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Abstract—In this paper, several approaches that can be used from combining classifier scores. Specifically, by combining
to improve biometric authentication applications are proposed. the outputs ofN classifier scores using an average operator
The idea is inspired by the ensemble approach, i.e., the use of ;, he simplest case), one can reduce the variance of the
several classifiers to solve a problem. Compared to using only one . o
classifier, the ensemble of classifiers has the advantage of reducingcomb'm':‘d score, W',th respect to the target score, by a factor
the overall variance of the system. Instead of using multiple Of N [5, Chap. 9], if the classifier scores are not correlated
classifiers, we propose here to examine other possible means ofor independent from each another). On the other hand, in the
variance reduction (VR), namely through the use of multiple extreme case, when they are completely correlated (dependent
synthetic samples, different extractors (features) and biometric on each other), there will be no reduction in variance at all [6].

modalities. The scores are combined using the average operator, In th text of BA. wh bi | bi tri
Multi-Layer Perceptron and Support Vector Machines. It is found n the context o » WNEN ONE COMDINES SEveral DIOMetric

empirically that VR via modalities is the best technique, followed Modalities or several samples, one indeed exploits the indepen-
by VR via extractors, VR via classifiers and VR via synthetic dence of each modality and sample, respectively. In this work,

samples. This order of effectiveness is due to the correspondingwe examine several other ways to exploit this (often partial)
degree of independence of the combined objects (in decreasingiyjependence, namely via extractors, classifiers and synthetic
order). The theoretical and empirical findings show that the ]
combined experts via VR techniquesalways perform better samples. In short., all these method; F:an be termed as follows:
than the average of their participating experts. Furthermore, Variance Reduction (VR) via classifiers, VR via extractors,
in practice, most combined experts perform better than any of VR via samples and VR via (biometric) modalities.
their participating experts. To our opinion, VR techniques are potential to improve the
I. INTRODUCTION accuracy of BA systems because better classifiers or ensemble
Biometric authentication (BA) is the problem of verifying anmethods, feature extraction algorithms and biometric-enabled
identity claim using a person’s behavioural and physiologicgknsors are emerging. Instead of choosing one best tech-
characteristics. BA is becoming an important alternative ffique (best features, classifiers, etc), VR techniques propose
traditional authentication methods such as keys (“somethifg combine these new algorithms with existing techniques
one has’, i.e., by possession) or PIN numbers (‘somethigigatures, classifiers) to obtain improved results, whenever this
one knows”, i.e., by knowledge) because it is essentially “whg feasible. The added overhead cost will be computation time
one is”, i.e., by biometric information. Therefore, it is notind possibly hardware cost in the case of adding new sensors
susceptible to misplacement, forgetfulness or reproductiqas opposed to other VR techniques whidh not requireany
Examples of biometric modalities are fingerprint, face, voicextra hardware).
hand-geometry and retina scans [1]. Il. VARIANCE REDUCTION IN BIOMETRIC
However, to date, biometric-based security systems (de- AUTHENTICATION
vices, algorithms, architectures) still have room for improve®- Variance Reduction
ment, particularly in their accuracy, tolerance to various noisy This section presents a brief findings on the theory of
environments and scalability as the number of individual@riance reduction (VR). Details can be found in [6].
increases. The focus of this study is to improve the systemA person requesting an access can be measured by his or her
accuracy by directly minimising the noise via various variandgiometric data. Let this biometric data ReThis measurement
reduction techniques. can be done in several methods, to be explored later. Let
Biometric data is often noisy because of deformable terdenote thei-th extract ofx by a given method. For the sake
plates, corruption by environmental noise, variability over timef comprehension, one method to do so is to use multiple
and occlusion by the user’s accessories. The higher the nosanples. Thus, in this caseé,denotes thei-th sample. If
the less reliable the biometric system becomes. the chosen method uses multiple biometric modalities, then
Advancements in biometrics show two emerging solutions:refers to thei-th biometric modality. Let the measured
combining several biometric modalities [2], [3] (often calledelationship be denoted as(x). It can be thought as theth
multi-modal biometrics) and combining several samples ofrasponse (of the sample or modality, for instance) given by
single biometric modality [4]. These techniques are relatedbiometric system. Typically, this output (e.g. score) is used
to variance reduction(VR). This is a phenomenon originatedto make the accept/reject decisign(x) can be decomposed



into two components, as follows: that the threshold is optimfalDecreasing this area implies an
improvement in the performance of the system.

Yi(x) = h(x) + ni(x), @ )
whereh(x) is the “target” function that one wishes to estimate 08| Overapping 5, | = Genuine veraged p
and 7;(x) is a random additive noise with zero mean, also os] Feadfer o | mpostor averaged po
dependent ox. 07 §oy
Let N be the number of trials, (e.g., the number of sam- 06f Overlapping ¢
. . 2 area before | |
ples, assuming that the chosen method uses multiple samples 505 averaging
hereinafter). The mean af over N trials, denoted ag(x) is: Tod
N 0.3 7
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3(x) = 5 D vi(x). 7 o
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When N samples are availabie and they are used separately, OgvosesimmmmeBLLILLLLL P
the average of variancenade by each sample, independently, Scores
IS Fig. 1. Averaging score distributions in a two-class problem
N
VAR v (x) = ﬁZVAR[yi(X)]’ ?) gba\éa‘;nance Reduction and Correlation in the Input Score
_ . =t From the previous section, it is obvious that by reducing the
where VAR[] is the variance of. _variance, the classification results should be improved. How
On the other hand, the variance as a result of averaging (aiich variance can be reduced depends on how correlated
variance of averagedue to Eq. 2 is defined as: the input scores are. The correlation between scores of two
VARcom(x) = E[(5(x) — h(x)])?], (4) experts can be examined by plotting their scores on a 2D-

