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ABSTRACT

Evaluating biometric authentication performance is a complex task
because the performance depends on the user set size, composition and
the choice of samples. We propose to reduce the performance depen-
dency of these three factors by deriving appropriate confidence intervals.
In this study, we focus on deriving a confidence region based on the re-
cently proposed Expected Performance Curve (EPC). An EPC is different
from the conventional DET or ROC curve because an EPC assumes that
the test class-conditional (client and impostor) score distributions are un-
known and this includes the choice of the decision threshold for various
operating points. Instead, an EPC selects thresholds based on the training
set and applies them on the test set. The proposed technique is useful, for
example, to quote realistic upper and lower bounds of the decision cost
function used in the NIST annual speaker evaluation. Our findings, based
on the 24 systems submitted to the NIST2005 evaluation, show that the
confidence region obtained from our proposed algorithm can correctly
predict the performance of an unseen database with two times more users
with an average coverage of 95% (over all the 24 systems). A coverage
is the proportion of the unseen EPC covered by the derived confidence
interval.

Index Terms— Biometric authentication, pattern recognition, clas-
sification

1. INTRODUCTION

Biometric authentication is in general considered as a two-class classifi-
cation problem that aims at accepting or rejecting the identity claim of a
user based on some biometric sample (voice, face, etc). This is done by
selecting an appropriate discriminant function for each user, as well as a
corresponding threshold that better suit a given cost function. A common
practice is to compare solutions with respect to the whole range of pos-
sible threshold values. The result is then visualized using a Receiver’s
Operating Characteristic (ROC) curve [1] or a Detection Error Trade-off
(DET) curve [2] estimated on some test set.

In order to provide quantitative comparisons, one or several operating
points of the DET/ROC are selected. For example, one commonly used
operating point is called Equal Error Rate (EER) and is a special point
where False Acceptance Rate (FAR) equals False Rejection Rate (FRR).
Finally, some aggregate measure is chosen to represent the performance
at these operating points. One such measure is the Half Total Error Rate,
which is the average between FAR and FRR.

When the operating point is chosen according to the test set, we say
the underlying performance is a posteriori, as it was obtained by looking
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at the test set in order to modify some parameter of the model (the thresh-
old). On the other hand, when the operating point is chosen on some
independent validation set, the underlying test set performance is called
a priori, and is unbiased.

A priori evaluation is used in the NIST speaker evaluation [3, Chap.
8] and the BANCA face and speech [4] databases. In NIST, the operat-
ing performance is called the decision cost function (DCF; or the CDET

point). In BANCA, three cases of operating performance are quoted in
terms of HTER.

The a priori evaluation is more realistic because in a real application,
the true class-conditional distributions are unknown. In [5] as well as
a follow-up study [6], it was argued that comparing two models based
on several chosen points on a DET/ROC curve can be misleading. As a
result, the authors proposed the Expected Performance Curve (EPC) [5].
An EPC is the operating performance due to a systematic evaluation of
all possible a priori chosen thresholds.

The goal of this study is to provide a reasonable confidence interval
around the a priori evaluation coming from an EPC. The confidence in-
terval of a posteriori evaluation using DET/ROC curve has already been
examined, in [7] for instance.

Considering the problem of biometric authentication as a two-class
problem is only partly true. If there are J users, then, there are really
J two-class problems because there are J models which are very of-
ten individually optimized for each user. A special property is that the
decision scores of a particular user model – the intra-model scores (all
decisions taken by a given client model) – are probably dependent with
each other, whereas two sets of scores due to two different user models –
the inter-model scores – are probably much less dependent. As a result,
when deriving a confidence interval around a ROC/DET/EPC curve, one
has to take into consideration the intra-model scores dependency: simple
statistical tests such as the proportion test or a plain bootstrap based tech-
nique [8] are thus prone to optimistic biases. One technique that preserves
this dependency is called the bootstrap subset technique [9]. The idea is
to bootstrap the model (user) identities such that when a model identity
is selected, its associated client and impostor scores are all selected. This
is in contrast to the conventional bootstrap technique that bootstraps the
scores directly without considering the model identity. In so doing, it de-
stroys the intra-model scores dependency. As a result, the conventional
bootstrap technique grossly underestimates the confidence interval com-
pared to the bootstrap subset technique [9]. Similarly, instead of using
the bootstrap approach, conventional parametric approaches (such as the
proportion test) also grossly underestimates the true confidence interval
because they do not preserve the intra-model scores dependency neither.
The original contributions of this paper are as follows:

