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Abstract: This report investigates the HMM2 approach recently introduced in the framework of automatic speech
recognition. HMM2 can be seen as a mixture of HMMs, where a conventional primary HMM (processing a time
seriesof speechdata)is supportedona lower level by asecondaryHMM, workingalongthefrequency dimensionof
a temporal segment of speech. The application of HMM2 to the speech signal is motivated by numerous potential
advantages.However, speechrecognitionresultsdid notshow theexpectedperformanceimprovements.In thispaper,
theHMM2 approachis pragmaticallyanalyzedandevaluatedon speechdata,revealingsomeproblemsandsuggest-
ing potential solutions.
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1 INTRODUCTION
In state-of-the-art automatic speech recognition (ASR), hidden Markov models (HMM) are widely used.
While therearemany suitablealternativesanddesignoptionsfor somepartsof theASR systemssuchasfea-
tureextractionandphonemeprobabilityestimation,HMMs aretheuncontestedmodelfor thetemporaldecod-
ing part. The success of HMMs can (at least partly) be contributed to their ability to easily accommodate
temporal variations such as different durations of phonemes, e.g. due to varying speaking rate or speaker’s
accents.

However, suchvariationsdonotonly occuralongthetimeaxis,but they canalsobeobservedin frequency,
as shown in Figure 1. In the spectograms depicting four different pronunciations of phoneme ‘ay’ (including
somecontext), inter- aswell asintra-speaker variability becomesapparent(compareFigure1(a)with (b), and
Figure1(b) with (c) respectively). Furthermore,Figure1(d) shows thesamephonemepronouncedin a differ-
ent context, revealing the effects of coarticulation. In all sub-figures, it is demonstrated that the position of
spectral peaks may change significantly in the time-frequency plane during the pronunciation of a phoneme.

When using HMMs, we assumehowever that speechsegmentscorrespondingto one phonemeor sub-
phone units are (1) invariable enough to be modeled by the same (mixture) distribution and (2) stationary for
their duration, which obviously is not the case. In an attempt to relax these rather rigid assumptions, and
encouraged by many more practical motivations (as further elaborated in section 2), we recently introduced
the HMM2 approach [11]. A similar approach has previously shown some success in computer vision [3, 6,
10]. HMM2 can be understood as an HMM mixture consisting of a primary HMM, modeling the temporal
properties of the speech signal, and a secondary HMM, modeling the speech signal’s frequency properties. A
secondary HMM is in fact inserted at the level of each state of the primary HMM, estimating local emission
probabilitiesof acousticfeaturevectors(conventionallydoneby Gaussianmixturemodels(GMM) or artificial
neuralnetworks(ANN)). Consequently, anacousticfeaturevectoris consideredasa fixedlengthsequenceof
its components, which has supposedly been generated by the secondary HMM.

In spiteof its numerouspotentialadvantages,HMM2 hasnot yet shown competitive resultsin speechrec-
ognition.Thepurposeof this paperis to investigatein depththeHMM2 approachandits implications.In the
following section,theHMM2 approachwill bemotivated.After having explainedin moredetailhow HMM2
works and how such a system can practically be realized, we will give some speech recognition results. A
thoroughanalysisof thedrawbacksof HMM2 for thisapplicationis followedby abrief revisionof alternative
models in the framework of HMM2.

Figure 1: Spectogramsof differentpronunciationsof thephoneme‘ay’ by differentspeakers and in different
contexts.Dark regionscorrespondto high, light regionsto low energy spectral components.Thevertical axis
is the frequency, the horizontal one the time evolution.

(a) Speaker 1: ‘five’ (b) Speaker 2: ‘five’
(1st occurrence)

(c) Speaker 2: ‘five’
(2nd occurrence)

(d) Speaker 2: ‘nine’
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2 MOTIVATIONS
In the previous section, we motivated HMM2 using real speech examples and explaining the problems
encounteredwhenconventionalHMMs areappliedfor speechrecognition.In summary, HMMs assumepiece-
wise stationarity of the speech signal and do not truly take into account the existing variability along the fea-
ture (frequency) dimension. Using a secondary HMM for the local likelihood estimation, these assumptions
arerelaxed(at leastto somedegree),asa more flexible modeling of the variability and dynamicsinherent
in the speech signal is allowed. For instance, a spectral peak could be modeled by a single state of the fre-
quency HMM, even though its position on the frequency axis is quite variable (as seen in Figure 1). Such a
sparsefrequency HMM topologyalsoallows for efficient parameter sharing. Thenumberof parameterscan
easilybecontrolledby themodeltopologyandtheprobabilitydensityfunctionassociatedwith thefrequency
HMM states.