plan, with one axis for each expert. This is shown in Fig. 2
where E[] is the expectation of. In our previous work [6], and 3. The first figure shows a scatter-plot of scores taken from

it has been shown that: two experts working on theamefeatures. The second figure
1 shows a scatter-plot of scores taken from two experts working
—VAR 4v (x) < VARcoMm (%) < VAR 4v (x). (5) on different biometric modalitiesDetails of the experts are
N explained in Sec. IV. As can be seen, the scores of the former
This equation shows that when scorgsi = 1,...,N are overlaps more than the latter, i.e., if a boundary is to be

not correlated, the variance of average is reduced by a facgawn between clients and impostors scores, it would be more
of 1/N with respect to the average of variance. On thgifficult for the former problem than the latter problem. Note
other hand, when the scores are totally correlated, there istgt overlapping occurs when both experts make the same

reduction of variance, with respect to the average of varianegrors. Thus, there will be more classification errors in the
To measureexplicitly the factor of reduction, we introduceformer problem than in the latter.

a, which can be defined as follows: D. Exploring Various Variance Reduction Techniques
VAR 4y (x) This section explores various variance reduction (VR) tech-
o= m~ (6) nigues that can be applied to the BA problem.
By dividing Equation 5 by VAR.o1; and rearranging it, we A BA system can be _v_lewed as a systt_am consisted of
can deduce that < a < N. sensors, extractors, classifiers and a supervisor. Sensors such

as cameras are responsible to capture a person’s biometric

B. Variance Reduction and Classification Reduction ?Sraits. Extractors are responsible to compress and detect salient

Figure 1 illustrates the effect of averaging scores in a tw

class problem, such as in BA where an identity claim cou o ) !
P y ers. Classifiers are responsible for matching the extracted

belong either to a client or an impostor. Let us assume tlfa .
. . L eatures from previously stored features that are known to
the genuine user scores in a situation where 3 samples ale

. ... .pelong to the person. Finally, in the context of multiple
available but are used separately, follow a normal dlsmbu“%qodalities features. classifiers or samoles. a SUDErvisor is
of mean 1.0 and variance (VAR (x) of genuine users) ' ' ples, P

0.9, denoted asV'(1,v/0.9), and that the impostor scoresneed.Gd to merge all the r.esults.
This serial concatenation process of sensors, extractors,

(in the mentioned situation) follow a normal distribution of o i
N(=1,v/0.6) (both graphs are plotted with “+”). If for each classifiers and a supervisor shows that error may accumulate

access, the 3 scores are used, according to Equation 6, aﬂ%lg the chain because each module depends on its previous

. : o . module. An important finding in Sec. II-A [6] is that it is
variance of the resulting distribution will be reduced by %enef'c'al to increase the number of processes. For instance
factor (which is the valuer defined in Equation 6) of 3 or less. ICl ' u P : ' '

Both resulting distributions are plotted with “0”. Note the are?nn?hggg tl\jvsoe cr;]:ergzvssvwlplt?es tﬁ; Tgr;ebgogeg; T;c;dzl::jes.
where both the distributions cross before and after. The later ' P
area is shaded in Figure 1. This area corresponds to the Zorl%ptimal in the Bayes sense, when (1) the cost and (2) probability of both

where minimum amount of mistakes will be committed givetypes of errors are equal.

%atures that are useful for discriminating a person from the
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of the resultant combined score can be reduced by a factor
between 1 andV with respect to the average of variance.
Instead of using simple averaging, one could have used
weighted average, or even non-linear techniques such as Multi-
Layer Perceptrons (MLPs) and Support Vector Machines
(SVMs) [5]. In the latter two cases however, one needs to
select carefully the various hyper-parameters of these models
(such as the number of hidden units of the MLPs or the kernel
parameter of the SVMSs). According to the Statistical Learning
Theory [14], the expected performance of a model such as an
MLP or an SVM on new data depends on ttepacityof the
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Face (DCTs,GMM) expert

set of functions the model can approximate. If the capacity
is too small, the desired function might not be in the set
of functions, while if it too high, several apparently good
functions could be approximated, with the risk of selecting
a bad one. This phenomenon is often calkeer-training
Although this capacity cannot unfortunately be explicitely
: . estimated for complex set of functions such as MLPs and
el SVMs, its ordering can be used to select efficiently the
. corresponding hyper-parameters using some sort of validation
technique. One such method is the K-fold cross-validation.
Algorithm 1 shows how K-fold cross-validation can be used
of ] to estimate the correct value of the hyper-parameters of our
fusion model, as well as the decision threshold used in the
case of authentication. The basic framework of the algorithm
is as follows: first performK-fold cross-validation on the
training set by varying the capacity parameter, and for each

modalities, respectively. This is because by increadihgne capacity parameter, select the corresponding decision threshold

can decrease the variance further, regardless of how correldfé} Minimizes HTER; then choose the best hyper-parameter
the scores obtained from theaeexperts are. Note that in the@ccording to this criterion and perform a npr.mal training with
work of Kittler et al [4], they showed that by increasiny the best hyper-par_a_meter on the whole training set; finally test
samples up to a limit, there is no more gain in accuracy. whilhe resultant classifier on the test set [8] with HTER evaluated
this happens, they said that the system is “saturated”. In dift the previously found decision threshold. - _
context, we expandV through different methods, as follow: There are several points to note concerning Algorithm 1:

: . . " . . Z is a set of labelled examples of the forf®’, )), where
» Multiple Biometric Modalltle_s_. Each modality has its the first term is a set of patterns and the second term is a
own feature set and classifiers. In other words, th

. %6t of corresponding labels. The “train” function receives a
('\)/Ipeltr.atle gdeptlendesntly Olf each lgtrk;er ml_[i]' irtuall hyper-parametef and a training set, and outputs an optimal
» Multiple Samples. Samples could be real [4] or virtua Y classifier by minimising the HTER on the training set. The

ﬁ]ﬂer:t?r?tedE)[(%rO]. tors . Each feature is classified b “test” function receives a classifigr and a set of examples,
« Mulliple Extractors . ach fealure Is classitied by a,,, outputs a set of scores for each associated example.
classifier independently of other features [11], [12].

