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Abstract: In this paper, we discuss and investigate a new method to estimate local emission probabilities in the
framework of hiddenMarkov models(HMM). Eachfeaturevectoris consideredto bea sequenceandis supposedto
bemodeledby yetanotherHMM. Therefore,wecall thisapproach‘HMM2’. Thereis avarietyof possibletopologies
of suchHMM2 systems,e.g.incorporatingtrellis or ergodicHMM structures.PreliminaryHMM2 speechrecognition
experimentsoncepstralandspectralfeaturesyieldedworseresultsthanstate-of-the-artsystems.However, webelieve
that HMM2 systems have a lot of potential advantages and are therefore worth investigating further.
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1 INTRODUCTION
In automatic speech recognition (ASR), HMMs represent the state-of-the-art for phoneme and word recogni-
tion from sequencesof acousticfeaturevectors.In suchHMMs, thecomputationof thelikelihoodof a feature
vectorgivena certainstateis conventionallyperformedby Gaussianmixturemodels(GMM) or artificial neu-
ral networks (ANN).

Thispaperinvestigatesanew approachfor HMM statelikelihoodcalculation,usingthemodelingpowerof
Gaussian distributions and at the same time allowing for more flexibility in the choice of features and inte-
grated training. In fact, instead of using Gaussian distributions or ANNs, we introduce yet another HMM
(denoted“internalHMM”) at thelevel of eachstateof theconventionalHMM (denotedin this context “exter-
nal HMM”).

After having described the HMM2 approach in more detail and introduced two particular examples of
HMM2 system,we will explain potentialadvantagesof thesystemandreportinitial resultson its application
to speech recognition as well as frequency segmentation.

2 THE HMM2 MODEL
Figure 1 shows an example of an HMM2 system. The external (temporal) HMM emits a sequence of feature
vectors,exactly asa conventionalHMM does.Eachof thesefeaturevectors,however, is emittedby theinter-
nal HMM asa sequenceof subvectors(seeFigure2). TheinternalHMM thusreplacesGaussianmixturedis-
tributions of conventional HMMs. As the state likelihoods of the internal HMM are again estimated by
Gaussian mixture models (GMM), the HMM2 approach is in fact a generalization of conventional GMM-
based HMMs. An adapted version of the EM algorithm has already been developed to train HMM2 systems
(see [1]).

As explained above, an internal HMM is introduced in each state of the external HMM. It is therefore
responsible for estimating the likelihood of a feature vector, given a state of the external HMM. This feature
vectoris cut into subvectors(denotedin thefollowing “internal featurevectors”).For example,a featurevec-
tor consistingof 45coefficientscanbesplit into aseriesof 3 internalfeaturevectors,eachof whichcomprises
15coefficients.A seriesof 153-dimensionalinternalfeaturevectors,eachof whichcoveringacoefficientand
its first and second order derivatives, might be a straightforward choice for commonly applied ASR features.
PushingtheHMM2 approachto its extremes,weobtainaseriesof 451-dimensionalinternalvectors,whereas
a“series”of 1 45-dimensionalinternalfeaturevectoris onewayto capturethespecialcaseof theconventional
GMM.

Figure 1: HMM2 system: Integration of the internal HMMs into the states of the external HMM.
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Using internal HMMs implies the same assumptions as for processing time series of data with conven-
tionalHMMs, notablythattheseriesof internalfeaturevectorscanbemodeledby afirst orderMarkov model.
However, there is some flexibility in the choice of topology for the internal HMM. Naturally, it will be influ-
encedby thekind of featuresemployed.An internalHMM canhave fewer or morestatesthanthereareinter-
nal feature vectors. If there are more states, paths through an internal HMM will tend to encode some
correlation information between the internal feature vectors. If there are fewer states, the internal HMM will
segmenta featurevector, possiblyinto subbands-equivalentunits.Furthermore,theconnectivity of theinternal
HMM has still to be explored. In the following section, we will introduce two particular architectures of the
internalHMM: thehiddenMarkov trellis (having morestatesthaninternalfeaturevectors)andthefrequential
HMM (having fewer states).

