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Abstract: In this paper, we discuss and investigate a new method to estimate local emission probabilities in the

framework of hiddenMarkov models(HMM). Eachfeaturevectoris consideredo bea sequencandis supposedo

bemodeledby yetanothetHMM. Thereforewe call thisapproachHMMZ2'. Thereis avarietyof possibletopologies
of suchHMM2 systemse.g.incorporatingrellis or egodicHMM structuresPreliminaryHMM2 speectrecognition
experimentson cepstrabndspectrafeatures/ieldedworseresultsthanstate-of-the-arsystemsHowever, we believe
that HMM2 systems ha& a lot of potential acantages and are thereforenth investigating further
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1 INTRODUCTION

In automatic speech recognition (ASR), HMMs represent the state-of-the-art for phoneme and word recogni-

tion from sequencesf acousticeaturevectors.ln suchHMMs, the computatiorof thelik elihoodof afeature
vectorgivena certainstateis conventionallyperformedby Gaussiammixture models(GMM) or artificial neu-
ral netvworks (ANN).

This paperinvestigatesa new approactfor HMM statelik elihoodcalculationusingthe modelingpower of
Gaussian distributions and at the same time allowing for more flexibility in the choice of features and inte-
grated training. In fact, instead of using Gaussian distributions or ANNs, we introduce yet another HMM
(denotedinternal HMM™) atthelevel of eachstateof the corventionalHMM (denotedn this context “exter-
nal HMM").

After having described the HMM2 approach in more detail and introduced two particular examples of
HMM2 systemwe will explain potentialadvantage®of the systemandreportinitial resultson its application
to speech recognition as well as frequesgmentation.

2 THEHMM2MODEL

Figure 1 shows an example of an HMM2 system. The external (temporal) HMM emits a sequence of feature
vectors,exactly asa corventionalHMM does.Eachof thesefeaturevectors however, is emittedby theinter-
nal HMM asa sequencef subvectors(seeFigure2). TheinternalHMM thusreplacesGaussiammixture dis-
tributions of conventional HMMs. As the state likelihoods of the internal HMM are again estimated by
Gaussian mixture models (GMM), the HMM 2 approach is in fact a generalization of conventional GMM-
based HMMs. An adapted version of the EM algorithm has already been developed to train HMM?2 systems
(see [1]).

As explained above, an internal HMM is introduced in each state of the external HMM. It is therefore
responsible for estimating the likelihood of a feature vector, given a state of the external HMM. This feature
vectoris cutinto subvectors(denotedn thefollowing “internal featurevectors”).For example,a featurevec-
tor consistingof 45 coeficientscanbe splitinto a seriesof 3 internalfeaturevectors eachof which comprises
15 coeficients.A seriesof 15 3-dimensionainternalfeaturevectors,eachof which coveringa coeficientand
its first and second order derivatives, might be a straightforward choice for commonly applied ASR features.
Pushinghe HMM2 approactto its extremeswe obtaina seriesof 45 1-dimensionainternalvectors whereas
a“series”of 1 45-dimensionainternalfeaturevectoris oneway to capturehespecialcaseof thecorventional

»
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Figure 1. HMM2 system: Integration of the internal HMMs into the states of the external HMM.
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Figure 2: Exampleof a featuie vector of size15 beingdecomposeihto a sequencef 5 3-dimensional
“internal feature vectos”.

Using internal HMMs implies the same assumptions as for processing time series of data with conven-
tional HMMs, notablythatthe seriesof internalfeaturevectorscanbe modeledby afirst orderMarkov model.
However, there is some flexibility in the choice of topology for the internal HMM. Naturaly, it will be influ-
encedby thekind of featuresemployed. An internalHMM canhave fewer or morestateghanthereareinter-
nal feature vectors. If there are more states, paths through an internal HMM will tend to encode some
correlation information between the internal feature vectors. If there are fewer states, the internal HMM will
segmentafeaturevector possiblyinto subbands-equalentunits. Furthermoretheconnectvity of theinternal
HMM has still to be explored. In the following section, we will introduce two particular architectures of the
internalHMM: thehiddenMarkov trellis (having morestateghaninternalfeaturevectors)andthefrequential
HMM (having fewer states).