« Multiple Classifiers. All classifiers receive the same::i]r?imtinedSHlT_ﬁ_RERfubr;Ctrlgir;i:ﬁg;g‘slzzg?z)s?nlzglgéiﬁl?v?t%t
input features. Heterogeneous types of classifiers c pect to the threshold. (FAR(A) and FRRA) are false
be used. Unstable homegenous classifiers such as &

: . : ; . . ceptance and false rejection rates, as a functiak)afhile
trained by bagging or with different hidden units ca rrr returns the HTERvalue for a particular decision

:Issgabeiﬁseggégti?]en?,?ZIi;mr.]éoer?:;ﬁblgﬂefrgj disn%?éshold. What makes this cross-validation different from
fall in%?wisgc’ategory%m] 9 P (gags!cal cross-validation is that therg is only one single
' decision threshold and the corresponding HTER value for all
For each method mentioned above, the problem now is ¢ held-out folds and for a given hyper-parameteThis is
combine theseV scores. This is treated in the next subsectioBecause it is logical to union scores of all held-out folds into
E. Fusions in Variance Reduction Techniques one single set of scores to select the decision threshold (and
In Sec. II-A, it has been illustrated that correlation of scorasbtain the corresponding HTER).
in the input space plays a vital role in determining the success Fusions For VR via Samples
of the resultant combined system. Furthermore, by simpleAll the VR techniques discussed earlier can be treated in
averaging of N scores, it has been shown that the varian@ general manner, except VR via samples. This is because

Fig. 2. Scores from experts of different features
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Fig. 3. Scores from experts of different biometric modalities



Algorithm 1 Risk Estimation(©, K, Ztrein Ztest) L(p,q) = — Zp(yi) log Q(?/i)’ )
REM: Risk Estimation with K-fold Validation. See [8]. p(y:)

O : a set of values for a given hyper-parameter whereq andp are two distributions. Entropy can be regarded
Z': atuple(X?, YY), for i € {train,test} where as a distortion ofg(y) from p(y) This alone does not give
X :aset of patterns. Each pattern contains scores/hypothefitgriminative information. To do so, entropies of a client and
from base experts an impostor distribution should be used together. Leic, q)
Y : a set of labelss {client, impostor} be the entropy ofy(y) with respect to a client distribution
Let UK | Zk = Ztrain and L(ps,q) be that of ¢(y) with respect to an impostor
for each hyper-parametére © do distribution. Then the difference between these two entropies,
for eachk =1,..., K do can be defined as: = L(pr,q) — L(pc, q)-
Fy = train(®, ule,#kzj) When s > 0, the distortion ofg(y) from an impostor
VE = testy, &%) distribution is greater than that of a client distribution, which
end for reflects how likely a set of synthetic scores belong to a client.
Ay = thrdgrer ({3}5}{;17 {yk}{f:l) In fact, for both approaches,> A is used instead, wherg is
end for a threshold chosea priori according to the HTER criterion.
0" = argming (LHTER (Ae, {VEHe,, {yk}kK:1)>
Fg* = train@*, Z'rein) IIl. EXPERIMENTAL SETTINGS
Viest = test(Ey., Xtest) A. XM2VTS Database Description
return LHTER(AQ*,))(ggst, test) The XM2VTS database [15] contains synchronised video

and speech data from 295 subjects, recorded during four
sessions taken at one month intervals. On each session, two

the ordering of scores induced by samples are not imp&-:‘_cordings were made, each consisting of a speech shot and

tant. Simply concatenating the scores and feeding them t& ead shot. The speech sho_t conS|§ted of frontal f_ac_e and
classifier may not be an optimal solution. Another probler?PeeCh recordings of each subject during the pronunciation of

that might arise is that when there are many scores, possiBI entence.

in the range of hundreds, (one can generate as many virtua lhe database '3 divided into t?]ree sets: a training set,dan
scores as one wishes), matching should be done in termsS¥ uat!on set and a t_est set. The t.ralnlng set was used to
ild client models, while the evaluation set (Eval) was used

their distribution instead. We hence propose two solutions tP(')J o
handle this: 1) estimate the likelihood of the set of virtudP COMPute the decision thresholds (as well as other hyper-

scores when coming from either a client or an impost&arameters) used by classifiers. Finally, the test set (Test) was

distribution; 2) estimate the distribution of the scores so thH?ed to est|mat§ the perforrr_mqnce. . .
matching will be performed between a competing client and an "€ 295 subjects were divided into a set of 200 clients,
impostor distribution. Both approaches assume that the scofesvaluation impostors and 70 test impostors. There exists
are generated independently from some unknown distributiof¥C configurations or two different partitioning of the training
Of course this independence assumption is not true, but it38d evaluation sets. They are called Lausanne Protocol | and
good enough for most practical problems. Il, denoted ad P1 andLP2 in this paper. Thus, besides the

The first approach is carried out using Gaussian Mixtuﬂ?ta for training the model, the following four data sets are
Models (GMMs) to model the scores. First estimate t}.%vailable for evaluating the performance: LP1 Eval, LP1 Test,
client and impostor distributions using GMMs by separately”2 Eval and LP2 Test. Note that LP1 Eval and LP2 Eval are
maximizing the likelihood of the client and impostor scoredSed to calculate the optimal thresholds that will be used in
using the Expectation-Maximization algorithm [5]. During-P1 Testand LP2 Test, respectively. Results are reported only
an access request with one real biometric sample, a set/@fthe test sets, in order to be as unbiased as possible (using
synthetic samples and hence a set of scores are generdl8 Priori selected threshold). Table I is the summary of the
These scores will be fed to the client and an impostor cM@ata. In both configurations, the test set remains the same.