Furthermore,correlation betweenfeaturevectorcomponentsis not ignored,but supposedto bemodeled
throughthefrequency HMM’ s topology. In fact,HMM2 couldallow a sophisticatedmodelingof theunderly-
ing time-frequency structuresof thespeechsignalandmodelcomplex constraintsin boththetemporalandthe
frequency dimensions.

The secondaryHMM performsautomaticallya non-linear spectral warping. While the conventional
HMM does time warping and time integration, the frequency HMM performs warping and integration along
the frequency axis. This frequency warping has the effect of automatic non-linear vocal tract normaliza-
tion, providing a kind of unsupervised and implicit speaker adaptation (therefore tackling the problem of
inter-speaker variations). With the same mechanism, also intra-speaker variations as well as coarticulation
effects are taken care of.

Furthermore,the HMM2 topology permits implicitly a dynamic formant trajectories tracking . As a
spectral peak (formant) can be modeled by an HMM state and a spectral valley by another, the segmentation
performed by the frequency HMM may be a good indicator for the position of a formant. Formants are
assumedto carrymostdiscriminative informationin thespeechsignal,moreoverbeingquiterobustin thecase
of degraded speech. In [12] it was shown that the frequency HMM is indeed able to extract some meaningful
and even discriminative formant-like structural information.

In thesameline of reasoning,HMM2 canalsobeinterpretedasa dynamic approachto multiband pro-
cessing, whereeachfrequency bandis modeledby onefrequency HMM state.By thatwemeanthateachsuch
stateis supposedto emitastationarysequenceof spectralcomponentsbelongingto acertainsubband.Thefre-
quency position of the subbands would then automatically be adapted to the data, following e.g. formant-like
structures.

We arenow goingto describetheHMM2 approachin somemoredetail,followedby anexperimentaland
an error analysis section.

3 HMM2
HMMs are quite powerful statistical models which are used to represent sequential data, e.g. a sequence of
acoustic vectors in speech recognition1 (as shown in the upper part of Figure 2). As each acoustic vector

canitself beconsideredasafixedlengthsequenceof its components2 , anotherHMM canbe
usedto modelthis featuredimension(displayedin thelowerpartof thefigure).WhiletheprimaryHMM mod-

1. All notations used in this report are explained in Appendix A.
2. By ‘component’wemeanasubvectorof low dimension.For instance,atemporalfeaturevectorof

dimension S is split up into S 1-dimensional subvectors (i.e., a subvector is a coefficient). How-
ever, the extension of this approach to higher-dimensional subvectors (consisting, e.g., of a coeffi-
cient and its first and second time derivatives) is straightforward.

y1
T

yt yt yt 1,
t S,=
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els temporal properties of the speech signal, the secondary, state-dependent HMM is working along the fre-
quency dimension. The secondary HMM is in fact acting as a likelihood estimator for the primary HMM, a
functionwhich is accomplishedby GMMs or ANNs in conventionalsystems.However, thestateemissiondis-
tributions of the secondary HMM are again modeled by GMMs. Consequently, HMM2 is a generalization of
the standard HMM/GMM system (which it includes as a particular case).

HMM trainingis typically basedon theexpectationmaximization(EM) algorithm.A generalizationof the
standardEM algorithmfor HMM2 hasbeenintroducedin [1]. In theframework of this paper, we will investi-
gatein moredetailtheestimationof in theprimaryHMM states.UnderthetypicalHMM assumptions
(i.e. piecewise stationarity and data independence assumptions), the likelihood of an acoustic feature vector
(i.e., a sequence of its components) given the primary HMM state can be expressed as:

(1)

or, using the Viterbi approximation:

(2)

where is theinitial stateprobabilityof thesecondaryHMM, thestatetransitionproba-
bilities of thesecondaryHMM, and thelocal likelihoodsof thedata.Naturally, every termof this
equationis conditionedon thestateof theprimaryHMM. As we useGMMs with diagonalcovariancematri-
cesfor thelikelihoodestimationin thestatesof thesecondaryHMM, thecorrespondinglocalprobabilityden-
sity functions (PDF) are defined as follows:

(3)

p yt qt( )

Figure 2: HMM2 system.In the upperpart, a conventionalHMM, working along the temporal axis,can be
seen.Thelocal emissionprobability calculationis donewith a secondaryHMM, workingalongthefrequency
axis (depicted in the lower part of the figure).
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where K is the number of Gaussian mixtures.