2.1 The hidden Markov trellis

The hidden Markov trellis was inspired by earlier work on the wavelet-domain hidden Markov tree [3]. It
modelsa featurevectorby achainof nodes,whereeachinternalfeaturevectoris assignedto onedistinctnode
(see Figure 3). Each node comprises several HMM states, and all states from one node are connected to all
statesin thesubsequentnodeusingtransitionprobabilities.Wecanview theresultingtrellis asageneralization
of diagonalGMMs, wherecorrelationsbetweencoefficientsaremodeledin a moretractableandlessparame-
ter-intensive way compared to full covariance matrices.

2.2 The frequential HMM

While thetrellis modelintroducedabove is suitablefor awiderangeof features,thefrequentialHMM is espe-
cially adapted to features in the spectral domain. Typically, coefficients derived from neighboring frequency
bands are not only strongly correlated, but might as well share the same characteristics. Therefore, several
coefficients of a feature vector can be modeled by just one state in the internal HMM. We here chose an
ergodic model as internal HMM, as this is the most general topology (as in Figure 1).

Figure 2: Exampleof a feature vectorof size15 beingdecomposedinto a sequenceof 5 3-dimensional
“internal feature vectors”.

Figure 3: The hidden Markov trellis: extract showing two nodes emitting two internal feature vector.

node n

node m
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As spectral features can be seen as sequences of energies in subsequent frequency bands, the frequential
HMM might perform an implicit segmentation of the feature vectors into subband-like units. This particular
property might not only be directly useful for speech recognition, but also opens up new ways in research
directions such as formant tracking and vocal tract normalization for speaker adaptation. When looking at a
spectogram of a vowel, it can be seen that frequency bands of high energy, which correspond to formants,
changewith time duringthepronunciationof this phoneme.Ideally, theseformantswould bemodeledby one
stateof thefrequentialHMM, whereastheneighboringregionsof lower energy would bemodeledby others.
Subsequent feature vectors could be modeled by the same sequence of internal states, while the actual align-
ment might be slightly different and represent the dynamics of speech.

In thesamespirit, thefrequentialHMM couldalsoperformsomesortof speaker adaptation.For different
speakers, the spectograms of the same phoneme should show an equivalent structure, but the location of the
formantson thefrequency axismight vary andreflectdifferencesin thevocal tracts.Givena trainedfrequen-
tial HMM, we might performvocaltractnormalizationjust by changingthetransitionprobabilitiesaccording
to the particular speaker characteristics.

2.3 Motivation

We believe the HMM2 system to have several potential advantages, such as:

• Better modeling of the correlation across feature vector components: Contrarily to GMM-based systems,
whereweusuallymaketheassumptionthatthefeaturevectorcomponentsareuncorrelated,wehereonly
assume that a sequence of subvectors can be modeled by a 1st order HMM.

• Modeling of the dynamics of the signal by implicit nonlinear frequency warping and better modeling of
the underlying time/frequency structure: As described above, regions of high energy are not stationary in
one frequency band, and furthermore depend on the vocal tract characteristics of a speaker. While both
GMM and ANN based systems disregard these dynamics, they can be captured by HMM2. The assign-
mentof subvectorsto internalHMM statesby theViterbi algorithmcouldproducea frequency segmenta-
tion correspondingto formantregions.TheHMM2 systemcouldthereforepossiblybeusedfor implicit or
explicit formant tracking as well as vocal tract normalization.

• More modeling capabilities with a parsimonious number of parameters: As there are generally many
pathsthroughtheinternalHMM, parametersmaybesharedby subvectorsin aflexible way. Thisparame-
ter sharing is data-driven and governed by the internal HMM’s transition probabilities.

3 PRELIMINARY RECOGNITION EXPERIMENTS

3.1 Database and feature extraction

The OGI Numbers95 corpus [2] was used throughout. Its vocabulary comprises 30 words, and there are 27
phonemes.Experimentswerecarriedoutontwo differentkindsof features:MFCCandlog Rasta-PLPspectra.
MFCC featurevectorsconsistedof 13 coefficients(includingenergy). Spectralsubtractionandcepstralmean
subtraction were applied. Rasta-PLP feature vectors had 15 coefficients. In both cases, first and second order
derivatives of the features were used too, tripling the number of coefficients as given above.
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3.2 Reference system

The experiments described in the following sections cannot be compared directly to our GMM baseline sys-
tems (yielding a word error rate (WER) of 5.4% on the development test set) as, for practical reasons, some
modifications had to be made. Firstly, we did not employ integrated EM training. Previously segmented data
(obtainedby usingthebaselinesystem)wasusedthroughout,allowing theexternalandinternalHMMs to be
trained separately. Secondly, we only used monophone models although triphone models show much better
results in our baseline system. However, as in the baseline system, the 3 emitting states of each monophone
modeldonotshareparameters.Thirdly, thenumberof Gaussianspermixturewasnotoptimizedbut chosenin
order to obtain a comparable number of parameters of reference and HMM2 systems.

