%
{2, 4} 49.27%
{2, 4, 8} 51.36%
{2, 4, 8, 16} 55.55%

strong regularities in dyadic distance patterns between subsequences. Reported conditional pre-
diction accuracies show that the proposed model effectively captures such regularities. Moreover,
learning distributions of distances between subsequences really helps for accurate rhythm predic-
tion. Rhythm prediction can be seen as the first step towards full melodic prediction and generation.
A promising approach would be to apply the proposed model to melody prediction. It could also
be readily used to increase the performance of transcription algorithms, genre classifiers, or even
automatic composition systems.

Finally, besides being fundamental in music, modeling distance between subsequences should also
be useful in other application domains, such as in natural language processing. Being able to char-
acterize and constrain the relative distances between various parts of a sequence of bags-of-concepts
could be an efficient means to improve performance of automatic systems such as machine transla-
tion [11]. On a more general level, learning constraints related to distances between subsequences
can boost the performance of ”short memory” models such as the HMM.
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