• Proposal of joint user-specific and sample bootstrap: A bio-
metric authentication experiment is largely dependent on three fac-
tors: the composition of users, the number of users and the choice
of samples for a given user. By preserving the intra-model scores
dependency, the bootstrap subset technique effectively considers



the composition of users. However, it does not consider the sam-
ple variability. For example, it is known that a biometric device
cannot produce exactly the same score even if two biometric sam-
ples are acquired from the same person. This is because biometric
traits are deformable over both short and long periods of times
(seconds or years), susceptible to environmental noise, the state of
the user, etc. We therefore propose to take into account both the
user- and sample-variability using a two-level bootstrap approach.

• A more realistic confidence interval estimation of EPC: Prior
works in this direction include [10] where a parametric approach
was proposed to estimate the EPC confidence interval; and [6, 8]
where a bootstrap approach was used. In both approaches, the
intra-model scores dependency was not preserved. Thanks to our
joint bootstrap approach, as will be shown later, the estimated con-
fidence interval is much better in terms of coverage and is guar-
anteed to be as good as, if not better than, the bootstrap subset
technique [9].

Coverage is a conventional way to quantify the quality of an estimated
confidence interval, e.g., [11]. A coverage is the proportion of a future
(test) EPC curve, in our case, that is completely covered by the confidence
bound derived from a current (train) EPC curve. Both the future and
current EPCs may be different in terms of user composition, number of
users and choice of samples.

1.1. Organization

Section 2 gives an overview of EPC. Section 3 discusses four variants of
bootstrap techniques that can be used to derive the confidence interval of
an EPC. The database and experiments are reported in Sections 4 and 5,
respectively. This is followed by conclusions in Section 6.

2. THE EPC PROCEDURE

The EPC procedure [6] requires two sets of labeled score data. Let us
call them the development and the evaluation sets, i.e., D ∈ {dev, eva}.
The False Acceptance Rate (FAR) and False Rejection Rate (FRR) can
be calculated from each set of labeled score data as:

FAR(∆|D) = 1−Ψ(∆|D, I) (1)
FRR(∆|D) = Ψ(∆|D, C). (2)

where Ψ(∆|D, k) is the empirical cumulative density function (cdf) of
the labeled score set D according to whether the data contains client or
impostor attempts, i.e., k ∈ {C, I}, and up to the accept/reject decision
threshold ∆.

The development score set is used to choose a threshold according to
a cost to be minimized, i.e.,

∆β = arg min
∆

costβ(∆|dev), (3)

where β ∈ [0, 1] parameterizes the cost function. Three types of para-
metric cost functions are commonly used, i.e., Weighted Error Rate, FAR
and FRR. They are defined as:

costwer
β (∆|dev) = βFAR(∆|dev) + (1− β)FRR(∆|dev),

(4)
costfar

β (∆|dev) = |β − FAR(∆|dev)|, (5)

costfrr
β (∆|dev) = |β − FRR(∆|dev)|. (6)

For WER, the role of β can be seen as the relative cost of FAR with
respect to FRR. Minimizing costfar

β (∆|dev) can be interpreted as finding
the threshold where the empirically observed FAR is closest to β, and
similarly for costfrr

β (∆|dev).

Once the optimal threshold that minimizes a chosen β is found, the
performance of the three costs when calculated on the evaluation set are
respectively:

Perfwer
β,γ (∆|eva) = γFAR(∆β |eva) + (1− γ)FRR(∆β |eva),

(7)
Perffrr

β (∆|eva) = FRR(∆β |eva), (8)

Perffar
β (∆|eva) = FAR(∆β |eva). (9)

For WER, two types of γ are commonly used. When γ = 0.5, Perfwer
β,0.5

is called the Half Total Error Rate (HTER). When γ = β, Perfwer
β,β is

called the Weighted Error Rate (WER).
Our discussion here generalizes to the NIST and BANCA evalua-

tions. For NIST, the WER cost, costwer
0.91, along with Perfwer

0.91,0.91 is used
to rank the participating systems. For BANCA, costwer

β is used along
with Perfwer

β,0.5, for three particular values of β: {0.09, 0.5, 0.91}.

