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Abstract: This report investigates the HMM2 approach recently introduced in the framework of automatic speech
recognition. HMM2 can be seen as a mixture of HMMs, where a conventional primary HMM (processing a time
seriesof speectdata)is supportedn alower level by a secondarHMM, working alongthefrequeny dimensionof
atempora segment of speech. The application of HMM?2 to the speech signal is motivated by numerous potential
adwantagesHowever, speechrecognitionresultsdid not shav the expectedoerformancemprovementsin this paper

the HMM2 approachs pragmaticallyanalyzedandevaluatedon speectdata,revealingsomeproblemsandsuggest-
ing potential solutions.
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1 INTRODUCTION

In state-of-the-art automatic speech recognition (ASR), hidden Markov models (HMM) are widely used.

While therearemary suitablealternatvesanddesignoptionsfor somepartsof the ASR systemsuchasfea-
tureextractionandphonemeprobabilityestimationHMMs arethe uncontestednodelfor thetemporaldecod-
ing part. The success of HMMs can (at least partly) be contributed to their ability to easily accommodate
temporal variations such as different durations of phonemes, e.g. due to varying speaking rate or speaker’s
accents.

However, suchvariationsdo notonly occuralongthetime axis, but they canalsobeobseredin frequeng,
as shown in Figure 1. In the spectograms depicting four different pronunciations of phoneme ‘ay’ (including
somecontext), inter aswell asintra-speakr variability becomespparen{compare~igure 1(a) with (b), and
Figure1(b) with (c) respectiely). FurthermoreFigure 1(d) shavs the samephonemepronouncedn a differ-
ent context, revealing the effects of coarticulation. In all sub-figures, it is demonstrated that the position of
spectral peaks may change significantly in the time-frequglatie during the pronunciation of a phoneme.

When using HMMs, we assumehowever that speechsegmentscorrespondingo one phonemeor sub-
phone units are (1) invariable enough to be modeled by the same (mixture) distribution and (2) stationary for
their duration, which obviously is not the case. In an attempt to relax these rather rigid assumptions, and
encouraged by many more practical motivations (as further elaborated in section 2), we recently introduced
the HMM2 approach [11]. A similar approach has previously shown some success in computer vision [3, 6,
10]. HMM2 can be understood as an HMM mixture consisting of a primary HMM, modeling the temporal
properties of the speech signal, and a secondary HMM, modeling the speech signal’s frequency properties. A
secondary HMM isin fact inserted at the level of each state of the primary HMM, estimating local emission
probabilitiesof acoustideaturevectors(corventionallydoneby Gaussiamixture models(GMM) or artificial
neuralnetworks (ANN)). Consequentlyanacousticfeaturevectoris consideredsa fixedlengthsequencef
its components, which has supposedly been generated by the secondary HMM.

In spiteof its numerougotentialadvantagesHMM2 hasnot yet shovn competitive resultsin speechrec-
ognition. The purposeof this paperis to investigatein depththe HMM2 approachandits implications.In the
following sectionthe HMM2 approactwill be motivated.After having explainedin moredetailhov HMM2
works and how such a system can practically be realized, we will give some speech recognition results. A
thoroughanalysisof the dravbacksof HMMZ2 for this applicationis followedby a brief revision of alternatve
models in the framwork of HMM2.

(a) Speaér 1: five’ (b) Speakr 2: ‘five’  (c) Speakr 2: ‘five’  (d) Speakr 2: ‘nine’
(1st occurence) (2nd occurence)

Figure 1. Spectgramsof different pronunciationsof the phoneméay’ by differentspealers andin different
contets. Dark regionscorrespondo high, light regionsto low enegy spectal componentsThevertical axis
is the fequencythe horizontal one the timeaution.
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2 MOTIVATIONS

In the previous section, we motivated HMM?2 using real speech examples and explaining the problems
encountereavhencorventional[HMMs areappliedfor speechrecognitionn summaryHMMs assumepiece-
wise stationarity of the speech signal and do not truly take into account the existing variability along the fea-
ture (frequency) dimension. Using a secondary HMM for the local likelihood estimation, these assumptions
arerelaxed (at leastto somedegree),asa more flexible modeling of the variability and dynamicsinherent
in the speech signal is allowed. For instance, a spectral peak could be modeled by a single state of the fre-
guency HMM, even though its position on the frequency axis is quite variable (as seen in Figure 1). Such a
sparsdrequeny HMM topologyalsoallows for efficient parameter sharing. The numberof parametersan
easilybe controlledby the modeltopologyandthe probability densityfunction associatedvith the frequeng
HMM states.

Furthermorecorrelation betweerfeaturevectorcomponentss notignored,but supposedo be modeled
throughthefrequeny HMM'’ s topology In fact, HMM2 couldallow a sophisticateanodelingof theunderly-
ing time-frequenyg structureof the speectsignalandmodelcomplex constraintsn boththetemporalandthe
frequeng dimensions.