score distribution. Lefogp(x|0c) be the log likelihood of
the set of scorex given the client GMM modeld- and THE L AUSANNE PROTOCOLS OEXM2VTS DATABASE
log p(x|6r) be the same term but for the impostor model. The sz seis ausanne Protocols
decision is often taken using the so-called log-likelihood ratio: [P1 [P2
s = logp(x|0c) — log p(x|0;) Training client accesses 3 4
As for the second approach, we propose to first model the Eva'“at!"” client accesses | 600 6 x 200) | 400 @ x 200)
L . . . valuation impostor accessegs 40,000 @5 x 8 x 200)
distribution of these synthetic scores using a Parzen window| Test client accesses 400 @ x 200)
non parametric density model [5, Chap. 2] and then compute| Test impostor accesses 112,000 {0 x 8 x 200)
the relative entropy of each distribution, which is defined ddowever, there are three training data per client for LP1 and
follows: four training data per client for LP2. More details can be found
in [16].

TABLE |




B. Features Used for the XM2VTS Database small image comparing to the bigger size image with

For the face data, a bounding box is placed on a face 1€ abbreviatiorb).

according to eyes coordinates located manually. This assumed) PCTb: Similar to DCTs except that it uses overlapping
a perfect face detectidnThe face is cropped and the extracted _ Windows having the size &0 x 64. ,
sub-image is down-sized to39 x 40 image. After enhance- The speech baseline experts are based on the following
ment and smoothing, the face image has a feature vector @tUres:
dimension1200. 1) LFCC: The Linear Filter-bank Cepstral Coefficient
In addition to these normalised features, RGB (Red-Green-  (LFCC) speech features were computed with 24 linearly-
Blue) histogram features are used. For each colour channel, a SPaced filters on each frame of Fourier coefficients
histogram is built using2 discrete bins. Hence, the histograms ~ S@mpled with a window length of 20 milliseconds and
of three channels, when concatenated, form a feature vector €ach window moved at a rate of 10 milliseconds. 16
of 96 elements. More details about this method, including ~ DCT coefficients are computed to decorrelate the 24
experiments, can be obtained from [17]. coeff.|C|ents. (log of power spectrum) obta_tme_d from
Another feature set derived from Discrete Cosine Transform  the linear filter-bank. The first temporal derivatives are
(DCT) coefficients [18], [19] has also given good performance.  2dded to the feature set. , _ ,
The idea is to divide images into overlapping blocks. For 2) PAC: The PAC-MFCC features are derived with a win-
each block, a subset of DCT coefficients are computed. The ~dow length of 20 miliseconds and each window moves at
horizontal, vertical and diagonal (with respect to a reference & rate of 10 miliseconds. 20 DCT coefficients are com-
block of) DCT coefficients can also be derived. It has been ~ Puted to decorrelate the 30 coefficients obtained from
shown that these features are comparable (in terms of perfor- the Mel-scale filter-bank. The first temporal derivatives
mance in the context of BA) to features derived from Principal &€ added to the feature set.

Component Analysis [18]. 3) SSC The mean-subtracted SSCs are obtained from 16
For the speech data, the feature sets used in the experiments COefficients. They parameter, which is a parameter
are Linear Filter-bank Cepstral Coefficients (LFCC) [20],  that raises the power spectrum and controls how much

Phase Auto-correlation derived Mel-scale Frequency Cepstrum  Influence the centroid, is set to 0.7. Also The first
Coefficients (PAC) [21] and Mean-Subtracted Spectral Sub-  temporal derivatives are added to the feature set.

band Centroids (SSC) [22]. The speech/silence segmentatiodWo different types of classifiers were used for these ex-
is done using two competing Gaussians trained in an unfgfiments: & Multi-Layer Perceptron (MLP) [5] and a Bayes
pervised way by maximising the likelihood of the data givefy/assifier using Gaussian Mixture Models (GMMs) to estimate
a mixture of the 2 Gaussians. One Gaussian will end ybe class distributions [5]. While in theory both classifiers
modelling the speech and the other will end up modelling tf@uld be trained using any of the previously defined feature
non-speech feature frames [23]. In general, the segmentati§iis: N practice only some specific combinations appear to

given by this technique is satisfactory. yield reasonable performance.
IV. RESULTS Whatever the classifier is, the hyper-parameters (e.g. the

In order to analyse the effects due to VR techniques Voéjmber of hidden units for MLPs or the number of Gaussian

first present the baseline experimental results. This is follow§@MPonents for GMMs) are tuned on the evaluation set LP1
by results obtained by various VR techniques. Note that &ial- The same set of hyper-parameters are used in both LP1

: d LP2 configurations of the XM2VTS database.
results reported here are in termspafrcentage of HTER the an . . .
thresholds are all selectedpriori (i.e., tuned on the training For each client-specific MLP, the samples associated to the

set, hence the threshold éempletely independenf the test client are treated as positive patterns while all other samples

set and is thus unbias), and for the combination straizugjy, nMoLtsssomatteddtz the cllenttarg trsateq asthneg?tlv;]a p?tterns..AII
two experts are usedeach time. s reported here were trained using the stochastic version

. of the error-backpropagation training algorithm [5].
A. Baseline Performance on The XM2VTS Database For the GMMSs, two competing models are often needed: a

The face baseline experts are based on the following f&gs 14 and a client-dependent model. Initially, a world model
tures: is first trained from an external database (or a sufficiently
1) FH: Itis a normalisedace image concatenated with itarge data set) using the standard Expectation-Maximisation
RGB Histogram (thus the abbreviatidfH) algorithm [5]. The world model is then adapted for each