After having described some practical realizations and experimental results of HMM2, we will come back
to these mathematical derivations and investigate in detail their impact on practical implementations of the
HMM2 approach.

4 PRACTICAL REALIZATION AND EXPERIMENTAL RESULTS
There are different ways to realize an HMM2 systems. Figure 3 shows two possibilities. The first realization
(see Figure 3a) is based on the implementation of a generalized form of the standard EM algorithm, as
described in [1]. This is the straight-forward way of realizing HMM2, implementing eq. 1 for the local likeli-
hood estimation.

A second way is to unfold the HMM2 (which, as previously stated, is a kind of HMM mixture) into one
large HMM (as described before in [10, 3], see Figure 3b). State likelihoods of the primary HMM are esti-
mated using eq. 2. For this implementation, synchronization constraints have to be introduced to insure that
exactly one feature vector is emitted between each two transitions in the primary HMM. This requires (1)
additional synchronization states (grey in the figure) and (2) a re-arrangement of the data (as shown in the
lower part of Figure 3b). Out-of-range synchronization components (modeled exclusively by the synchroniza-
tion states) are introduced between the original feature vectors. The transitions between primary HMM states
correspond to transitions between the synchronization states. Standard EM training algorithms (and therefore
well-established tools such as HTK [14], which moreover offers sophisticated functionality especially adapted
to speech recognition problems) can easily be used.

We did preliminary tests with both of the HMM2 systems described above. It was found that they yield a
similar performance on small problems. For practical reasons, all further experiments used the implementation
shown in Figure 3b, realized with the HTK system.

Figure 3: HMM2 realizations: (a) direct implementation and (b) implementation with synchronization
constraints. While the model in (a) is emitting a sequence of feature vectors (as usual), the model in (b) is
emitting a sequence of (low-dimensional) components, intermitted by synchronization components at regular
intervals.

(a) (b)
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Anothermajorconcernwhenworking with HMM2 is thechoiceof thefeatures.We investigateddifferent
representationssuchasfilterbanks,Rasta,andMFCCs.Obviously, for themotivationsoutlinedin section2 to
hold,featuresin thespectraldomainshouldbeemployed(althoughHMM2 mightevenshow someadvantages
with differentfeatures).For mostof ourexperiments,weusedso-calledFF2features[8], whicharefrequency
filtered filterbank coefficients. Compared to MFCCs, these features show only slightly worse speech recogni-
tion resultsonourHTK-basedsystem(this resultappliesto cleandata;however, performancedegradessignif-
icantly in noisyconditions1). In additionto stayingin thespectraldomain(whichalsoofferssomebenefitsnot
further discussed here), FF2 features offer the advantage of being normalized to some degree (possibly large
signal level variations are in fact smoothed out through the differencing).

Thegoalof preliminaryexperimentswasto evaluatetheHMM2 approach.To beableto directly compare
HMM2 with the conventional HMM/GMM system, the topology of the primary HMM was left constant
throughout the tests. Only the likelihood estimation in each primary HMM state was changed.

The Numbers95database(a telephone-quality, small vocabulary, multi-speaker databasecontainingcon-
tinuouslyspokendigits, see[2]) wasusedthroughoutthetests.Eachphoneme(triphone)presentin this data-
base was modeled with a primary HMM containing 3 emitting states. In the baseline system, the local
likelihoods were estimated using a GMM with 10 Gaussian mixtures. For HMM2, several topologies for the
secondary HMM were tested.

In all ourexperiments,asignificantperformancedropwasobservedwhenusingHMM2 (with any second-
ary HMM topology). Speech recognition accuracy decreased significantly as compared to the conventional
HMM/GMM system. This result is consistent for the two different HMM2 realizations described above, and
holds for all kinds of features tested. In the following, we are investigating possible reasons for the observed
degradation.

5 DIAGNOSTICS
Theperformancedropsencounteredin HMM2 requiresomecareful,step-
by-step error analysis. Consequently, we started from a simple secondary
Markov model topology simulating a Gaussian distribution (i.e., here the
Markov model is not hidden), gradually adding complexity. Again, the
primary model topology was left constant. Results are compared to the
conventionalHMM/GMM baselinesystem.Theexperimentsdescribedin
the following give some important cues about drawbacks of the HMM2
approach. Representative results can be found in Appendix B.