The secondaryHMM performsautomaticallya non-linear spectral warping. While the conventional
HMM does time warping and time integration, the frequency HMM performs warping and integration along
the frequency axis. This frequency warping has the effect of automatic non-linear vocal tract normaliza-
tion, providing a kind of unsupervised and implicit speaker adaptation (therefore tackling the problem of
inter-speaker variations). With the same mechanism, also intra-speaker variations as well as coarticulation
effects are taén care of.

Furthermore the HMM2 topology permitsimplicitly a dynamic formant trajectories tracking. As a
spectral peak (formant) can be modeled by an HMM state and a spectral valley by another, the segmentation
performed by the frequency HMM may be a good indicator for the position of a formant. Formants are
assumedo carrymostdiscriminatve informationin the speectsignal,morearer beingquiterobustin thecase
of degraded speech. In [12] it was shown that the frequency HMM isindeed able to extract some meaningful
and &en discriminatre formant-lile structural information.

In the saméline of reasoningHMM2 canalsobe interpretedasa dynamic approachto multiband pro-
cessingwhereeachfrequeng bandis modeledby onefrequeny HMM state By thatwe meanthateachsuch
stateis supposedo emitastationarysequencef spectracomponentbelongingto a certainsubbandThefre-
guency position of the subbands would then automatically be adapted to the data, following e.g. formant-like
structures.

We arenow goingto describeehe HMM2 approachin somemoredetail,followedby anexperimentaland
an error analysis section.

3 HMM2

HMMs are quite powerful statistical models which are used to represent sequential data, e.g. a sequence of
acoustic vectors le in speech recognition’ (as shown in the upper part of Figure 2). As each acoustic vector
Y; canitself be consideredsa fixedlengthsequencef its components Yi = yttllS , anothetHMM canbe
usedto modelthis featuredimension(displayedn thelower partof thefigure).Whilethe primary HMM mod-

1. All notations used in this report arepdained in Appendix A.

2. By ‘component'we meanasubvectorof low dimensionFor instanceatemporalfeaturevectorof
dimension S is split up into S 1-dimensionaladiors (i.e., a swector is a coditient). Hov-
ever, the etension of this approach to highgimensional swectors (consisting, e.g., of a cfief
cient and its first and second time datives) is straightforard.
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Figure 2: HMM2 systemln the upperpart, a corventionalHMM, working along the tempoal axis, can be
seenThelocal emissiorprobability calculationis donewith a secondary\HMM, workingalongthefrequenc
axis (depicted in the lower part of the figur

els temporal properties of the speech signal, the secondary, state-dependent HMM is working along the fre-
guency dimension. The secondary HMM isin fact acting as a likelihood estimator for the primary HMM, a
functionwhichis accomplishedby GMMs or ANNSs in corventionalsystemsHowever, the stateemissiondis-
tributions of the secondary HMM are again modeled by GMMs. Consequently, HMM2 is a generalization of
the standard HMM/GMM system (which it includes as a particular case).

HMM trainingis typically basedn the expectationmaximization(EM) algorithm.A generalizatiorof the
standardEM algorithmfor HMM2 hasbeenintroducedn [1]. In theframeawork of this paperwe will investi-
gatein moredetailthe estimationof P(Y¢| ) in theprimaryHMM statesUnderthetypical HMM assumptions
(i.e. piecewise stationarity and data independence assumptions), the likelihood of an acoustic feature vector
(i.e., a sequence of its componentskegithe primary HMM state can bepeessed as:

S
p(Y;|a) = Z[P(romt) [ POV, s|rs AP(rg|rs s, qt)]] @
s=1
or, using the Yterbi approximation:

S
P(Ye| ) Darglgwax[P(foMt) [ [P(Y:, s|rs AP(rg|rs qt)]] @

s=1

WhereP(r0|qt) is theinitial stateprobability of the secondarHMM, P(rs|rs_1, q;) thestatetransitionproba-
bilities of the secondaryHMM, and p(y; o|f's ) thelocallikelihoodsof the data.Naturally, every termof this
equationis conditionedon the stateof the primary HMM. As we useGMMs with diagonalcovariancematri-
cesfor thelikelihoodestimationin the statesof the secondaryHMM, the correspondindpcal probabilityden-
sity functions (PDF) are defined as folis

1Y s~ Hik Hin?
ZD Oik

®)

P(Y; o|rs=1.4 w;|
tSl ) z1 /\l2|_|0'||k
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where K is the number of Gaussian mixtures.

After having described some practical realizations and experimental results of HMM2, we will come back
to these mathematical derivations and investigate in detail their impact on practical implementations of the
HMM2 approach.

