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Abstract: The purpose of this paper is to investigate the behavior of HMM2 models for the recognition of noisy
speech. It has previously been shown that HMM?2 is able to model dynamically important structural information
inherent in the speech signal, often corresponding to formant positions/tracks. As formant regions are known to be
robust in adverse conditions, HMM2 seems particularly promising for improving speech recognition robustness.
Here,we review differentvariantsof the HMM2 approactwith respecto their applicationto noise-rolistautomatic
speechrecognition It is shavn thatHMM2 hasthe potentialto tacklethe problemof mismatchbetweertrainingand
testing conditions, and that a multi-stream combination of (already noise-robust) cepstral features and formant-like
features (extracted by HMM2) improves the noise robustness of a state-of-the-art automatic speech recognition sys-

tem.
Acknowledgements: This work was partly supported by grant FN 2000-059169.99/1 from the Swiss National Sci-
ence Bundation.
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1 INTRODUCTION

HMMZ2 is a particular mixture of hidden Markov models (HMM), where a secondary HMM, working along

thefrequeny dimensionof speechis usedto estimatdocal emissiorprobabilitiesof a corventional temporal
HMM. The resulting rather flexible model structure has numerous potential advantages, such as a sophisti-

catedmodelingof the underlyingtime/frequeng structureof the speectsignalandanimplicit non-linearfre-

gueny warping,leadingto systemswvhich may automaticallyperformformanttrackingaswell asvocaltract
normalization for speak adaptation.

Recently considerabl@rogresshasbeenmadewith HMM2 systemsespeciallyconcerningheformanttrack-
ing aspectlt hasbeenshavn thatthe HMM2 canseggmenta speechsignalalongthe frequeny axisinto high
and low energy regions respectively. Therefore, the HMM2 segmentation follows roughly formant-like struc-
tures of the speech signal. The fact that formant structures have successfully been used as features for auto-
matic speech recognition (ASR) before ([2],[7]) motivated us to similarly use this HMM?2 frequency
segmentation as features for speech recognition.

In this paperwe focusontheapplicationof HMM2 to therecognitionof speechn noisyconditions.Two vari-
ants of using HMM2, namely directly as a decoder for speech recognition and, alternatively, as a feature
extractor, are investigated under different conditions. It is demonstrated that HMM?2 is in both cases able to
outperformcornventionalHMM systemsn the caseof hearily degradedsignals giventhe same(spectral¥ea-
tures. When using HMM?2 features in a multi-stream approach to complement noise-robust mel-frequency
cepstrakoeficients(including spectrakubtractiorandcepstraimeansubtractionjn thefollowing referredto
as MFCC-SS), speech recognition results couddralge improed significantly

In thefollowing sectionwe briefly review the HMM2 approachandits variants,including our previouswork.
Then, we address the problem of noisausbbess, and finally present speech recognition results.

2 HMM2

HMMs are quite powerful statistical models which are used to represent sequential data, e.g. a sequence of
acoustic vectors in speech recognition. As each acoustic vector can itself be considered as a fixed length
sequence of its components, another HMM can be used to model this feature sequence. In the HMM2
approach, a primary HMM models temporal properties of the speech signal (just asin HMMs conventionally
applied to speech recognition), while a secondary, state-dependent HMM works along the frequency dimen-
sion. In fact, the secondary HMM acts as a likelihood estimator for the primary HMM, a function accom-
plished by Gaussian mixture distributions (GMMs) or artificial neural networks in other systems. The state
emission distributions of the secondary HMM are then modeled by low-dimensional GMMs. Consequently,
HMM2 is a generalization of the standard HMM/GMM system (which it includes as a particular case).

2.1 Motivation

HMM2 providesa very flexible approacto modelingtheinherentcharacteristicef the speectsignal.Poten-
tial advantages of the HMM2 approach include:

* Automaticnon-linearspectralarping.In thesameway the corventionalHMM doestime warpingand
time integyration, the feature-based HMM performs freqyenarping and frequemdntegration.

» Dynamicformanttrajectorymodelling.As shavn previously [5], theHMM2 structurehasthe potential
to extractsomerelevantformantstructurenformation,whichis oftenconsideredsimportantto robust
speech recognition.
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Figure 1: (a) Featue vectos as usedin the secondaryHMM composef
coeficientsc,, their delta dg and acceleation coeficientsag, as well as the
frequencycoeficientfs. In (b) it is shownhowthe ‘frequencycoeficients’ are
obtained.