2) DCTs: It is a set of face features derived from a subselient to the corresponding client data of the training set
of DCT-derived coefficients. The DCT algorithm use@f the XM2VTS database using the Maximum-A-Posteriori

overlapping windows (block of sub-image) having thedaptation [24] algorithm.

size of 40 x 32 pixels. & indicates the use of this The baseline experiments based on DCT coefficients were
reported in [19] while those based on normalised face images

2Hence, even if this is often done in the literature, the final results using fagtid RGB histograms (FH features) were reported in [17]_ De-
scores could be optimistically biased due to this manual detection step. Npte

on the other hand that due to the clean and controlled quality of XM2VT ,”S of the experiments, coded in the pdeature, classifier)
automatic detectors often yield detection rates around 99%. for the face experts, are as follows:



1) (FH,MLP) Features are normalisdeéace concatenatedB. VR via Different Modalities, Extractors, Classifiers

with Histogram features. The client-dependent classifier Table Il shows the results combining scores of two modal-
used is an MLP with 20 hidden units. The MLP idties, two extractors and two classifiers (working on the same

trained with geometrically transformed images [17]. feature space). The second to last column shows the mean
2) (DCTs,GMM) The face features are DCT-derived coHTER of each of the two underlying experts while the last
efficients with each overlapping window (block of subcolumn shows the minimum HTER of the two experts. The
image) having the size of0 x 32 pixels There are 64 three sub-columns under the heading “joint HTER” are the
Gaussian components in the GMM. The world model I§TERs of the combined experts via the mean operator, MLP
trained usingall the clientsin the training set [19]. and SVM. Numbers in bold are the best HTER among the
3) (DCTh,GMM) Similar to (DCTs,GMM), except that three fusion methods. A quick examination of this table reveals
the features used are DCT-derived coefficients with tfiBat all combined experts via modalities are better than the best
overlapping window-size of0 x 64. The corresponding underlying expert (compare min HTER with the scores in the
GMM has 512 Gaussian components [19]. joint HTER). However, the combined experts via extractors
4) (DCTs,MLP) Features are the same as those i@nd classifiers, as shown in Table IV, are not always better
(DCTs,GMM) except that an MLP is used in place of &han their participating experts.
GMM. The MLP has 32 hidden units [19].
5) (DCTb,MLP) The features are the same as those in

(DCTh,GMM) except that an MLP with 128 hidden PERFORMANCE IN(%) OF HTER OF VR VIA MODALITIES ON XM2VTS
units iS’ used [19] BASED ONa priori SELECTED THRESHOLDS

a) Face experts and (LFCC,GMM) expert
and for the speech experts: @ P ( ) exp

TABLE Il

o . . Data sets| Face, Joint HTER mean min
1) (LFCC,GMM) This is the Linear Filter-bank Cepstral Experts mean| MLP | SVM | HTER | HTER
Coefficients (LFCC) obtained from the speech data ﬁl:;’i iest Eg'g\’“-epl)m) 8-22? 8-2?2 8-2% %‘2% ﬁgg
] es| S, . . . . .
the XM2VTS database. The GMM has 200 Gaussml. LP1 Test| (DCTb,GMM) | 0.520 | 0.483 | 0.475 | 1.405| 1.139
components, with the minimum relative variance of eachipT Test [ (DCTs,MLP) | 0.501 | 0.611 | 0.587 | 2.249 | 1.139
Gaussian fixed to 0.5, and the MAP adaptation weight.P1 Test| (DCTb,MLP) | 0.497 | 0489 | 0.485| 3.680 | 1.139
equals 0.1. This is the best known model currentlytP2 Test| (FH.MLP) 0.151] 0150 | 0.389 | 1.580 | 1.300
qu “LP2 Test | (DCTb,GMM) | 0.147 | 0.130 | 0.252 | 0.972 | 0.644
available.
2) (PAC,GMM) The same GMM configuration as in LFCC (b) Face experts and (PAC,GMM) expert
; ; _ ; Data sets| Face, Joint HTER mean min
is used. Note 'Fhat in general, 209 300 Gaussian com|odD Experts T MIP TSV HTER | HTER
nents would give about 1% of difference of HTER. LP1 Test| (FH,MLP) 1114 | 0.856 | 0.970 | 4.090 | 1.875
3) (SSC,GMM) The same GMM configuration as in LFCC LPI Test| (DCTs,GMM) | 1.407 | 1.425 | 1.402 | 5.266 | 4.227
is used. LP1 Test| (DCTb,GMM) | 0.899 | 0.900 | 0.923 | 3.987 | 1.670
: i LP1 Test| (DCTs,MLP) | 1.248| 1.056 | 1.009 | 4.832 | 3.359
The baseline performances are shown in Table II. LP1 Test| (DCTb,MLP) 39078 | 2.455 | 2.664 | 6.263 | 6.221
LP2 Test | (FH,MLP) 1.282 | 0.765 | 0.855 | 4.251| 1.860
TABLE II LP2 Test | (DCTb,GMM) | 0.243 | 0.222 | 0.431 | 3.643| 0.644
BASELINE PERFORMANCE INHTER(%)OF DIFFERENT MODALITIES (C) Face experts and (SSC GMM) expert
EVALUATED ON XM2VTS BASED ONa priori SELECTED THRESHOLDS Data sets| Face Jont H‘I:ER mean min
Data sets (Features, FAR FRR | HTER Experts mean| MLP | SVM | HTER | HTER
classifiers) LP1 Test| (FH,MLP) 0.972 | 0.786 | 0.742 | 2.156 | 1.875
Face LP1 Test | (FH,MLP) | 1.751 | 2.000 | 1.875 LP1 Test| (DCTs,GMM) | 1.028 | 1.175 | 1.213 | 3.332 | 2.437
Face LP1 Test | (DCTs,GMM) | 4.454 | 4.000 | 4.227 LP1 Test| (DCTb,GMM) | 0.756 | 0.704 | 0.742 | 2.053 | 1.670
Face LP1 Test | (DCTb,GMM) | 1.840 | 1.500 | 1.670 LP1 Test| (DCTs,MLP) | 1.167| 0.829 | 0.850 | 2.898 | 2.437
Face LP1 Test | (DCTs,MLP) | 3.219 | 3.500 | 3.359 LP1 Test| (DCTb,MLP) | 2.986 | 1.176 | 1.121 | 4.329 | 2.437
Face LP1 Test | (DCTb,MLP) | 4.443 | 8.000 | 6.221 LP2 Test | (FH,MLP) 0.901 | 0.302 | 0.404 | 1.937 | 1.860
Speech LP1 Test (LFCC,GMM) | 1.029 [ 1.250 | 1.139 LP2 Test| (DCTh,GMM) | 0.049 | 0.162 | 0.383 | 1.329 | 0.644
Speech LP1 Test (PAC,GMM) | 4.608 | 8.000 | 6.304 C._ VR via Virtual S I
Speech LP1 Test (SSC,GMM) | 2.374 | 2.500 | 2.437 : via virtual samples
Face LP2 Test ( (FHBMLP) \ 1.469 | 2.250 | 1.860 The experiments on VR via samples are presented differ-
Face LP2 Test | (DCTh,GMM) | 1.039 | 0.250 | 0.644 :
SpeechLPZ Test (LFCC.GMM) | 1349 | 1.250 | 1.300 ently than the rest b_ecause they cannot be evalugted using the
Speech LP2 Test (PAC,GMM) | 5.283 | 8.000 | 6.642 mean HTER and min HTER. Instead, the combined experts
Speech LP2 Test (SSC,GMM) | 2.276 | 1.750 | 2.013 are compared to the original baseline experts (compare the