4 PRACTICAL REALIZATION AND EXPERIMENTAL RESULTS

There are different ways to realize an HMM2 systems. Figure 3 shows two possibilities. The first realization
(see Figure 3a) is based on the implementation of a generalized form of the standard EM algorithm, as
described in [1]. Thisis the straight-forward way of realizing HMM2, implementing eg. 1 for the local likeli-
hood estimation.

A second way is to unfold the HMM2 (which, as previously stated, is a kind of HMM mixture) into one
large HMM (as described before in [10, 3], see Figure 3b). State likelihoods of the primary HMM are esti-
mated using eg. 2. For this implementation, synchronization constraints have to be introduced to insure that
exactly one feature vector is emitted between each two transitions in the primary HMM. This requires (1)
additional synchronization states (grey in the figure) and (2) a re-arrangement of the data (as shown in the
lower part of Figure 3b). Out-of-range synchronization components (modeled exclusively by the synchroniza-
tion states) are introduced between the original feature vectors. The transitions between primary HMM states
correspond to transitions between the synchronization states. Standard EM training algorithms (and therefore
well-established tools such as HTK [14], which moreover offers sophisticated functionality especially adapted
to speech recognition problems) can easily be used.

We did preliminary tests with both of the HMM2 systems described above. It was found that they yield a
similar performance on small problems. For practical reasons, all further experiments used the implementation
shown in Figure 3b, realized with the HTK system.

o

(b)

Figure 3: HMM2 realizations: (a) direct implementation and (b) implementation with synchronization
constraints. While the model in (a) is emitting a sequence of feature vectors (as usual), the model in (b) is
emitting a sequence of (low-dimensional) components, intermitted by synchronization components at regular
intervals.
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Anothermajor concernrwhenworking with HMM2 is the choiceof the featuresWe investigateddifferent
representationsuchasfilterbanks,RastaandMFCCs.Obviously, for the motivationsoutlinedin section2 to
hold, featuresn the spectradomainshouldbe employed (althoughHMM2 might evenshav someadwantages
with differentfeatures)For mostof our experimentswe usedso-calledrF2featured8], which arefrequeny
filtered filterbank coefficients. Compared to MFCCs, these features show only slightly worse speech recogni-
tion resultson our HTK-basedsystem(this resultappliesto cleandata;however, performancelegradessignif-
icantlyin noisyconditions). In additionto stayingin the spectradomain(which alsooffers somebenefitsnot
further discussed here), FF2 features offer the advantage of being normalized to some degree (possibly large
signal level variations are indct smoothed out through thefdiencing).

Thegoalof preliminaryexperimentsvasto evaluatethe HMM2 approachTo beableto directly compare
HMM2 with the conventional HMM/GMM system, the topology of the primary HMM was left constant
throughout the tests. Only thedihood estimation in each primary HMM statasrchanged.

The Numbers95databasda telephone-qualitysmall vocalulary, multi-spealer databaseontainingcon-
tinuouslyspolendigits, see[2]) wasusedthroughouthe tests.Eachphonemgtriphone)presenin this data-
base was modeled with a primary HMM containing 3 emitting states. In the baseline system, the local
likelihoods were estimated using a GMM with 10 Gaussian mixtures. For HMM?2, several topologies for the
secondary HMM were tested.

In all our experimentsa significantperformancelropwasobsenedwhenusingHMM2 (with ary second-
ary HMM topology). Speech recognition accuracy decreased significantly as compared to the conventional
HMM/GMM system. This result is consistent for the two different HMM2 realizations described above, and
holds for all kinds of features tested. In the following, we are investigating possible reasons for the observed
degradation.

5 DIAGNOSTICS

Theperformancaropsencountereith HMM2 requiresomecareful,step-
by-step error analysis. Consequently, we started from a simple secondary
Markov model topology simulating a Gaussian distribution (i.e., here the
Markov model is not hidden), gradually adding complexity. Again, the
primary model topology was left constant. Results are compared to the
corventionaHMM/GMM baselinesystem The experimentsdescribedn
the following give some important cues about drawbacks of the HMM2
approach. Representatiresults can be found in Appendix B.

* Experiment 1. Simulationof anHMM/GMM with a singleGaussian
distribution. The secondaryMarkov model (MM) hasa strictly top-
down topology without loops. The numberof statesis equalto the
lengthof the sequencdo be emitted(seeFigure4a). As thereis only
onepossiblestatesequencer, the Markov modelis not hiddenary-
more.Thelocal likelihoodsof the secondaryMM statesareestimated

with single Gaussiandistributions. As expected,recognitionresults l €] (b) ()

areequialentto thoseobtainedwith corventionalHMMs employing

a single Gaussian probability density function in each state. Figure 4: Different frequency
HMM topologies tested for

« Experiment 2: Introductionof Gaussiarmixtures (insteadof single
Gaussiansjor local likelihood estimation(seeFigure 4b). Here, the
samenot-hiddenMarkov modeltopologyasin experimentl is used,

error analysis.