2.1 Thehidden Markov trellis

The hidden Markov trellis was inspired by earlier work on the wavel et-domain hidden Markov tree [3]. It
modelsa featurevectorby a chainof nodeswhereeachinternalfeaturevectoris assignedo onedistinctnode
(see Figure 3). Each node comprises severa HMM states, and all states from one node are connected to all
statesn thesubsequentodeusingtransitionprobabilities We canview theresultingtrellis asageneralization
of diagonalGMMs, wherecorrelationsdbetweercoeficientsaremodeledn a moretractableandlessparame-
terintensive way compared to full a@riance matrices.

-

node n

-

Figure 3: The hidden Martv trellis: extract showing two nodes emitting two internal featuector

node m

2.2 Thefrequential HMM

While thetrellis modelintroducedabove is suitablefor awide rangeof featuresthe frequentiaHMM is espe-
cially adapted to features in the spectral domain. Typically, coefficients derived from neighboring frequency
bands are not only strongly correlated, but might as well share the same characteristics. Therefore, several
coefficients of afeature vector can be modeled by just one state in the internal HMM. We here chose an
ergodic model as internal HMM, as this is the most general topology (as in Figure 1).
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As spectral features can be seen as sequences of energies in subsequent frequency bands, the frequential
HMM might perform an implicit segmentation of the feature vectors into subband-like units. This particular
property might not only be directly useful for speech recognition, but also opens up new ways in research
directions such as formant tracking and vocal tract normalization for speaker adaptation. When looking at a
spectogram of a vowel, it can be seen that frequency bands of high energy, which correspond to formants,
changewith time duringthe pronunciatiorof this phonemeldeally, theseformantswould be modeledby one
stateof the frequentiaHMM, whereaghe neighboringregionsof lower enegy would be modeledby others.
Subsequent feature vectors could be modeled by the same sequence of internal states, while the actual align-
ment might be slightly diérent and represent the dynamics of speech.

In the samespirit, thefrequentiaHMM could alsoperformsomesortof spealer adaptationFor different
speakers, the spectograms of the same phoneme should show an equivalent structure, but the location of the
formantson the frequeng axis might vary andreflectdifferencesn thevocaltracts.Givenatrainedfrequen-
tial HMM, we might performvocaltractnormalizationjust by changingthe transitionprobabilitiesaccording
to the particular speak characteristics.

2.3 Motivation

We beliere the HMM2 system to la seeral potential adantages, such as:

« Better modeling of the correlation across feat@etar components: Contrarily to GMM-based systems,
wherewe usuallymake theassumptiorthatthefeaturevectorcomponentsreuncorrelatedye hereonly
assume that a sequence of\adtors can be modeled by a 1st order HMM.

* Modeling of the dynamics of the signal by implicit nonlinear freqyewvarping and better modeling of
the underlying time/frequemcstructure: As described alm ragions of high engy are not stationary in
one frequeng band, and furthermore depend on theal tract characteristics of a speakVhile both
GMM and ANN based systems digaed these dynamics, thean be captured by HMM2. The assign-
mentof subrectorsto internalHMM statesby the Viterbi algorithmcould producea frequeny segmenta-
tion correspondingo formantregions. TheHMM2 systencouldthereforepossiblybe usedfor implicit or
explicit formant tracking as well aoeal tract normalization.

* More modeling capabilities with a parsimonious number of parameters: As there are genesally man
pathsthroughtheinternalHMM, parametersnaybesharedoy sulvectorsin aflexible way. This parame-
ter sharing is data-dren and geerned by the internal HMM'transition probabilities.

3 PRELIMINARY RECOGNITION EXPERIMENTS

3.1 Database and feature extraction

The OGI Numbers95 corpus [2] was used throughout. Its vocabulary comprises 30 words, and there are 27
phonemesExperimentsverecarriedout on two differentkindsof featuresMFCC andlog Rasta-PLPpectra.
MFCC featurevectorsconsistedf 13 coeficients(including enegy). Spectralsubtractionrandcepstraimean
subtraction were applied. Rasta-PL P feature vectors had 15 coefficients. In both cases, first and second order
derivatives of the features were used too, tripling the number oficieets as gien abee.