As can be seen, among the face experiments, (DCTb,GM_m)St row of Table V aga?nst the ther rows). The two numbe_rs
performs the best across all configurations while (DCTh,MLP) Pold are the best fusion technique for LP1 and LP2 config-
performs the worst. In the speech experiments, LFCC featuld&tions, respectively. The Entropy and GMM approaches are
are the best features, followed by SSC and PAC, in decreasfiigcussed in Sec. II-F. The median technique refers to combin-
order of accuracy. Regardless of strong or weak classifiers,'3$ synthetic scores using the median operator which is knoyvn
long as their correlation is weak, they can be used in the \R be robust to outlier scores. We note that the best fusion

techniques.

technique on these datasets are the entropy approach and the



TABLE IV
PERFORMANCE IN(%) OF HTER OF VR VIA EXTRACTORS AND
CLASSIFIERS ONXM2VTS BASED ONa priori SELECTED THRESHOLDS

« > 1 should be satisfied. Thg,,;,, on the other hand, is
a more realistic criterion, i.e., one wishes to obtain better
performance than the underlying experts, but there is no

Data sets| (Features, Joint HTER mean min ; )
classifiers) mean | MLP | SVM | HTER | HTeR | analytical proof thati,,., > 1. '

LP1 Test| (FH,MLP) 1641 1.379 | 1.393 | 3.051| 1.875| The (Bn.q, for each experiment are shown in Table Vi(a)
(DCTs,GMM) for VR via modalities, extractors and classifiers, (b) for VR

LP1 Test EE@T’VJ)‘Q\AM) 11231 11511 1.528 | 17721 1670 5 synthetic samples and (c) for the gain rafig.,. Note

LP1 Test (FH,MI’_P) 1475 1667 | 1476 | 2617 1875 that VR Vla synthetic samples cannot be_ evaIga_tted with the
(DCTs,MLP) Bmin Criterion. It can only be compared to its original method

LP1 Test | (FHMLP) 1.948 | 1933 | 1.938 | 4.048] 1875 (j e  with real samples). This gain ratio can be defined as
(DCTb,MLP) :

[P Test| (LFCC.GMM) | 1.296 | 1.444 | 1.142 | 1.788 | 1.139| Preat = HTERcqi/HTER., wherereal is the expert that
(SSC,GMM) takes real samples andis the expert that combines scores
(SSC,GMM) . . .

[P2 Test| (FH.MLP) 0.896 | 0.670 | 0.488 | 1.252| 0.644| Note that theﬁmean_ for VR via modahte; are sub-divided
(DCTh,GMM) into 3 parts according to the 3 baseline speech experts

LP2 Test EEE%CGCEA“’QAI\)/I) 1.1071 1.034 | 1.063 | 1.656| 1.300| (LFCC,GMM), (SSC,GMM) and (PAC,GMM) in asignifi-

[P2 Test| (PAC.GMM) | 2.614 | 2316 | 2125 | 4328 | 2.013 cantly decreasing order _of accuracy. In such situations, the
(SSC,GMM) Omean fOr these 3 baselines still have comparable range of

LP1 Test| (DCTs,GMM) | 2.873 | 2.486 | 2.607 | 3.793 | 3.359 | values, which are bigger than other VR techniques. One
(DETE"\G/"-P) a— - a— 570 possible conclusion is that regardless of the degree of accuracy

LP1 Test Egclb’Mll\_AF"v)l) ' L5 1471 39461 16701 o participating experts, as long as they are weakly correlated,

GMM approach for LP1 and LP2, respectively. For LP1, thB9N Omean Can be achieved. Although the mean operator
entropy approach isignificantly bettenwith 90% confidence seems to perfor_m the best in the overall VR via modalltlgs
level than the mean operator according to the McNemaP@S€d OMean, it should be noted that out of the 27 experi-
Tes [25] (i.e., with a difference of 0.006 HTER% between thanents in Table Ill, 4 experiments are best combined with the
two approaches). For LP2, the GMM approackignificantly mean operator, Whl|.e there are 10 and 7 best results for'MLPs
betterthan the mean operator with 99% confidence level. THEd SVMs, respectively. Moreover, the standard deviation of

shows that exploiting the distribution of scoriesbetterthan e mean operator is much larger than that of MLPs and
using the simple mean operator. SVMs. In these experiments, MLP turns out to be a good

candidate for fusion in most situations for VR via modalities.
It should be emphasized that the success application of MLPs
or SVMs in this fusion problem depends largely on the correct
capacity estimate of cross-validation.