1. Unfortunatelyin the frameork of HMM/GMM, spectral features are usually not compaeiti
with cepstral features such as MFCCs.
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but at the level of the secondarlHMM states the single Gaussiansre replacedby Gaussiarmixtures.
Speectrecognitionresultsimprove ascomparedo experimentl. However, in comparisorto HMM/GMM
incorporating an equalent number of Gaussian mixtures, this model performs mocsew

» Experiment 3: RealsecondanfHMM. Comparedo experiment2, the numberof statesn the secondary
HMM is reducedandself-transitiongloops)areaddedat eachstate As therearefewer stateghanemitted
componentsthe secondaryMarkov modelbecomesidden(seeFigure4c). Speechrecognitionaccurag
decreases as compared to the other systems tested.

In the following, we will try to identify the reasondor the lossesencounteredn HMM2. As in these
experiments (and compared to the baseline system) we only changed the local likelihood estimation at the
level of the primary HMM, we will concentrate our theoretical investigation on this part of the system. After
having elaboratedhe generaimathematicaloundationswe will investigatethe suitability of the modelgiven
the (speech) data. Furthermore, some peculiarities of the speech signal plus implications on a successful dis-
criminative model are shan.

5.1 Effectsof independent modeling of components

Firstly, we will investicatethe effectsof independenimodelingof componentsn the secondarfHMM states,
ascomparedo the modelingof the entirevectorin a GMM. For the caseof frequeny HMMs (a) and(b), eq.
1 simplifiesdrastically:asthereis only onepossiblestatesequencer throughthe model,we heredealwith a
‘normal’ Markov model and no longer with a hidden one. Therefore, P(r0|qt) =1 and

P(rg=llrg_y=mq) = 1for al transition (m, 1) defined through the model topology. For case (a), there is
even only a single Gaussian distrilon, and so we obtain from eqgs. 1 and 3:

S _l.[yt‘s_“HDz
. 1 ZD Oj 0
P(Y|d =1) = P(Yy Rj =1) = e

i Sl:llAlznO'% °

The above equation is equivalent to the state likelihood estimation in conventional HMM systems where the
distribution is modeled by a single Gaussian. Thig faas confirmed by oumx@erimental results.

=1 (4)

For case(b) and Gaussiarmixture distributionsin the secondarny\HMM statesthe simplified statelik eli-
hood equation is:

s K _}[V[,s—l«lilk[f
1 20 o, O
PV d = 1) = POV R =1) = [T > Wik e

s= 1kzl A2n oﬁk

This equationbearsa significantdifferenceascomparedo the distribution obtainedfor a conventionalGMM:
K 1 EI, s™ “issz

Py =1) = |'| e o "
[ R - Wik
Vznclsk

It can be seen that a sum of products (in the case of a GMM) has been replaced by a product of sums (in the
caseof asecondaryHMM). Figure5 shavstheimplicationsof thesewo equationsn exampletoy data.lt can
be seernthatthedistribution obtainedby the GMM (Figure5b)is quiteirregular In fact, the shapeof thedistri-

bution obtainedby a GMM is practicallyonly limited by thenumberof mixturesused For example theresult-
ing PDF can take an (almost) elliptical form, whose principal axes are not necessarily parallel to the
coordinate system (consider any two of the Gaussians in the figure, and approach their means). On the other

hand,whenmodelingeachfeaturecomponenindependentlyn asecondarfAHMM state eachmixturecompo-
nentin eachstateinfluencedinearly all mixture componentsn all otherstatesHence theform of ary result-
ing distribution is very restricted, asits principal axes inevitably follow the coordinate system’s orientation.

This is illustrated in Figure 5c. Therefore, correlation can not be modeled as well as inGMMs

re=1 5)

©)
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Figure 5: Toy example:modelingpowerof GMM vs.HMM. In (a), a mixture of 3 2-dimensionalsaussianss
defined(i.e., Gaussianmeans,variancesand mixture weights).This GMM is visualizedin (b). In (c), a
distribution resulting fom an HMM (also employing the enetes defined in (a)) is shown.