IDIAP-RR 00-30 5

3.2 Reference system

The experiments described in the following sections cannot be compared directly to our GMM baseline sys-
tems (yielding aword error rate (WER) of 5.4% on the development test set) as, for practical reasons, some
modifications had to be made. Firstly, we did not employ integrated EM training. Previously segmented data
(obtainedby usingthe baselinesystem)wasusedthroughout allowing the externalandinternalHMMs to be
trained separately. Secondly, we only used monophone models although triphone models show much better
results in our baseline system. However, as in the baseline system, the 3 emitting states of each monophone
modeldo not shareparametersThirdly, the numberof Gaussianpermixturewasnot optimizedbut choserin
order to obtain a comparable number of parameters of reference and HMM2 systems.

The reference system for MFCC features uses mixtures of 6 multivariate Gaussians in each state. Taking
into account the above described restrictions, our MFCC reference system yields frame error rate (FER) of
30.1% and aword error rate (WER) of 11.5% (both on the development test set). The reference system for
Rasta-PLBpectrafeaturegperforms evenwith a highernumberof Gaussiangwe used24), worse yieldinga
FER of 44.9% and a WER of 19.6%.

3.3 HMM2realization

As describedhbove, we have 27 (external)monophonanodels eachof which comprise3 emittingstatesj.e.
3internalHMMs. Thereforewe have atotal of 81 internalHMMSs. For cepstraindspectrafeaturesdifferent
topologiesfor theinternalHMM weretested . The modelsweretrainedusingthe state-sgmentedat the level
of theexternalHMM) Numbers93rainingdata.For thetraining of theinternalmodelsthe EM algorithmwas
used.

3.4 Experimentswith cepstral features

Mel frequeng cepstralcoeficients(MFCC) have shavn very competitive performancen speeclrecognition
systems based on GMMs and can be seen as state-of-the-art ASR features. Therefore, they were our first
choice for initial experiments. However, MFCCs of one feature vector are typically not comparable; in fact
their means and variances might vary by several orders of magnitude. Therefore, modeling different cepstral
coeficientsin a singlestatedoesnot seemto be a sensiblechoice.Thetrellis topology to the contrary seems
very appropriate for these features.

Our hiddenMarkov trellis modelcontainsasmary nodesastherearecoeficients(i.e. 13). Eachnodecon-
sists of two states. An internal HMM state emits a three-dimensional vector: a coefficient as well asitsfirst
and second order derivative. The implemented trellis system can be seen as a generalization of our reference
GMM system. The reference system uses mixtures of 6 Gaussians, whereas the trellis system implements 2
mixtures(statespf 3 Gaussianin eachnode.Thereare476 parameterin oneinternalHMM of thereference
system and 618 in a trellis, thefdiience being due to the transition probabilities and Gaussian weights.

Results for both the reference and the trellis system are shown in Table 1. The results on the trellis are
muchworsethanthoseof thereferencesystem Differentstatisticalanalyse$ave beencarriedoutfor boththe
train as well as the development test sets. Comparing per-phoneme recognition rates, most phonemes were
better recognized by the reference system. The confusion matrices of the trellis system show a rather similar
pattern compared to those of the reference system. In terms of likelihood mean, likelihood ratio and relative
entropy calculated over all phonemes, the trellis system seems to highly outperform the reference system.
However, these measures cal culated on each phoneme separately show that only very few phonemes of the
trellis system perform better compared to the reference system. This difference is due to large variations (of
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ordersof magnitude)of thelikelihoods.In fact,the medianof thelikelihoodsshows thatthe referencesystem
is the better one in grcase.

FER- | WER-| FER- | WER-
train | train | devt devt

reference system | 29.4 | 9.4 30.1 | 11.6

Table 1: Comparisorof HMM2 trellis systento refelence
system:Frame error rate (FER) and word error rate
(WER)on Numbes95full train and developmentestsets
(denoted “tmin” and “devt” r espectively).

3.5 Experimentswith spectral features

When using features from the spectral domain in GMM-based automatic ASR, recognition performance is
generally much worse than with orthogonalized features. However, in certain cases spectral features are still

preferablelf, e.g.,thesignalis distortedby band-limitednoise,this noisewill bespreadverall cepstrakoef-
ficients,whereasnostof the spectralcoeficientsremainclear For the experimentsdescribedelow, we used
log Rasta-PLPspectrahroughoutThefrequentiaHMM seemdo be the obvious choicefor the topologyfor

the internal model.