2.2 Featuresfor HMM2

For the motivations described in the previous section to hold, it is preferable to use features in the spectral
domainfor HMM2. This providesuswith the physicalinterpretatiorof the secondarHMM2 statesmodeling
spectrakegionsof differentenepy levels,andpermitsinterpretingthe segmentatiorbetweertheseregionsas
formant-like structuresWe herechosenormalizedfrequeny filteredfilterbankcoeficients(FF2,[3]), asthey
are rather uncorrelated spectral features (apart from correlation near the diagonal, i.e. between coefficientsin
adjacent frequency bands). Moreover, their performance in conventional HMM system is almost competitive
with MFCC-SSin cleanspeechhowever, in additive noisesignificantdegradationsvereobseredfor the FF2
features).

A conventional spectral feature vector is split up into a sequence of subvectors, called secondary feature vec-
tors.As illustratedin Fig. 1, a secondaryeaturevectorasusedfor the HMM2 systemis thuscomposeaf an
FF2coeficient(cy), its first andsecondrderderivatives(dsandag) andafurthercoeficientreflectingthefre-
quency position of that vector (fg). Supplementing the 3-dimensional secondary feature vector by such a ‘fre-
guency index’ has shown significant benefits for speech recognition performance, allowing a better modeling
of formantpositions(thereadeiis referredto [6] for moredetailson thefrequeny index, its motivations,real-
ization and performance imprements).

2.3 HMM2variants

In thefollowing, we describawo variantsof HMM2 ontheapplicationlevel. Speectrecognitionwith HMM2
is done by the usual Viterbi decoding, and ASR performance can directly be measured by the obtained word
error rate (WER). In this case, HMM2 is applied as decoder directly for speech recognition, just in the same
way as a corentional HMM, as is visualized iraviant (a) of Fig 2.

A by-productof Viterbi decoding(in additionto thesequencef recognizedvords)is the segmentationWhile
for corventionalHMMs this sggmentatioris limited to the temporaldomain,in the caseof HMM2 we obtain
an additional segmentation along the frequency dimension, estimated (for each temporal feature vector) from
the transitions between the secondary HMM states. Apart from using HMM?2 directly for speech recognition,
we canusethe Viterbi sggmentatiorobtainedat eachtime stepasfeaturedor a corventionalHMM. Further-
more,atemporalindex canbecalculatedrom the segmentatiorbetweerthe primaryHMM2 stateswhich has
shown to be a beneficial additional component for the new feature vector. Variant (b) of Fig. 2 shows how an
HMM2 is only employed for afirst recognition pass in a 2-pass system, providing the (temporal and fre-
guency) segmentation features for the second pass. These features are in the following called ‘HMM?2 fea-
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Figure 22 HMM2 system used directly for speeb
recaynition (a), and for featuies extraction (b). For (b), a
secondrecanition pass,using a corventional HMM, is
performed.

tures' (Therefore, the term ‘HMM2 features’ refers to the segmentation features obtained from the HMM2,
not to be confused with the spectral features t@etMM2)

2.4 Building from previousresults

Previously, promisingresultswereobtainedwith bothvariantsof HMM2. In [6], we reportedword errorrates
(WER) of 14.0%(onthe cleanNumbers95iatabase1]) for variant(a). As describedabore, herethe second-
ary HMM actedaslik elihoodestimatorWhenusingthe HMM?2 in a 2-passsystemasfeatureextractor(vari-
antb), we obtaineda WER of 15.0%with only 4-dimensionafeatureson the sametask.However, sucha full
HMM2 system vas pr&iously not tested on noisy speech.

In [5], we treated a simplification of variant (b), employing a 2-pass system where a single secondary HMM
was used as feature extractor. In fact, the parameters of all secondary HMMs were shared throughout al the
primary HMM states. This model was trained on all the training data (regardless of the labeling) and used to
extract formant-like structures (in form of the frequency segmentations obtained from the Viterbi algorithm).
These were subseguently used as additional features (to complement noise-robust MFCC-SS) for standard
HMM, where an improved robustness in noisy speech was observed. In this paper, we will use segmentation
features obtained from a full HMM2 as additional features to supplement our noise-robust MFCC. For each
time step, the new HMM 2 features therefore depend on the present HMM2 primary state (given through the
most likely temporal state sequence of the HMM?2 feature extractor, given the data), and are therefore class-
dependent.