5.2 Effectsof theintroduction of hidden states

Does this drawback generalize when moving from Markov models to hidden Markov models, or can it be
compensatethroughsomecorrelationmodelingdueto a suitableHMM topology?In the caseof realHMMs
(seeFigure4c), eachpossiblepaththroughthe modelcorrespondso oneGaussiardistribution, hencethesum
over al possible paths corresponds to a Gaussian mixture (with as many mixture components as there are
paths in the model):

S
p(Yt|a) = Z[P(romt) [ [Py o[ s AIP(rg|rs_1 qt)]]
s=1
@)

S S
= Z[P(romt) [1Prs|rs—2 a) O[] POV, ofFs qt)]
s=1 s=1

S
where the respective products of initial and transition probabilities P(r|q;) []P(rers—1 ) represent the
mixture weights. s=1
However, if onestateemitsseveralcomponentgr, = r.,, = ... = |), theunderlyingPDF for their data

likelihood estimation is constant (i.e., the Gaussian parameters are shared for the likelihood calculation of all

thosecomponents)Hence the distributionswhich canbe modeledby sucha secondarfHMM areaggin very
restricted This factis depictedgraphicallyon atoy examplein Figure6. It canbe seenthattheresultingdistri-
bution obeys the samerestrictionsasthe oneshavn in Figure5: it is not possibleto modeldistributionswhose
principal axes do not follow the coordinate system’s orientation. For the kind of secondary HMM we are
investicating here(i.e. top-davn topologywith fewer stateghanemittedcomponents)this conclusiongener-
alizes to highedimensional data and a higher number of Gaussiaaamix

In conclusion Figures5 and6 both shav thatfeaturecorrelationcanbe modeledquite well by Gaussian
mixture distributions, because they allow any orientation of the principal axes of the data distributionsin a
givencoordinatesystem Thisis notpossiblewith oursecondarnHMM, becausél) theindependenmodeling
of components in individual HMM states and (2) the parameter sharing (allowed by the stationarity assump-
tion and enforced through looped HMM states) both constrain the resulting distribution to follow the orienta-
tion of the coordinate system. However, if the data were conform with both the independence and the

1. In fact,thetraditionalmultibandapproactsuffersfrom a similar handicapfor which thefull-com-
bination approach [7] térs a remedy
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Figure 6: Toy example:demonstation of the modelingcapacity of a GMM (left part of the figure) and a
secondaryHMM (right part) for the case of 3-dimensionaldata. The GMM consistsof a mixture of 2
Gaussianawith diagonal covariancematrices.The secondaryHMM has2 statesas shownin (d), thusthere
are 2 possiblepathsthroughthemodel(see(e), which compaesto (a) for the GMM case) In (f), the Gaussiar
componentgontributing to the resultingdistribution are depicted(compae to (b) for GMM). It canbe seer
that, for the caseof the secondaryHMM, only one dimensionis expanded,resultingin the distribution
depictedin (g). The principal axesof this distribution are constainedto follow the axesof the coordinate
system, whit is not the case for the distution resulting fom the GMM (depicted in (c)).

stationarityassumptiong;IMM2 couldstill beanappropriatanodel.In the next sectionwe will adoptamore
data-drven point of view towardsHMM2 andinvesticatethe peculiaritiesof the speectdatain respecto the
above assumptions.

6 EVALUATION ON SPEECH DATA

6.1 Datarepresentation by HMM2

In the previous section,we have collectedtheoreticakvidenceof the problemsencountereih HMM2. In the
following, we will investigate the implications of our findings on the application of HMM2 to speech data.
Naturally, the HMM?2 topology imposes similar assumptions on the data as HMMs conventionally used for
time series As describedabove, thedatausedin anHMM2 systenis assumedo be conditionallyindependent
(i.e., each data component is independent of all other components, given the primary and secondary HMM
stateslaswell aspiecavise stationaryalongboththetime andthefrequeny axes(i.e., afew subsequentom-
ponents are supposed to have been generated by the same probability density function). We now investigate
whether these two assumptions are satisfied and their significance for the speech data representation in
HMM2.

In Figure7, correlationcoeficients of FF2 featuresarevisualized.It canbe seenthatthe dataarecorre-
lated,especiallyneighboringcomponentsn a featurevector(indicatedin thefigure by darker colorsnearthe
diagonal). Figure 8 shows how these correlated data are represented by a GMM and by a secondary HMM.
The models are both trained on real FF2 speech data, and their respective parameters are visualized (in the
sameway asfor thetoy examplein Figure5). In theleft partof thefigure,it canbeseerhow theGMM param-
etersrepresenthe existing datacorrelation.However, the HMM, shawn in theright part,is not ableto repro-
duce an appropriate data distribution. Although there are many suitable methods which orthogonalize data to
some extent, completely uncorrelated features do not (yet) exist in the domain of ASR?. This fact alone does
not favor HMM2 in the domain of speech.
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Figure 7: Correlation coeficients
of FF2 featues. Dark colors
correspond to high correlation
coeficients.
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Figure 8: lllustration of the modelingpower of GMM and Markov
model using real FF2 speeb data. Figure (a) showsa part of a
trained GMM, (b) the equivalenttrained Markov model (only two
dimensionsare displayed).In either case there are mixtures of 3
GaussiansWhilein (a) datacorrelationbecome®bvious,it cannot
be seenin (b).