Differenttopologiesfor thefrequentiaHMM weretested.The besttestedinternalHMM compriseseven
statesandhasan ergodictopology Thereis a mixture of 10 Gaussianen eachstate.TheinternalHMM emits
a sequence of 3 15-dimensional internal feature vectors. Table 2 shows results for different topologies of the
internal HMM on the Numbers95 development test set. Analyses of these results again show generally better

FER-dert WER-dest
reference system 44.9 19.6

HMM2 (frequential) 50.2 32.8

Table 2: Comparisorof refeenceand HMM2 frequential
systemdor Rasta-PLPspecta: Frameerror rate (FER)
and word error rate (WER) on Numbes95 full

development test sets.

per-phoneme recognition rates for the reference system. Likelihood mean, median, ratio and relative entropy
calculatedover all phonemesgavor all HMM2, but the differencebetweerthe overall medianss rathersmall.
Looking at each phoneme separatélipecomes obious that the reference system is the better one.

4 PRELIMINARY ANALYSISOF FREQUENCY SEGMENTATION
BY HMM2

As for the experimentadescribedn the previous section we usedthe Numbers95latabasandlog Rasta-PLP
features. We trained just one internal HMM on all the data assigned to the phoneme ‘iy’. This internal HMM
comprises 4 states and has and ergodic topology, exactly as shown in Figure 1. A sequence of 15 3-dimen-
sional internal feature vectors (each consisting of one coefficient as well asits first and second order deriva-
tives)is emitted.Givenatrainedmodel,we apply the Viterbi algorithmin orderto obtainan alignmentat the
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Figure 4: Stateoccupationof the internal HMM for ead coeficient, calculatedon three data subsetof
phonemay, correspondingo the beginning centerandendof thephonemeThe4 differentshadesf the
bars corespond to the 4 states of the model.

level of theinternalHMM statesFor statisticalanalysisthe dataof all examplesof phonemeéiy’ wereagain
segmentednto 3 subsetgcorrespondingo the 3 statesf theexternalHMM). Sotherearethreedatasetsrep-
resenting the lggnning, the centeand the end of the phoneme respetyi

Figure4 shavs the histogram®f stateoccupationgor eachcoeficientandeachdatasubsetlt canbeseen
that the first few coefficients are mostly emitted by one state (white bar in the figure). The number of coeffi-
cients emitted by that state seems to increase with time (for the beginning of the phoneme, the white state
emits only the first two coefficients, while towards the end it makes a considerable contribution for al coeffi-
cients). At the beginning of the phoneme, another state (displayed in black) seems to be responsible for the
third coefficient. The importance of this state decreases with time, and its contribution at the end of the pho-
neme is negligible. In summary, we can see that, although the internal HMM employed here has an ergodic
topology somestructuralinformationis extractedby thefrequentialsegmentationThis resultstill needgo be
further analyzed.

5 CONCLUSIONS

In this article, we introduced HMM?2 as a novel way to estimate HMM emission probability. We integrated
internalHMMs in eachstateof temporaHMMs. Differenttopologiesof theinternalHMM wereinvesticated,
andexperimentavererunwith cepstrabndspectrafeaturesA preliminaryanalysisof thefrequengy segmen-
tation performedby HMM2 wasdone.While initial speectrecognitionresultswerefoundnotto be competi-
tive with conventional state-of-the-art HMMs, the HMM2 systems could extract some structural information
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from the data. Therefore, we believe that this approach provides us with a new framework with alot of poten-
tial advantages, as described in section 2.3.

In future, we plan to further investigate the HMM2 approach for speech recognition. An optimal parameter
set has not been found yet, and there might be topologies more suitable for ASR features than those tested so
far. Furthermore, the relationship of the HMM2 system with formant tracking and vocal tract normalization
should be explored. It hasto be investigated whether an internal HMM isindeed able to represent formant-like
structures and what the topology of such an HMM would be. Finally, ways of integrating such information
into a (multi-stream) speech recognition system should be explored.
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