In the follawing, we will investicate the behaor

» of afull HMM2 (asopposedo a simplified version,wherethe parameter®f all secondaryHMMs
were shared throughout the system, as in [5])

* innoise (as opposed to [6], where wevasticated a full HMM2, ot in clean speech only).
Both variants of applying HMM2 are westicated, and it is shven that:

 HMM2 (whenuseddirectly asa decoderfor speectrecognition)shawvs a higherrobustnesgo heavily
degraded noise, as compared to avemtional HMM, gven the same (spectral) features, and that

« HMMZ2 featureg(i.e. the structuralinformation extractedfrom the Viterbi segmentation)provide dis-
criminant information and lead to a significantly improved noise robustness when combining MFCC-
SS and HMM2 features in a multi-stream approach.

In the following, we will discuss why HMM2 might be particularly useful for noisy speech, before giving
more detailed speech recognition results.
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Figure 3: HMM vs. HMM2 performancefor frequency
filteredfilterbankfeatues,illustratedby the dottedand solid
lines respectivelyErrorbars for HMM WER showthe 95%
confidenceintervals. The resultsare for clean speeb and
car noise at ditrent SNR.

HMM2 AND NOISE ROBUSTNESS

Therearesereralreasongo believe thatHMM?2 is particularlypromisingin the presencef noise for boththe
straight application of HMM?2 as decoder (see the first bullet below) and subsequently the application of
HMM2 as a featurexdractor (see tllets 1 and 2 belo).

4

Firstly, it is oftenacknavledgedthatspectrabeaks(formants)shouldbe morerobustto additive noise,
sincethe formantregionswill generallyexhibit alarge signal-to-noiseatio. In mary noisy conditions,
the overall structure of the speech signal, i.e. the spectogram’s partitioning into high- and low energy
regions, may largely be unaffected by the noise. As HMM2 relies on these spectral structures, this
model may be more tolerant to agamumber of distortions.

Secondlyfeaturesextractedfrom the HMM2 frequeny segmentatioroftencorrespondo formant-like
structures. It is generally agreed that formants are perceptually important features and that they might
be robust e.g. against noise and mismatch between training and testing conditions [7]. Moreover,
HMM2 formant-like featureshave alreadyshowvn goodspeechrecognitionperformance$g]. If, for the
reasons described above, the HMM2 segmentation obtained from the Viterbi algorithm is relatively
invariablefor differentnoiseconditionsgivena certainspeectunit, andthereforefollows therespectie
formant structures even for highly degraded speech, HMM2 features will show a good robustness to
noise.

EXPERIMENTS

Experimentsverecarriedout onthe OGI Numbers9&orpus|1], corruptedwith 3 kindsof additive noises on
4 different signal-to-noise ratios (SNR). 12 FF2 coefficients (including one energy coefficient), additionally
normalized, were used as (spectral) features. The 4-dimensional feature vectors consisted of a coefficient, its

1. The noises were partly dva from the Noise database [4]. Heever, the car noise as praided

by the IDIAP project partner DaimlerChryslerhich we gratefully acknaledge.
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Figure 4: Temporal and frequency HMM2 segmentation for the same
speech segment of the N95 database, for clean speech (upper left) and
for speech disturbed with 3 different additive noises at SNR=0.
Underlying, the FF2 features are displayed (dark colors correspond to
high energy regions). The vertical lines correspond to the temporal, the
horizontal ones to the frequency segmentation.

first and second order time derivatives and its frequency coefficient (here indices from 1 to 12). The HMM2

wasrealizedwith HTK [8]. Final modelswere 80 triphones gachconsistingof 3 temporalstatesAll second-
ary HMMs had 4 states connected in a looped top-down topology, and an additional non-looped state for the

enepy. This systemwastrainedglobally usingthe EM algorithm,on cleanspeectonly, andViterbi-basedec-

ognition was performed undemawying conditions (clean and all noises).