The validity of the stationarityassumptioris harderto fully prove or reject. Figure 9 shavs an example
pronunciatiorof phonemeéay’. It canbeseerthatthe piecavise stationaryassumptions notentirelysatisfied.
Neverthelessit is intuitively (andpractically usinga clusteringalgorithm)possibleto segmentthis represen-

tationalongthe (horizontal)frequeny axisin afew quasi-stationargectorswhich couldsubsequentlperep-

resented by the same PDF

Even if the assumptionof piecevise stationarity is to some
degree satisfied, there is another implication of this assumption. Up
to this point, we have investigatedthe ability of HMM2 to represent
speech data, and we have stated some deficiencies of this approach
in this respect. However, the goal in speech recognition is discrimi-
nation between phonetical units. In the following, we will examine
the ability of HMM2 for discrimination.

6.2 Datadiscrimination by HMM2

It is widely acknowledged that spectral peaks (formants) contain
important discriminant information [4, 13]. On the other hand,
HMMs have already been applied to formant tracking [5]. If, as
elaborated in section 2, the secondary HMM's frequency segmenta-
tion somehow reflects formant positions, this segmentation alone
might represent rather discriminagiinformation.

We conductedsomeexperimentsin orderto find out the signifi-
cance of the frequency HMM’s segmentation, using a variant of the
HMM?2 approach: the secondary HMM is not used as a state likeli-
hood estimator for the primary HMM, but instead as a feature
extractor [12]. One secondary HMM with top-down topology and
four loopedstatesvastrainedon all thetrainingdataof our database

3k

= L L L L L L L L L
1 2 3 4 5 6 7 8 9 10 1

Figure 9: A pronunciation of
phonemeéay’. Ead line in thefigure
correspondsto one time step, and
thusto one feature vector (the thick
black line is the mean). The
horizontal axis shows frequency
evolution, and the vertical axis
shows the featue value (delta-
enegies in the case of FF2 feaas).

(regardless of their labeling). Then, the Viterbi algorithm was used to segment each original feature vector
alongthefrequeng axis. Theresultingseggmentationconsistedsimply of 3 values,indicatingtheindex of the
feature component (in the original acoustic vector) after which a transition from one state of the secondary

1. Even the correlation colidients of (the supposedly decorrelated) MFCC are quite comparable to
those of FF2 (shwn in Figure 7), with the diérence of a laver correlation near the diagonal.
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HMM to thenext took place.In Figure10,the meansof 2 of thesesegmentationvalues(the onescorrespond-
ing to spectralpeaks)redisplayedor a numberof voicedphonemed$rom our databaseThis figureis related
to the F1-F2 plane, where vowels are positioned according to their formant frequencies (as, e.g., described in
[9]). It was shown that the segmentation values indeed contain discriminative information: a conventional
HMM wastrainedon low-dimensionalectorsobtainedfrom theserathercrude‘formant features’ andword
recognition rates ofwer 56% were reached.

This remarkableresult proves that the ..., Figure 10: Average segymen-
secondary HMM's segmentation hasa cer- | : tation valuesof the secondary
tain potential for discrimination. On the HMM for different phonemes
origind HMM2 system (where the second- spectal peaks (formants) in
ary HMM was used as alikelihood estima- | _ thesignal. Thefigure is related
tor) show that in this approach, we cannot |- oo to the formant-spaceepresen-
make use of this discriminative property, tation of phonemesn the F1-
andimportantinformationseemso belost. | : : -~ F2plane

In that respect, HMM2 seems to suffer

from the same problem as encountered in conventional HMMs: an imbalance between the contributions of

HMM state likelihoods and transition probabilities to the estimation of the overall likelihood® (even though

this effectis somavhatdiminisheddueto the lower featuredimensionin the secondaryHMM). Consequently
theprimaryHMM statelik elihoodsdo only insignificantly(if atall) reflectthe ssgmentatiorproducedby the
secondarHMM. Theimprovedflexibility of themodeldueto thehigh numberof pathsthroughthefrequeny

HMM leads to aloss of discriminability (because of the loss of information concerning formant positions),

which may rule out the potentiahip through the frequepavarping.

7 ALTERNATIVE MODELS

Giventheproblemsddentifiedin the previoussectionsis therestill hopefor theHMM2 approach®oncluding
from our findings, a successful HMM2 systerould have to

» better consider data dependencies (as long as truly decorrelated features\aitabte)aand

» assurehatdiscriminabilityis maintainedg.g.thatinformationaboutthe positionof spectralpeaksin the
speech signal is not lost.