The reference system for MFCC features uses mixtures of 6 multivariate Gaussians in each state. Taking
into account the above described restrictions, our MFCC reference system yields frame error rate (FER) of
30.1% and a word error rate (WER) of 11.5% (both on the development test set). The reference system for
Rasta-PLPspectralfeaturesperforms,evenwith ahighernumberof Gaussians(weused24),worse,yieldinga
FER of 44.9% and a WER of 19.6%.

3.3 HMM2 realization

As describedabove,wehave27 (external)monophonemodels,eachof whichcomprises3 emittingstates,i.e.
3 internalHMMs. Therefore,wehaveatotalof 81 internalHMMs. For cepstralandspectralfeatures,different
topologiesfor theinternalHMM weretested.Themodelsweretrainedusingthestate-segmented(at thelevel
of theexternalHMM) Numbers95trainingdata.For thetrainingof theinternalmodels,theEM algorithmwas
used.

3.4 Experiments with cepstral features

Mel frequency cepstralcoefficients(MFCC) have shown very competitive performancein speechrecognition
systems based on GMMs and can be seen as state-of-the-art ASR features. Therefore, they were our first
choice for initial experiments. However, MFCCs of one feature vector are typically not comparable; in fact
their means and variances might vary by several orders of magnitude. Therefore, modeling different cepstral
coefficientsin a singlestatedoesnot seemto bea sensiblechoice.Thetrellis topology, to thecontrary, seems
very appropriate for these features.

OurhiddenMarkov trellis modelcontainsasmany nodesastherearecoefficients(i.e.13).Eachnodecon-
sists of two states. An internal HMM state emits a three-dimensional vector: a coefficient as well as its first
and second order derivative. The implemented trellis system can be seen as a generalization of our reference
GMM system. The reference system uses mixtures of 6 Gaussians, whereas the trellis system implements 2
mixtures(states)of 3 Gaussiansin eachnode.Thereare476parametersin oneinternalHMM of thereference
system and 618 in a trellis, the difference being due to the transition probabilities and Gaussian weights.

Results for both the reference and the trellis system are shown in Table 1. The results on the trellis are
muchworsethanthoseof thereferencesystem.Differentstatisticalanalyseshavebeencarriedout for boththe
train as well as the development test sets. Comparing per-phoneme recognition rates, most phonemes were
better recognized by the reference system. The confusion matrices of the trellis system show a rather similar
pattern compared to those of the reference system. In terms of likelihood mean, likelihood ratio and relative
entropy calculated over all phonemes, the trellis system seems to highly outperform the reference system.
However, these measures calculated on each phoneme separately show that only very few phonemes of the
trellis system perform better compared to the reference system. This difference is due to large variations (of
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ordersof magnitude)of thelikelihoods.In fact,themedianof thelikelihoodsshows thatthereferencesystem
is the better one in any case.

3.5 Experiments with spectral features

When using features from the spectral domain in GMM-based automatic ASR, recognition performance is
generally much worse than with orthogonalized features. However, in certain cases spectral features are still
preferable.If, e.g.,thesignalis distortedby band-limitednoise,thisnoisewill bespreadoverall cepstralcoef-
ficients,whereasmostof thespectralcoefficientsremainclear. For theexperimentsdescribedbelow, we used
log Rasta-PLPspectrathroughout.ThefrequentialHMM seemsto betheobviouschoicefor thetopologyfor
the internal model.