41 Resultsfor HMM 2 decoder

To redligtically compare the performance of the HMM?2 system (variant ain Fig. 2) to that of a conventional

HMM, we did preliminary tests on both models given the same features (i.e., spectral FF2). Fig. 3 shows
results for one noise condition, errorbars indicate the 95% confidence interval. It can be seen that the differ-

encesn the performancef these2 modelsarestatisticallysignificant.While HMM2 is hot competitize with

corventionalHMMs in cleanconditionsor noisy speectwith a high SNR,for heavily degradednoiseit easily
outperforms the conventional HMMs. In fact, HMM2 is better able to handle the mismatch between training
and testing conditions (as training was done on clean speech only). This was confirmed on all other tested
noise conditions. Although the obtained results (for both HMM and HMM2 with FF2 features) are not com-

petitive with the state-of-the-art performance (obtained with conventional HMMs, but employing MFCC-SS
as features), we feel that this resultwb@ good potential for applying HMM2 in aglge conditions.

4.2 Resultsfor HMM2 features

In the following, the segmentation features obtained from the HMM2 Viterbi decoding (variant b) are evalu-
ated in noisy conditions. Fig. 4 visualizes the spectograms of FF2 features for the same speech segment (in
clean conditions and disturbed with different additive noises), along with the respective HMM2 segmenta-
tions.Althoughthe sgmentationwary considerablya generacommonstructureis visible throughouthedif-
ferent conditions. Comparing the HMM2 decoder performance with the recognition rates of HMM2 features,
it can be stated that the recognition results obtained from the HMM2 features are slightly inferior to those
obtaineddirectly from theHMM2 decoder(but still significantlydifferentfrom thecorventionaHMM results
shavn in Fig. 3) throughouthedifferenttestingconditions.n fact,the HMM2 decodemperformanceseemso
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beanupperlimit for speechrecognitionusingHMM2 featuresThis confirmsour resultson cleanspeecl(see
section 2.4). However, HMM?2 features till have their justification. Firstly, given the crudeness of these fea-
tures,they performextremelywell (asstatedbefore,for cleanspeechwe obtaina WER of 15.0%).Secondly
it is straight-forvard to combine HMM2 features with noise-usb state-of-the-art features.

SNR HMM2 fea- | MFCC-SS | MFCC-SS +
tures HMM2 fea-
tures

clean 15.0 57 57

18 16.1 6.7 6.6

12 20.4 9.3 9.0

6 32.8 16.7 16.1

0 56.0 35.4 34.3

Table 1. Performance of MFCC-SS and HMM2 features,
and their multi-stream combination: WER on Numbers95
at different signal-to-noise ratios: means over 3 different
noise types.

We tested the combination of HMM2 features with MFCC-SS in a multi-stream approach. It has been shown
that, while there is alot of correlation between the 4 dimensions of the HMM2 features themselves, thereis
notmuchcorrelationbetweerthetwo differentfeaturestreamsFurthermoregiventhecharacteristicanddif-
ferent physical interpretation of these two feature streams, it is reasonable to assume that they provide differ-
ent and supplementary acoustic cues.

Tablel givesanoverview of speectrecognitionresultsfor HMM2 featuresMFCC-SSandtheir multi-stream
combination. In fact, the baseline MFCC-SS speech recognition results were improved for all tested condi-
tions. The obtained results are statistically significantly better than the MFCC-SS only performance (with
more than 98% confidence).

As compared to our previous, simplified HMM2 features ([5], described in section 2.4), recognition rates on

theHMM2 featureshave increasedy morethan50%, but resultson therespectre HMM2 featurescombined
with MFCC-SS were not significantly improved. This may indicate that, although by themselves the new

HMM2 featuregperformmuchbetter thereis not muchmorecomplementarynformationto the MFCC-SSas
already seen in the old and simplified features.

5 CONCLUSION

This paper evaluated two variants of the HMM2 system in noisy speech. Performance improvements were

obtained for both HMM?2 as decoder as well as feature extractor in heavily degraded noise, as compared to

resultson corventionalHMMs usingthe samefeaturesHowever, our HMM2 performanceseemsstill limited

by the choiceof spectralFF2featureswhich cannotcompetewith robustMFCC-SSin mostconditions. Find-

ing more competitive spectral features will be crucial for future HMM2 research. On the positive side, the

state-of-the-amIFCC-SSspeechecognitionresultscouldbeimprovedwhensupplementingepstrafeatures
with our HMM2 features in a multi-stream approach.
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