TABLE V
PERFORMANCE IN(%) OF HTER OF DIFFERENT COMBINATION METHODS
OF SYNTHETIC SCORES

Method LPTTERLPZ Note that Table VI(a) shows thék,,..,, > 1 for all fusion
Original | 1.875 | 1.737 techniques but in (C)fmin > 1 is only true for MLPs
Mean | 1.612 | 1.518 and SVMs, but not for the mean operator, which we cannot
Median | 1.667 | 1.547 guarantee. According t@®,,.., on the mean operatprVR
GMM | 1.709 | 1.493 ; . ; : ; ;
Entropy | 1606 | 1559 via modalities achieves the highest gain, followed by VR via

extractors, VR via classifiers and VR via synthetic samples.

A similar trend is observed in (c) according ,;,. Such
Let us define two measures of gain so as to draw a summaryering is not a coincidence. It reveals that the correlation

of the experiments carried out above, as below: is greater and greater in the list just mentioned. In other

D. Evaluation of Experiments

mean(HTER;) words, ﬂme?n is inversely proportio_nal to the correlation of
Bmean = " HTER, the underlying experts. However, with MLP and SVM as non-
) ] linear fusion techniques, this ordering is slightly perturbed

Bvim = m'ni(HTERi), because both thé,,ca, andBmi, show that VR via classifiers
HTER, arebetterthan VR via extractors. Clearly, in highly correlated

where B,can and B, Mmeasure how many times the HTERproblem such as these, non-linear fusion techniques are better
of the combined expert is smaller than the mean and thghan the simple mean operator.

min HTER of the underlying experts = 1,..., N. Bnecan V. CONCLUSIONS

is designed to verify Eq. 6, which is somewhat akindo Variance reduction (VR) is an important technique to in-
According to the theoretical analysis presented in Sec. ll-Arease accuracy in regression and classification problems. In
this study, several approaches are explored to improve Biomet-
ric Authentication systems, namely VR via modalities, VR via
extractors, VR via classifiers and VR via synthetic samples.
The experiments carried out on the XM2VTS database show

3This is done by calculating(no1 — n10)2 —1)/(no1 +n10) > p Where
p is the inverse function oft? distribution (with 1 degree of freedom) at a
desired confidence interval (i.e., 90%), angh andnio are the number of
different mistakes done by the two systems on Haeneaccesses



TABLE VI
COMPARISON OF VARIOUSVR TECHNIQUES BASED ON ALL EXPERIMENTS
CARRIED OUT USING Bmean, Bmin AND Breal

(1]
(2]

(@) Brmean Of all experiments

VR Table No. Joint HTER
techniques of exp. mean MLP SVM
Modalities (&) 21 5559 5.390| 4.164| [3]
(all) +5.879 | +3.287 | +1.474
Mi(a) 7 5680 | 5.843| 4375
(LFCC) +2.683 | +2.744 | +1.482 | [4]
M(a) 7 5.086 | 5.999| 4.694
(PAC) +4.459 | +4.686 | +1.869
M(a) 7 5910 | 4.326| 3.422| I[5]
(SSC) +9.365 | +2.128 | +0.733
Extractors Y] 9 1604 | 1.719| 1842 I[6]
+0.269 | +0.313 | +0.420
Classifiers Y 2 1.341| 2051| 2044 I[7]
+0.029 | 40.742 | +0.902
Synthetic sampleq V 2 1.154 MLP and SVM
4+0.0002 | not used; see (b) (8]

(b) Brear Of VR via synthetic samples

Methods Gain ratio [0l
Mean 1.1544+ 0.000178
Median 1.124 4 0.000002
GMM 1.130+ 0.002198 [10]
Global Entropy | 1.141+ 0.001422
Local Entropy | 0.8544 0.000028
(c) Bmin Of all VR techniques except synthetic samples (1]
VR Table No. Joint HTER
techniques of exp. [ mean| MLP | SVM [12]
Modalities | Ili(a) 21 3.043 | 3.109 | 2.459
Extractors | 1li(b) 9 1.009 | 1.067 | 1.120
Classifiers | 111(c) 2 0.873 | 1.221 | 1.190

that the combined experts due to VR technigqudways
perform better than the average of their participating experEs,]
which can be explained by VR using the mean operator. Fur4]
thermore, all combined experts via modalities outperform ti]
best participating expert based on the HTER. By means of non-
linear variance reduction techniques, i.e., the use of MLPs and
SVMs for combing scores obtained from participating experts,
empirical study shows that, in average, these techniques codfd
produce better results than their participating experts, in the]
context of VR via extractors and classifiers. In the context
of VR via samples, exploiting the distribution of syntheti(flg]
scores using GMM or Parzen-windows is better than the mean
operator. In short, this study shows that non-linear fusion
techniques using MLPs and SVMs, and incorporating oth[elrg]
a priori information (i.e., distribution of synthetic score in the
case of synthetic samples) are vital to achieve high gain 8!
fusion. In highly correlated situations (i.e, VR via extractors,;
and classifiers), non-linear fusion techniques are very useful.
In weakly correalted situations (i.e., VR via modalities),
the mean operator could be feasible but non-linear fusi
techniques are still useful if the capacity search using cross-
validation is reliable. As new and more powerful extraction
and classification algorithms become available, they can all
integrated into the VR framework. Therefore, VR techniques
are potentially very useful for biometric authentication.
ACKNOWLEDGEMENT

The authors wish to thank the Swiss National Science Foun-
dation through the National Centre of Competence in ResealeH
on "Interactive Multimodal Information Management (IM2)".