3. CONFIDENCE ESTIMATION USING BOOTSTRAP
TECHNIQUES

This section explains how a set of bootstrapped EPC curves can be gener-
ated given the development and evaluation data sets, i.e.,D ∈ {dev, eva}.
In each round of bootstraps, if a set of users is chosen, their associ-
ated scores will be chosen too. For some databases, e.g., the XM2VTS
database [12], the same users are present in both dev and eva set. In this
case, in each round of bootstraps, the same set of users must be chosen
in both the dev and eva set. In the general case, e.g., the NIST database
that we will be using, each round of bootstraps can be performed inde-
pendently on the dev and eva sets. The following subsection describes
this process more formally for a given data set (dev or eva) and identifies
four variants of bootstrap to do so.

Let the labeled development set be {yk
j,m|dev}, i.e., a set of scores

due to a genuine (client) or impostors, i.e., k ∈ {C, I} generated by
the user-specific model j ∈ {1, . . . , J} ≡ J and indexed by m ∈
{1, . . . , Mk

j } ≡ Mk
j . There are J users in J and Mk

j accesses in the set
Mk

j for each user j and class k. The evaluation set is defined similarly.
Let Y k

j be a random variable representing the scores yk
j,m. Let Y k,′

be another random variable representing the set of scores yk
m, which is

the union of all yk
j,m for all users j, and let Mk be the size of that set.

Therefore, Mk À Mk
j . For example, in the NIST database that we will

use (to be described in Section 4), the average value of MC
j and MI

j

(across all j) are respectively Ej [M
C
j ] = 9 and Ej [M

I
j ] = 96 and the

number of users, J , is 124. Furthermore, MI = 11992 and MC = 1172.

3.1. Four Bootstrap Techniques

We describe here four variants of bootstrap to generate a pool of cdfs that
capture different sources of variability.

3.1.1. Conventional Bootstrap

In order to generate a confidence bound using the conventional sample
bootstrap approach, one draws Mk samples with replacement from the
sample index set Mk to create the s-th bootstrap, Mk

s . The cdf due to
the bootstrap Mk

s is:

Ψk,′
s = P (Y k,′ < ∆|Mk

s ). (10)

3.1.2. Bootstrap Subset

The bootstrap subset approach [9] uses user-specific subset which, writ-
ten in the form of Eqn. (10), is

Ψk
u = P (Y k < ∆|Ju), (11)



where Ju is the u-th bootstrap of users drawn J times with replacement
from the pool of all possible users J . In this way, all the samples accord-
ing to the selected users are drawn at the same time.

3.1.3. User-Constrained Sample Bootstrap

Similarly, one can also consider the sample variability of a class-conditional
cdf by using the following definition:

Ψk
s = P (Y k

j < ∆|j ∈ J ,Mk
j (s)), (12)

where the set J is fixed but only their corresponding sample varies. Note
that Mk

j (s) denotes the s-th bootstrap with replacement of the original
user-specific index set Mk

j . The EPC due to ΨC
s and ΨI

s for different s
bootstraps will reflect how the sample varies given the population.

3.1.4. Joint/Two-Level Bootstrap

Combining both the variability due to Eqn. (11) and Eqn. (12), one ob-
tains the following class conditional cdf:

Ψk
u,s = P (Y k

j < ∆|j ∈ Ju,Mk
j (s)). (13)

Note that in this case, the user-specific bootstrap has to be performed
before the sample bootstrap, i.e., an algorithm to do so will perform the
following two loops:
For u ∈ {1, . . . , U} For s ∈ {1, . . . , S},

Calculate Ψk
s,u for both k = {C, I}

End, End
The complexity in this case is O(U × S). In Eqn. (10) or Eqn. (12),
the complexity is O(S) whereas in Eqn. (11), the complexity is O(U).
Therefore, Eqn. (13) has a slightly added overhead. However, we ex-
pect its confidence bound to have the highest coverage, which is a more
important goal.