Differenttopologiesfor thefrequentialHMM weretested.ThebesttestedinternalHMM comprisesseven
statesandhasanergodictopology. Thereis a mixtureof 10 Gaussiansin eachstate.TheinternalHMM emits
a sequence of 3 15-dimensional internal feature vectors. Table 2 shows results for different topologies of the
internal HMM on the Numbers95 development test set. Analyses of these results again show generally better

per-phoneme recognition rates for the reference system. Likelihood mean, median, ratio and relative entropy
calculatedover all phonemesfavor all HMM2, but thedifferencebetweentheoverall mediansis rathersmall.
Looking at each phoneme separately, it becomes obvious that the reference system is the better one.

4 PRELIMINARY ANALYSIS OF FREQUENCY SEGMENTATION
BY HMM2

As for theexperimentsdescribedin theprevioussection,weusedtheNumbers95databaseandlog Rasta-PLP
features. We trained just one internal HMM on all the data assigned to the phoneme ‘ iy’ . This internal HMM
comprises 4 states and has and ergodic topology, exactly as shown in Figure 1. A sequence of 15 3-dimen-
sional internal feature vectors (each consisting of one coefficient as well as its first and second order deriva-
tives)is emitted.Givena trainedmodel,we applytheViterbi algorithmin orderto obtainanalignmentat the

FER-
train

WER-
train

FER-
devt

WER-
devt

reference system 29.4 9.4 30.1 11.6

HMM2 (trellis system) 37.0 17.9 37.5 19.5

Table 1: Comparisonof HMM2 trellis systemto reference
system:Frame error rate (FER) and word error rate
(WER)on Numbers95full train anddevelopmenttestsets
(denoted “train” and “devt” r espectively).

FER-devt WER-devt

reference system 44.9 19.6

HMM2 (frequential) 50.2 32.8

Table 2: Comparisonof referenceandHMM2 frequential
systemsfor Rasta-PLPspectra: Frameerror rate (FER)
and word error rate (WER) on Numbers95 full
development test sets.
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level of theinternalHMM states.For statisticalanalysis,thedataof all examplesof phoneme‘iy’ wereagain
segmentedinto 3 subsets(correspondingto the3 statesof theexternalHMM). Sotherearethreedatasetsrep-
resenting the beginning, the center, and the end of the phoneme respectively.

Figure4 shows thehistogramsof stateoccupationsfor eachcoefficientandeachdatasubset.It canbeseen
that the first few coefficients are mostly emitted by one state (white bar in the figure). The number of coeffi-
cients emitted by that state seems to increase with time (for the beginning of the phoneme, the white state
emits only the first two coefficients, while towards the end it makes a considerable contribution for all coeffi-
cients). At the beginning of the phoneme, another state (displayed in black) seems to be responsible for the
third coefficient. The importance of this state decreases with time, and its contribution at the end of the pho-
neme is negligible. In summary, we can see that, although the internal HMM employed here has an ergodic
topology, somestructuralinformationis extractedby thefrequentialsegmentation.This resultstill needsto be
further analyzed.

5 CONCLUSIONS
In this article, we introduced HMM2 as a novel way to estimate HMM emission probability. We integrated
internalHMMs in eachstateof temporalHMMs. Differenttopologiesof theinternalHMM wereinvestigated,
andexperimentswererunwith cepstralandspectralfeatures.A preliminaryanalysisof thefrequency segmen-
tationperformedby HMM2 wasdone.While initial speechrecognitionresultswerefoundnot to becompeti-
tive with conventional state-of-the-art HMMs, the HMM2 systems could extract some structural information
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Beginning of phoneme iy
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10000
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Figure 4: Stateoccupationof the internal HMM for each coefficient,calculatedon threedatasubsetsof
phonemeiy, correspondingto thebeginning, center, andendof thephoneme. The4 differentshadesof the
bars correspond to the 4 states of the model.
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from the data. Therefore, we believe that this approach provides us with a new framework with a lot of poten-
tial advantages, as described in section 2.3.

In future, we plan to further investigate the HMM2 approach for speech recognition. An optimal parameter
set has not been found yet, and there might be topologies more suitable for ASR features than those tested so
far. Furthermore, the relationship of the HMM2 system with formant tracking and vocal tract normalization
should be explored. It has to be investigated whether an internal HMM is indeed able to represent formant-like
structures and what the topology of such an HMM would be. Finally, ways of integrating such information
into a (multi-stream) speech recognition system should be explored.
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