In the following, we briefly propose some alternatives in the framework of HMM2, offering partial solutions
regarding the requirements outlined &bo

Rememberinghatthe corventionalHMM/GMM systemsare a specialcaseof HMM2, we could realize
thefollowing scenarioa GMM is modeledwith afrequeng HMM, asshavn in Figurella.Then,additional
transitionscanbeaddedseeFigure11b). Thiswould increaseéhe modelflexibility, but atthe sametiime main-
tain some information about formant positions. Furthermore, asin a GMM, some data correlation could be
modeled (the model should be at least as ‘good’ as a GMM, because, in the case that the newly added transi-
tions do not help, their assigned probabilities after training should be 0). Experiments with such a ‘trellis’
model have however shown worse performances as compared to GMM. Thisis likely to be the effect of a

1. Togethemith the effectsof theHMM’ sinherentexponentialdurationprobabilitydistribution, this
leadsin corventionalHMMs (aswell asin our primaryHMM) to a poordurationmodeling.How-
ever, these problems play in the e@mtional case only a subordinate role. On the one hand, the
poordurationmodelingcanbe compensatetbr, e.g.throughlexical andgrammaticatestrictions
in combinationwith word entrancepenaltiesOn the otherhand the durationof a phonememight
not be an essential cue for discrimination, as this paranaies\considerably (depending on
non-discriminant features such as the speaking rate).
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TR

Figure 11: In (), a frequency HMM simulating a GMM is shown.
%E / %3 )}) Each vertical branch corresponds to one Gaussian mixture. (b)

shows the extension of this model to a trellis topol ogy.

reduced discrimination capacity (in spite of the potentially increased descripitve power of the model) due to
theimproved modelflexibility: notonly the phonemesnight be betterrepresentetly their respectre models,
but also(possiblyto a greaterextent) all otherdata.Here,discriminanttraining may offer a solution.However,
most of the motivations given in section 2 do not hold for these systems. Having many states does not allow
for anefficient parametesharing.Frequeng warping(andthereforenon-linearvocal tract normalizationand
dynamicformanttrajectorytracking)would only indirectly; if atall, berealized Furthermorethe highnumber
of states leads to an increased model complexity, and thus computation time quickly becomes an issue. This
reasoninglsoappliesto asimilar systenincorporatingalot of statesn anergodicsecondaryAiMM topology

If stayingwith thetop-davn andloopedfrequeng HMM topologyasoriginally introduced(anddepicted

in Figure 2), alternate design options which possibly impeothe performance of an HMM2 system include

< Emitting frequencycontext. Insteadof emittingjustonecoeficientateachfrequeny step,thesecondary
HMM couldemit a vectorconsistingof this coeficient andits neighborsThereby somecorrelation(near
thediagonal)couldbe modelthroughthe GMMs in thesecondanHMM statesSucha systemhasalready
been tested without much success.

» Impr ove the influence of transition probabilities. This could be doneby reducingthe influenceof the
secondanHMM statelikelihoodsduring the estimationof the likelihood of a featurevector One could
evengo asfar asto, oncea ‘best path’ throughthe secondanHMM s calculatedusingthe Viterbi algo-
rithm, discardthesdocallikelihoods just usingthetransitionprobabilitiesin thefurthercomputationThis
approachs likely to amelioraterecognitionresults,asthe positionof formantregionswould have some-
what more influenceon the primary statelik elihood, possiblyresultingin an improved discrimination.
However, the problemof the insufficient correlationmodeling persistsandis likely to limit the perfor-
mance of the model.

< Emit additional frequencyinformation. This is anotherway to make the frequeny HMM modelthe
positionsof the spectralpeaks Eachvectoremittedby the secondarHMM is augmentedby a coeficient
indicatingthe positionof this vectoronthefrequeng axis.As in the previousoption,correlationis still not
thoroughly considered. Recognition performanes improed hut is still limited by this deficienc

All of the alternatve modelsproposedabove offer a partial rectificationto the HMM2 problemsstatedin
the previoussectionsEvenso, their effectivenessasyetto be shovn. The possiblymostpromisingvariantof
HMM?2 is however the one aready introduced in section 6.2, where the frequency HMM is used as a feature
extractor. The resulting features represent formant-like structures, and when they are combined with state-of -
the-art features such as MFCCs, speech recognitiastriéss has stvo to improve significantly [12].

8 CONCLUSION

This paperwasconcernedvith the HMM2 approachwherea secondanHMM is usedto estimatdocal state
likelihoods of a primary HMM, hence replacing Gaussian mixture models used in conventional HMMs. In
spite of humerous strong motivations in favour of HMM2, experiments (using two different HMM?2 realiza-
tions) did not show the expected results. The purpose of this paper was to outline theoretical and practical
problems occurring when using HMM2 for speech recognition. Two major handicaps could be stated, con-



IDIAP-RR 01-23 13

cerning the representative and discriminative abilities of the model respectively. It was found that the HMM2
approach stiérs notably from

» themismatchbetweerthe modelcapacityandtherealdistribution of the data,dueto the unsatisfiednde-
pendence assumption and

» areductionof discriminabilitydueto its (in somerespecthigherflexibility andtheignoranceof important
information such as formant positions.