(24]

REFERENCES

A. Jain, R. Bolle, and S. Pankan@jometrics: Person Identification in

a Networked Society Kluwer Publications, 1999.

L. Hong, A. Jain, and S. Pankanti, “Can Multibiometrics Improve Perfor-
mance?” Computer Science and Engineering, Michigan State University,
East Lansing, Michigan, Tech. Rep. MSU-CSE-99-39, December 1999.
N. Poh and J. Korczak, “Hybrid Biometric Authentication System Using
Face and Voice Features,” ithe 3rd Int. Conf. on Audio- and Video-
Based Biometric Person Authentication, AVBPA'Q001, pp. 348-353.

J. Kittler, G. Matas, K. Jonsson, and M. Sanchez, “Combining Evidence
in Personal Identity Verification Systemdattern Recognition Letters
vol. 18, no. 9, pp. 845-852, September 1997.

C. Bishop,Neural Networks for Pattern RecognitiorDxford University
Press, 1999.

N. Poh and S. Bengio, “Variance Reduction Techniques in Biometric
Authentication,” IDIAP, Martigny, Switzerland, IDIAP-RR 03-17, 2003.
C. Sanderson and K. K. Paliwal, “Information Fusion and Person
Verification Using Speech and Face Information,” IDIAP, Martigny,
Switzerland, IDIAP-RR 02-33, 2002.

S. Bengio, C. Marcel, S. Marcel, and J. Mettioz, “Confidence Mea-
sures for Multimodal Identity Verification,information Fusion vol. 3,

no. 04, pp. 267-276, 2002.

B. Duc, E. S. Bigun, J. Bigun, G. Maitre, and S. Fischer, “Fusion of
Audio and Video Information for Multi Modal Person Authentication,”
Pattern Recognition Lettervol. 18, pp. 835-843, 1997.

N. Poh, S. Marcel, and S. Bengio, “Improving Face Authetication Using
Virtual Samples,1EEE International Conference on Acoustics, Speech,
and Signal Processing/ol. 3, pp. 233-236, 2003.

R. Brunelli and D. Falavigna, “Personal Identification Using Multiple
Cues,” IEEE Trans. on Pattern Analysis and Machine Intelligence
vol. 17, no. 10, pp. 955-966, 1995.

F. Smeraldi, N. Capdevielle, and J. Bigun, “Face Authentication by
Retinotopic Sampling of the Gabor Decomposition and Support Vector
Machines,” inProceedings of the 2nd International Conference on Audio
and Video Based Biometric Person Authentication (AVBPA'96). I,
Washington DC, USA, March 1999, pp. 125-129.

T. Dietterich, “Ensemble Methods in Machine Learning,” Multiple
Classifier System2000, pp. 1-15.

V. N. Vapnik, Statistical Learning Theory Springer, 1998.

J. Matas, M. Hamouz, K. Jonsson, J. Kittler, Y. Li, C. Kotropoulos,
A. Tefas, |. Pitas, T. Tan, H. Yan, F. Smeraldi, J. Begun, N. Capde-
vielle, W. Gerstner, S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz,
“Comparison of Face Verification Results on the XM2VTS Database,”
in The Proceedings of the 15th ICP#®ol. 4, 2000, pp. 858-863.

J. Luttin, “Evaluation Protocol for the XM2FDB Database (Lausanne
Protocol),” IDIAP, Martigny, Switzerland, IDIAP-COM 98-05, 1998.

S. Marcel and S. Bengio, “Improving Face Verification Using Skin
Color Information,” in Proceedings of the 16th Int. Conf. on Pattern
Recognition |IEEE Computer Society Press, 2002.

C. Sanderson and K. Paliwal, “Polynomial Features for Robust Face
Authentication,” Proceedings of International Conference on Image
Processingvol. 3, pp. 997-1000, 2002.

F. Cardinaux, C. Sanderson, and S. Marcel, “Comparison of MLP and
GMM Classifiers for Face Verification on XM2VTS,” IDIAP, IDIAP-RR
03-10, 2003.

L. Rabiner and B.-H. Juandgrundamentals of Speech Recognition
Oxford University Press, 1993.

] S. Ikbal, H. Misra, and H. Bourlard, “Phase AutoCorrelation (PAC)

derived Robust Speech Features,” Rmoceedings of the 2003 IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP-03)Hong Kong, April 2003.

] K. K. Paliwal, “Spectral Subband Centroids as Features for Speech

Recognition,” in IEEE International Workshop on Automatic Speech
Recognition and Understanding (ASRUP97, pp. 124-13.

28] J. Maréthoz and S. Bengio, “A Comparative Study of Adaptation Meth-

ods for Speaker Verification,” innternational Conference on Spoken
Language Processing ICSLBenver, CO, USA, September 2002, pp.
581-584, IDIAP-RR 01-34.

J. Gauvain and C.-H. Lee, “Maximum A posteriori estimation for
multivariate gaussian mixture obervation of markov chains,IBEEE
Transactions on Speech Audio ProcessiAgril 1994, pp. 290-298.

T. G. Dietterich, “Approximate Statistical Test for Comparing Super-
vised Classification Learning Algorithmd\eural Computationvol. 10,

no. 7, pp. 1895-1923, 1998.