• Experiment 1: Simulationof anHMM/GMM with a singleGaussian
distribution. The secondaryMarkov model (MM) hasa strictly top-
down topology without loops. The numberof statesis equal to the
lengthof thesequenceto beemitted(seeFigure4a).As thereis only
onepossiblestatesequence , the Markov model is not hiddenany-
more.Thelocal likelihoodsof thesecondaryMM statesareestimated
with single Gaussiandistributions. As expected,recognitionresults
areequivalentto thoseobtainedwith conventionalHMMs employing
a single Gaussian probability density function in each state.

• Experiment 2: Introductionof Gaussianmixtures(insteadof single
Gaussians)for local likelihoodestimation(seeFigure4b). Here, the
samenot-hiddenMarkov modeltopologyasin experiment1 is used,

1. Unfortunately, in the framework of HMM/GMM, spectral features are usually not competitive
with cepstral features such as MFCCs.

Figure 4: Different frequency
HMM topologies tested for
error analysis.

(a) (b) (c)

R
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but at the level of the secondaryHMM states,the singleGaussiansare replacedby Gaussianmixtures.
Speechrecognitionresultsimproveascomparedto experiment1. However, in comparisonto HMM/GMM
incorporating an equivalent number of Gaussian mixtures, this model performs much worse.

• Experiment 3: RealsecondaryHMM. Comparedto experiment2, thenumberof statesin thesecondary
HMM is reducedandself-transitions(loops)areaddedateachstate.As therearefewerstatesthanemitted
components,thesecondaryMarkov modelbecomeshidden(seeFigure4c). Speechrecognitionaccuracy
decreases as compared to the other systems tested.

In the following, we will try to identify the reasonsfor the lossesencounteredin HMM2. As in these
experiments (and compared to the baseline system) we only changed the local likelihood estimation at the
level of the primary HMM, we will concentrate our theoretical investigation on this part of the system. After
having elaboratedthegeneralmathematicalfoundations,we will investigatethesuitability of themodelgiven
the (speech) data. Furthermore, some peculiarities of the speech signal plus implications on a successful dis-
criminative model are shown.

5.1 Effects of independent modeling of components

Firstly, we will investigatetheeffectsof independentmodelingof componentsin thesecondaryHMM states,
ascomparedto themodelingof theentirevectorin a GMM. For thecaseof frequency HMMs (a) and(b), eq.
1 simplifiesdrastically:asthereis only onepossiblestatesequence throughthemodel,we heredealwith a
‘ normal ’ M arkov model and no l onger w i th a hi dden one. Theref ore, and

for all transition defined through the model topology. For case (a), there is
even only a single Gaussian distribution, and so we obtain from eqs. 1 and 3:

(4)

The above equation is equivalent to the state likelihood estimation in conventional HMM systems where the
distribution is modeled by a single Gaussian. This fact was confirmed by our experimental results.

For case(b) andGaussianmixture distributionsin the secondaryHMM states,the simplified statelikeli-
hood equation is:

(5)

Thisequationbearsasignificantdifferenceascomparedto thedistributionobtainedfor aconventionalGMM:

(6)

It can be seen that a sum of products (in the case of a GMM) has been replaced by a product of sums (in the
caseof asecondaryHMM). Figure5 showstheimplicationsof thesetwo equationsonexampletoy data.It can
beseenthatthedistributionobtainedby theGMM (Figure5b) is quiteirregular. In fact,theshapeof thedistri-
butionobtainedby aGMM is practicallyonly limited by thenumberof mixturesused.For example,theresult-
ing PDF can take an (almost) el l iptical form, whose principal axes are not necessari ly paral lel to the
coordinate system (consider any two of the Gaussians in the figure, and approach their means). On the other
hand,whenmodelingeachfeaturecomponentindependentlyin asecondaryHMM state,eachmixturecompo-
nentin eachstateinfluenceslinearly all mixturecomponentsin all otherstates.Hence,theform of any result-
ing distribution is very restricted, as its principal axes inevitably follow the coordinate system’s orientation.
This is illustrated in Figure 5c. Therefore, correlation can not be modeled as well as in GMMs1.