Consequentlypresentatacorrelationcannotbe modeled andpossiblyimportantinformationaboutpositions
of spectral peaksis basically lost. Some variants of the HMM2 approach offer partial solutions to the above
problems, but non of them has as yet shown to be really successful in speech recognition. Although the sec-

ondaryHMM'’ s topology(andthe valuesof thetransitionprobabilities)might reflectsomecorrelationaswell

as formant structure information, GMMs seem to be the more suitable model for phoneme discrimination

(compared to our present HMM2 system).
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Appendix A: Notations and Abbreviations

General Notations
i, j designate a temporal HMM state
K number of Gaussian mixtures

Kk k -th mixture component

[, m designate a frequep¢iMM state

N Number of temporal states

N, Number of frequencstates in temporal staie

P probability

p probability density function

Q set of all possible paths in primary HMM

(o temporal HMM state at time step

R set of all possible paths in secondary HMM

re frequeny HMM state at frequencsteps

S feature ector dimension (or number of components in each feaaatenrespectely)
s frequeng step

T length of acoustic featuresgtor sequence

t time step

Wy weight ofk -th Gaussian mixture

Vi obsened feature gctor at time step

y] obsened feature gctor sequence from time stepgo T

Vi s obsened feature component at frequgrsteps of time stept

ik mean ofk -th Gaussian mixture of theth temporal and the-th frequeng HMM state
Oilk variance ofk-th Gaussian mixture of thieth temporal and the-th frequeng HMM state

Abbreviations

ANN artificial neural netwrk

ASR automatic speech recognition

FF2 second order frequendiltered filterbanks
GMM Gaussian mixture model

HMM hidden Marlov model

HMM/GMM  HMM employing GMM for local likelihood estimation

HMM/ANN  HMM employing ANN for phoneme emission probability estimation
MFCC mel frequeng cepstral coditient

MM Markov model

PDF probability density function
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Appendix B: Experimental Results

In the following, some representative experimental results are given. They were obtained using an HMM2
realization with synchronization states, implemented in the HTK system. As database, Numbers95 was used
throughout. Spectral features with 11 FF2 (delta-frequency) coefficients and one filterbank energy, plus their
first andsecondordertime derivatives,wereused.The experimentakettingsweresuchasto keepamaximum
conformance to the baseline system, in order to directly compare performances. Each primary HMM had 3
emitting statesanda left-right topology For the benefitof higherrecognitionrates,the enegy coeficientand
time derivatives have been kept, although they caused some practical inconvenience in the HMM2 system.
Eachcoeficientwasgroupedwith its time derivativesinto a 3-dimensionafeaturevector supposedhemitted
by a secondary HMM state. The energy subvector was treated separately in an independent state without
loops.

Thetablebelov shavs word errorrates(andin bracletsthe numberof parametersisedto modelthe data
distribution in each primary HMM state) of the different systems, for different training steps. Training was
startedon 27 monophoneanodelswith singleGaussiardistributions(first line in thetablebelow). Thesewere
subsequently split up to mixtures of 10 Gaussians (second line), and finally 80 triphone models were created
(lastline). In thefirst columnof thetable,the FF2baselingperformances shovn. The overall word errorrate
on an independent test set is 6.7% (which compares to 5.7% on MFCC features). The second column shows
the results for systems such as described in section 5, experiments 1 and 2: the secondary Markov model
(MM) is nothidden.Comparingines 1 and?2 of thefirst two columns,jt canbe seerthattherelative improve-
ment when introducing Gaussian mixtures is not as significant asin the HMM/GMM case. The third column
shavstheHMM2 performanceln this casethesecondanHMM is composeaf 4 emitting statesn alooped
top-down topology, one additional state exclusively for the energy subvector, and 2 synchronization states.
Emitting additionalfrequeng information(assuggesteih section?) yieldsaword errorrateof 15.9%.It can
be stated that HMM2 generally has the highestdwerror rates.

HMM/GMM | HMM/MM HMM2
1 Gaussian, monophones| 22.2 (66) 21.8 (66) 41.9 (30)
10 Gaussians, monophoneg 12.5 (670) | 18.3 (760) | 31.6 (358)
10 Gaussians, triphones 6.7 114 20.5

Table 1: Word error rates (and number of parameters in a primary HMM
state) on baseline HMM/GMM, HMM/MM and HMM2 systems.