3.2. Defining Confidence Bounds

We will explain below the performance in terms of HTER, i.e., Perfwer
β,0.5.

Generalization to other performance measures such as WER (Perfwer
β,β ),

Perffar
β and Perffrr

β is straightforward. Let the performance (HTER here)
be vβ for a given operating point β. We will now describe how to derive
a confidence region using the joint bootstrap approach. Generalizing the
procedure to the three other variants of bootstrap is also straightforward.

Given Ψk
s,u for s = 1, . . . , S and u = {1, . . . , U}, there will be a

total of S × U vβ values (for a fixed β).
Let Ψ be the empirical cdf of a set of vβ values. We can now estimate

a range of values around vβ that can be expected in probability. Let us
define a (1− α)× 100% confidence region as follows:

1− α

2
≤ Ψ(vβ) ≤ 1 + α

2

where α has been set to 0.95 in this paper. The upper and lower bounds of
vβ are given by vlower

β = Ψ−1( 1−α
2

) and vupper
β = Ψ−1( 1+α

2
), respec-

tively. The upper and lower confidence region of an EPC is then bounded
by [vlower

β , vupper
β ] for all β ∈ [0, 1]. The width of the confidence inter-

val is simply vupper
β −vlower

β in the unit scale of vβ (percentage of HTER
in our case). In order for the interval to be useful, its width must be as
narrow as possible. We quantify the expected confidence width across all
β by:

confidence width = Eβ [vupper
β − vlower

β ].

If “confidence widthS,U ” is the confidence interval of the joint bootstrap,
we conjecture that, for any S and U :

conf. widthS,1 ≤ conf. width1,U ≤ conf. widthS,U , (14)
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Fig. 1. EPC confidence regions derived using scores of 31, 62 and
124 users evaluated on one of the 24 systems that participated to the
NIST2005 evaluation campaign. For each data set, the corresponding
confidence interval (shown as “conf.”) is quoted in HTER%.

i.e., the sample variability is smaller than the user-induced variability and
the joint effect of the two has even larger variability.

Three examples of EPC confidence regions, derived using either 31,
62 or 124 users from one of the 24 participating systems of the NIST2005
evaluation campaign can be found in Figure 1. Note that as more and
more data is available, the confidence width reduces from about 15% of
HTER to about 8% of HTER. This figure is further explained in Section 5.
Obviously, a large confidence interval such as 24% may produce a high
coverage for any unseen EPC but its width makes it an imprecise (hence
useless!) EPC predictor.

4. THE NIST2005 DATABASE

The NIST2005 score data set [13] contains 24 verification systems which
are all evaluated on a common database with a common protocol. This
database contains mismatched training and test conditions. In this study,
we only have access to the match scores, the true identity, the claimed
identity, the hypothesized type of handset and the hypothesized gender
information1. Since the current study does not take into account such
mismatched conditions, a subset of this data set was used such that it
contains only females using land line handsets. This results in a subset
of 124 user models, 11992 impostor accesses and 1172 genuine accesses.
Therefore, on average, there are 96 impostor attempts and 9 genuine at-
tempts per user in the evaluation. The 24 verification systems are based
on Gaussian Mixture Models (GMMs), Neural Network-based classifiers
and Support Vector Machines. A few systems are actually combined sys-
tems using different levels of speech information. Some systems combine
different types of classifier but each classifier uses the same feature sets.
In accordance with the NIST evaluation plan, the 24 systems are enumer-
ated from 1 to 24 instead of using the actual system name.