R
P r0 qt( ) 1=

P rs l= rs 1– m= qt,( ) 1= m l,( )

p yt qt i=( ) p yt R, qt i=( ) 1

2Πσ2
il

---------------------e

1
2
---–

yt s, µil–

σil
-------------------- 

  2

s 1=

S

∏= = rs l=;

p yt qt i=( ) p yt R, qt i=( ) wilk
1

2Πσ2
ilk

------------------------e

1
2
---–

yt s, µilk–

σilk
---------------------- 

  2

k 1=

K

∑
s 1=

S

∏= = rs l=;

p yt qt i=( ) wik
1

2Πσ2
isk

------------------------e

1
2
---–

yt s, µisk–

σisk
----------------------- 

  2

s 1=

S

∏
k 1=

K

∑=



8 IDIAP-RR 01-23

5.2 Effects of the introduction of hidden states

Does this drawback generalize when moving from Markov models to hidden Markov models, or can it be
compensatedthroughsomecorrelationmodelingdueto a suitableHMM topology?In thecaseof realHMMs
(seeFigure4c),eachpossiblepaththroughthemodelcorrespondsto oneGaussiandistribution,hencethesum
over all possible paths corresponds to a Gaussian mixture (with as many mixture components as there are
paths in the model):

(7)

where the respective products of initial and transition probabilities represent the
mixture weights.

However, if onestateemitsseveral components( ), theunderlyingPDF for their data
likelihood estimation is constant (i.e., the Gaussian parameters are shared for the likelihood calculation of all
thosecomponents).Hence,thedistributionswhich canbemodeledby sucha secondaryHMM areagain very
restricted.This factis depictedgraphicallyonatoy examplein Figure6. It canbeseenthattheresultingdistri-
butionobeys thesamerestrictionsastheoneshown in Figure5: it is notpossibleto modeldistributionswhose
principal axes do not follow the coordinate system’s orientation. For the kind of secondary HMM we are
investigatinghere(i.e. top-down topologywith fewer statesthanemittedcomponents),this conclusiongener-
alizes to higher-dimensional data and a higher number of Gaussian mixes.

In conclusion,Figures5 and6 bothshow that featurecorrelationcanbemodeledquitewell by Gaussian
mixture distributions, because they allow any orientation of the principal axes of the data distributions in a
givencoordinatesystem.This is notpossiblewith oursecondaryHMM, because(1) theindependentmodeling
of components in individual HMM states and (2) the parameter sharing (allowed by the stationarity assump-
tion and enforced through looped HMM states) both constrain the resulting distribution to follow the orienta-
tion of the coordinate system. However, i f the data were conform with both the independence and the

1. In fact,thetraditionalmultibandapproachsuffersfrom asimilarhandicap,for whichthefull-com-
bination approach [7] offers a remedy.
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stationarityassumptions,HMM2 couldstill beanappropriatemodel.In thenext section,wewill adoptamore
data-drivenpoint of view towardsHMM2 andinvestigatethepeculiaritiesof thespeechdatain respectto the
above assumptions.

6 EVALUATION ON SPEECH DATA

6.1 Data representation by HMM2

In theprevioussection,we have collectedtheoreticalevidenceof theproblemsencounteredin HMM2. In the
following, we will investigate the implications of our findings on the application of HMM2 to speech data.
Naturally, the HMM2 topology imposes similar assumptions on the data as HMMs conventionally used for
timeseries.As describedabove,thedatausedin anHMM2 systemis assumedto beconditionallyindependent
(i.e., each data component is independent of all other components, given the primary and secondary HMM
states)aswell aspiecewisestationaryalongboththetime andthefrequency axes(i.e.,a few subsequentcom-
ponents are supposed to have been generated by the same probability density function). We now investigate
whether these two assumptions are satisfied and their significance for the speech data representation in
HMM2.

In Figure7, correlationcoefficientsof FF2 featuresarevisualized.It canbe seenthat the dataarecorre-
lated,especiallyneighboringcomponentsin a featurevector(indicatedin thefigureby darker colorsnearthe
diagonal). Figure 8 shows how these correlated data are represented by a GMM and by a secondary HMM.
The models are both trained on real FF2 speech data, and their respective parameters are visualized (in the
samewayasfor thetoy examplein Figure5). In theleft partof thefigure,it canbeseenhow theGMM param-
etersrepresenttheexisting datacorrelation.However, theHMM, shown in theright part,is not ableto repro-
duce an appropriate data distribution. Although there are many suitable methods which orthogonalize data to
some extent, completely uncorrelated features do not (yet) exist in the domain of ASR1. This fact alone does
not favor HMM2 in the domain of speech.
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The validity of the stationarityassumptionis harderto fully prove or reject.Figure9 shows an example
pronunciationof phoneme‘ay’. It canbeseenthatthepiecewisestationaryassumptionis notentirelysatisfied.
Nevertheless,it is intuitively (andpractically, usinga clusteringalgorithm)possibleto segmentthis represen-
tationalongthe(horizontal)frequency axisin afew quasi-stationarysectors,whichcouldsubsequentlyberep-
resented by the same PDF.

Even if the assumptionof piecewise stationarity is to some
degree satisfied, there is another implication of this assumption. Up
to this point,we have investigatedtheability of HMM2 to represent
speech data, and we have stated some deficiencies of this approach
in this respect. However, the goal in speech recognition is discrimi-
nation between phonetical units. In the following, we will examine
the ability of HMM2 for discrimination.

6.2 Data discrimination by HMM2

It is widely acknowledged that spectral peaks (formants) contain
important discriminant information [4, 13]. On the other hand,
HMMs have already been applied to formant tracking [5]. If, as
elaborated in section 2, the secondary HMM’s frequency segmenta-
tion somehow reflects formant positions, this segmentation alone
might represent rather discriminative information.

We conductedsomeexperimentsin orderto find out thesignifi-
cance of the frequency HMM’s segmentation, using a variant of the
HMM2 approach: the secondary HMM is not used as a state likeli-
hood estimator for the primary HMM, but instead as a feature
extractor [12]. One secondary HMM with top-down topology and
four loopedstateswastrainedonall thetrainingdataof ourdatabase
(regardless of their labeling). Then, the Viterbi algorithm was used to segment each original feature vector
alongthefrequency axis.Theresultingsegmentationconsistedsimply of 3 values,indicatingtheindex of the
feature component (in the original acoustic vector) after which a transition from one state of the secondary

1. Even the correlation coefficients of (the supposedly decorrelated) MFCC are quite comparable to
those of FF2 (shown in Figure 7), with the difference of a lower correlation near the diagonal.
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trained GMM, (b) the equivalenttrained Markov model (only two
dimensionsare displayed).In either case, there are mixtures of 3
Gaussians.While in (a) datacorrelationbecomesobvious,it cannot
be seen in (b).
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energies in the case of FF2 features).
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HMM to thenext took place.In Figure10, themeansof 2 of thesesegmentationvalues(theonescorrespond-
ing to spectralpeaks)aredisplayedfor anumberof voicedphonemesfrom ourdatabase.Thisfigureis related
to the F1-F2 plane, where vowels are positioned according to their formant frequencies (as, e.g., described in
[9]). It was shown that the segmentation values indeed contain discriminative information: a conventional
HMM wastrainedon low-dimensionalvectorsobtainedfrom theserathercrude‘formant features’,andword
recognition rates of over 56% were reached.

This remarkableresult proves that the
secondary HMM’s segmentation has a cer-
tain potential for discrimination. On the
other hand, the results obtained with the
original HMM2 system (where the second-
ary HMM was used as a likelihood estima-
tor) show that in this approach, we cannot
make use of this discriminative property,
andimportantinformationseemsto belost.
In that respect, HMM2 seems to suffer
from the same problem as encountered in conventional HMMs: an imbalance between the contributions of
HMM state likelihoods and transition probabilities to the estimation of the overall likelihood1 (even though
thiseffect is somewhatdiminisheddueto thelower featuredimensionin thesecondaryHMM). Consequently,
theprimaryHMM statelikelihoodsdo only insignificantly(if at all) reflectthesegmentationproducedby the
secondaryHMM. Theimprovedflexibility of themodeldueto thehighnumberof pathsthroughthefrequency
HMM leads to a loss of discriminability (because of the loss of information concerning formant positions),
which may rule out the potential gain through the frequency warping.

7 ALTERNATIVE MODELS
Giventheproblemsidentifiedin theprevioussections,is therestill hopefor theHMM2 approach?Concluding
from our findings, a successful HMM2 system would have to

• better consider data dependencies (as long as truly decorrelated features are not available) and

• assurethatdiscriminability is maintained,e.g.that informationaboutthepositionof spectralpeaksin the
speech signal is not lost.

In the following, we briefly propose some alternatives in the framework of HMM2, offering partial solutions
regarding the requirements outlined above.