5. EMPIRICAL EVALUATION

The goal of this section is two-fold: to empirically verify the effectiveness
of the joint bootstrap strategy as compared to user-specific and sample
bootstrap approaches; and to determine the number of sample and user-
specific bootstraps, S and U , that are needed in practice. Three variants
of the same algorithm can be obtained by setting S and U as follows:

1. Sample bootstrap when S varies and U = 1
2. User-specific bootstrap when S = 1 and U varies
3. Joint user-specific and sample bootstraps when both S and U vary

In order to evaluate the coverage of a given bootstrap technique, for each
of the 24 systems, two score data sets are needed: training and test sets.
The training set is used to derive an EPC confidence region. The test

1The last two pieces of information are not available in the database so they are
estimated using a gender and handset classifier.
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user−constrained sample bootstrap (U=1, S  varies)
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Joint bootstrap (S=10,U varies)
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Fig. 2. Average coverage (in %) with respect to the number of bootstrap
samples, over 24 experiments using different variants of bootstrap based
confidence estimates. Each confidence interval is estimated using scores
from 31 users and is tested using scores from another set of 62 users.
Higher coverage implies more confidence on the interval estimate. S is
the number of sample bootstraps and U is the number of user-specific
bootstraps. The X-axis reflects the change due to varying one of these
two parameters. For this example, the maximal coverage obtained is
0.940 when α was set to 0.95. We then repeated another set of exper-
iments but with more training data, i.e., with the scores of 62 users. The
resulting maximal attainable coverage became 0.948. We conjecture that
the discrepency between α and the maximal attainable coverage is pos-
sibly due to the measurement error introduced by the limited number of
observed “training” users when constructing the confidence interval.

set enables us to plot an EPC. Thanks to this EPC, we can measure the
quality of prediction due to the confidence region in terms of coverage.
In this case, coverage is the proportion of the test EPC falling inside the
confidence region. (1 − α)× 100% coverage implies perfect prediction
(since one should not expect a better coverage than what one asked for as
reflected by α). For this experiment, the training set contains the (client
and impostor) scores of 31 users (or more exactly user models), and the
evaluation set contains the scores of 64 users. Note that the users in the
test set are different from those in the training set. In this way, we estimate
a confidence region based on the 31-user data set and evaluate its quality
of prediction, in terms of coverage, based on the 64-user data set. The
four variants of bootstrap algorithms are tested in this way.

Figure 2 shows the effects of varying one of the two free parameters
S and U (on the X-axis). The Y-axis is the average coverage over the 24
systems.

We can make the following observations:

1. The user-constrained sample bootstrap technique has the lowest
coverage.

2. The coverage of the joint bootstrap technique is never lower than
that of the bootstrap subset technique in terms of coverage.

3. The conventional sample bootstrap technique has coverage lower
than the user-specific bootstrap given asymptotically large number
of bootstraps.

4. S, U > 30 are suitable.
5. The joint bootstrap technique and the user-specific bootstrap tech-

nique converge for large U .

Observations one and two confirm our conjecture in Eqn. (14). Obser-
vation three confirms the finding in [9]. Observation four implies that S
and U superior to 30 is sufficient. The last observation implies that for
biometric authentication tasks, the influence of U is more important than

that of S. In other words, as long as U is large (30 or more), the joint
bootstrap procedure is insensitive to different S values.

The average interval width, in terms of HTER units, across all β as
well as over all the 24 systems are {15.15, 11.08, 8.28} for the data sets
with users {31, 62, 124}, respectively. Therefore, more data is needed
in order to increase the precision of the estimate (decreasing the confi-
dence interval). This trend can graphically be observed in Figure 1 as
well. Although Figure 2 shows that one can predict an unseen EPC with
two times more users at a seemingly impressive 95% coverage, this is
achieved with an unsatisfactory large confidence interval of about 15%
HTER. This suggests a need to devise novel algorithms that can narrow
the confidence interval (hence increasing the precision) without demand-
ing more data.

6. CONCLUSIONS

Interpreting a biometric authentication performance curve using a DET/ROC
or EPC curve is problematic because the curve is dependent on the com-
position of users, the number of users and the choice of samples obtained
from each user. We thus proposed a joint bootstrap approach that can
put realistic upper and lower bounds on a priori performance evaluation
based on EPC. The proposed joint bootstrap technique is shown to be
always better than the bootstrap subset technique in terms of coverage.
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