Rememberingthat the conventionalHMM/GMM systemsarea specialcaseof HMM2, we could realize
thefollowing scenario:a GMM is modeledwith a frequency HMM, asshown in Figure11a.Then,additional
transitionscanbeadded(seeFigure11b).Thiswould increasethemodelflexibility , but at thesametimemain-
tain some information about formant positions. Furthermore, as in a GMM, some data correlation could be
modeled (the model should be at least as ‘good’ as a GMM, because, in the case that the newly added transi-
tions do not help, their assigned probabilities after training should be 0). Experiments with such a ‘ trellis’
model have however shown worse performances as compared to GMM. This is likely to be the effect of a

1. Togetherwith theeffectsof theHMM’ sinherentexponentialdurationprobabilitydistribution,this
leadsin conventionalHMMs (aswell asin ourprimaryHMM) to apoordurationmodeling.How-
ever, these problems play in the conventional case only a subordinate role. On the one hand, the
poordurationmodelingcanbecompensatedfor, e.g.throughlexical andgrammaticalrestrictions
in combinationwith wordentrancepenalties.On theotherhand,thedurationof aphonememight
not be an essential cue for discrimination, as this parameter varies considerably (depending on
non-discriminant features such as the speaking rate).
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tation valuesof the secondary
HMM for different phonemes.
These values correspond to
spectral peaks (formants) in
thesignal.Thefigure is related
to the formant-spacerepresen-
tation of phonemesin the F1-
F2 plane.
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reduced discrimination capacity (in spite of the potentially increased descripitve power of the model) due to
theimprovedmodelflexibility: not only thephonemesmight bebetterrepresentedby their respective models,
but also(possiblyto agreaterextent)all otherdata.Here,discriminanttrainingmayoffer asolution.However,
most of the motivations given in section 2 do not hold for these systems. Having many states does not allow
for anefficient parametersharing.Frequency warping(andthereforenon-linearvocal tractnormalizationand
dynamicformanttrajectorytracking)wouldonly indirectly, if atall, berealized.Furthermore,thehighnumber
of states leads to an increased model complexity, and thus computation time quickly becomes an issue. This
reasoningalsoappliesto asimilarsystemincorporatingalot of statesin anergodicsecondaryHMM topology.

If stayingwith thetop-down andloopedfrequency HMM topologyasoriginally introduced(anddepicted
in Figure 2), alternative design options which possibly improve the performance of an HMM2 system include

• Emitting fr equencycontext. Insteadof emittingjustonecoefficientateachfrequency step,thesecondary
HMM couldemit a vectorconsistingof this coefficient andits neighbors.Thereby, somecorrelation(near
thediagonal)couldbemodelthroughtheGMMs in thesecondaryHMM states.Suchasystemhasalready
been tested without much success.

• Impr ove the influence of transition probabilities. This could be doneby reducingthe influenceof the
secondaryHMM statelikelihoodsduring the estimationof the likelihoodof a featurevector. Onecould
evengo asfar asto, oncea ‘bestpath’ throughthesecondaryHMM is calculatedusingtheViterbi algo-
rithm, discardtheselocal likelihoods,justusingthetransitionprobabilitiesin thefurthercomputation.This
approachis likely to amelioraterecognitionresults,asthepositionof formantregionswould have some-
what more influenceon the primary statelikelihood,possiblyresultingin an improved discrimination.
However, the problemof the insufficient correlationmodelingpersistsand is likely to limit the perfor-
mance of the model.

• Emit additional fr equencyinformation. This is anotherway to make the frequency HMM model the
positionsof thespectralpeaks.Eachvectoremittedby thesecondaryHMM is augmentedby a coefficient
indicatingthepositionof thisvectoronthefrequency axis.As in thepreviousoption,correlationis still not
thoroughly considered. Recognition performance was improved but is still limited by this deficiency.

All of thealternative modelsproposedabove offer a partial rectificationto theHMM2 problemsstatedin
theprevioussections.Evenso,theireffectivenesshasyet to beshown. Thepossiblymostpromisingvariantof
HMM2 is however the one already introduced in section 6.2, where the frequency HMM is used as a feature
extractor. The resulting features represent formant-like structures, and when they are combined with state-of-
the-art features such as MFCCs, speech recognition robustness has shown to improve significantly [12].

8 CONCLUSION
This paperwasconcernedwith theHMM2 approach,wherea secondaryHMM is usedto estimatelocal state
likelihoods of a primary HMM, hence replacing Gaussian mixture models used in conventional HMMs. In
spite of numerous strong motivations in favour of HMM2, experiments (using two different HMM2 realiza-
tions) did not show the expected results. The purpose of this paper was to outline theoretical and practical
problems occurring when using HMM2 for speech recognition. Two major handicaps could be stated, con-

Figure 11: In (a), a frequency HMM simulating a GMM is shown.
Each vertical branch corresponds to one Gaussian mixture. (b)
shows the extension of this model to a trellis topology.(a) (b)



IDIAP-RR 01-23 13

cerning the representative and discriminative abilities of the model respectively. It was found that the HMM2
approach suffers notably from

• themismatchbetweenthemodelcapacityandtherealdistribution of thedata,dueto theunsatisfiedinde-
pendence assumption and

• a reductionof discriminabilitydueto its (in somerespect)higherflexibility andtheignoranceof important
information such as formant positions.

Consequently, presentdatacorrelationcannotbemodeled,andpossiblyimportantinformationaboutpositions
of spectral peaks is basically lost. Some variants of the HMM2 approach offer partial solutions to the above
problems, but non of them has as yet shown to be really successful in speech recognition. Although the sec-
ondaryHMM’ s topology(andthevaluesof thetransitionprobabilities)might reflectsomecorrelationaswell
as formant structure information, GMMs seem to be the more suitable model for phoneme discrimination
(compared to our present HMM2 system).
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Appendix A: Notations and Abbreviations

General Notations
designate a temporal HMM state
number of Gaussian mixtures

-th mixture component
designate a frequency HMM state
Number of temporal states
Number of frequency states in temporal state
probability
probability density function
set of all possible paths in primary HMM
temporal HMM state at time step
set of all possible paths in secondary HMM
frequency HMM state at frequency step
feature vector dimension (or number of components in each feature vector respectively)
frequency step
length of acoustic feature vector sequence
time step
weight of -th Gaussian mixture
observed feature vector at time step
observed feature vector sequence from time step to
observed feature component at frequency step  of time step
mean of -th Gaussian mixture of the-th temporal and the-th frequency HMM state
variance of -th Gaussian mixture of the-th temporal and the-th frequency HMM state

Abbreviations
ANN artificial neural network
ASR automatic speech recognition
FF2 second order frequency filtered filterbanks
GMM Gaussian mixture model
HMM hidden Markov model
HMM/GMM HMM employing GMM for local likelihood estimation
HMM/ANN HMM employing ANN for phoneme emission probability estimation
MFCC mel frequency cepstral coefficient
MM Markov model
PDF probability density function
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Appendix B: Experimental Results
In the following, some representative experimental results are given. They were obtained using an HMM2
realization with synchronization states, implemented in the HTK system. As database, Numbers95 was used
throughout. Spectral features with 11 FF2 (delta-frequency) coefficients and one filterbank energy, plus their
first andsecondordertimederivatives,wereused.Theexperimentalsettingsweresuchasto keepamaximum
conformance to the baseline system, in order to directly compare performances. Each primary HMM had 3
emittingstatesanda left-right topology. For thebenefitof higherrecognitionrates,theenergy coefficient and
time derivatives have been kept, although they caused some practical inconvenience in the HMM2 system.
Eachcoefficientwasgroupedwith its timederivativesinto a3-dimensionalfeaturevector, supposedlyemitted
by a secondary HMM state. The energy subvector was treated separately in an independent state without
loops.

Thetablebelow shows word errorrates(andin bracketsthenumberof parametersusedto modelthedata
distribution in each primary HMM state) of the different systems, for different training steps. Training was
startedon 27 monophonemodelswith singleGaussiandistributions(first line in thetablebelow). Thesewere
subsequently split up to mixtures of 10 Gaussians (second line), and finally 80 triphone models were created
(lastline). In thefirst columnof thetable,theFF2baselineperformanceis shown. Theoverall word errorrate
on an independent test set is 6.7% (which compares to 5.7% on MFCC features). The second column shows
the results for systems such as described in section 5, experiments 1 and 2: the secondary Markov model
(MM) is nothidden.Comparinglines1 and2 of thefirst two columns,it canbeseenthattherelative improve-
ment when introducing Gaussian mixtures is not as significant as in the HMM/GMM case. The third column
shows theHMM2 performance.In thiscase,thesecondaryHMM is composedof 4 emittingstatesin a looped
top-down topology, one additional state exclusively for the energy subvector, and 2 synchronization states.
Emittingadditionalfrequency information(assuggestedin section7) yieldsaworderrorrateof 15.9%.It can
be stated that HMM2 generally has the highest word error rates.

HMM/GMM HMM/MM HMM2

1 Gaussian, monophones 22.2 (66) 21.8 (66) 41.9 (30)

10 Gaussians, monophones 12.5 (670) 18.3 (760) 31.6 (358)

10 Gaussians, triphones 6.7 11.4 20.5

Table 1: Word error rates (and number of parameters in a primary HMM
state) on baseline HMM/GMM, HMM/MM and HMM2 systems.


