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Abstract. Generative probability models such as Hidden Markov Models are usually used for
modeling sequences of data because of their ability to handle variable size sequences and missing
information. On the other hand, because of their discriminative properties, discriminative models
like Support Vector Machines (SVMs) usually yield better performance in classification problem
and can construct flexible decision boundaries. An ideal classifier should have all the power of
these two complementary approaches. A series of recent papers has suggested some techniques
for mixing generative models and discriminative models. In one of them a fixed size vector (the
Fisher score) containing sufficient statistics of a sequence is computed for a previously trained
HMM and can then be used as input to a discriminative model for classification. The purpose of
this project is thus to study, experiment, enhance and adapt these new approaches of integrating
discriminative models such as SVM into generative models for sequence processing problems, such
as speaker and speech recognition.
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1 Introduction

It is not easy to deal with speech, videos, text and biosequences using simple statistical classification
methods because the data to be classified is often represented as sequences or arrays of variable length
and may have been distorted in particular way. The common solution for this problem is to estimate
a generative model such as Hidden Markov Models (HMMs) for that data and then using Bayesian
criterion to classify the data.

However it is well known that for classification problems, a better solution should in theory be to
use a discriminative framework: In that case instead of constructing a model independently for each
class, one construct a unique model that decides where the boundaries between classes are.

One of the latest discriminative model developed in the 90’s is the Support Vector Machine (SVM),
which computes a linear combination of the most important examples (the support vectors) in a high
dimensional space (feature space or kernel space). This model has nice theoretical properties but
unfortunately can not be used easily for sequence data such as speech or biosequences due to their
variable lengths.

Recently some papers have proposed some methods that incorporate both SVMs and statistical
models in a way that the robustness and flexibility of the generative models favorably combine with
the discriminative power of the SVM. In one of the papers [13], the authors use generative models
built from multiple sequences (in this case HMM) as a way of extracting features from sequences. This
maps all sequences to points in a Euclidean feature space of fixed dimensions (the Fisher score) and
then uses discriminative models to classify the points representing the sequences. This method has
recently been applied successfully to biosequences classification. Providing several advantages, such
an approach has also been proved to be always at least as good as the results obtained from generative
Bayesian Maximum A Posteriori (MAP) criterion.

In this report we propose to study, experiment and eventually enhance these new approaches for
sequence processing problems, such as speaker and speech recognition. It also will be the subject for
our upcoming thesis.

In speaker verification, one has to validate, on the basis of a speech signal, the claimed identity
of a speaker. This is clearly a classification task where the system has to discriminate between the
client and the impostor. In speech recognition, one has to translate a speech sequence into a sequence
of words, each word being represented by a sequence of phonemes. Each phoneme is usually modeled
by a HMM and again the methods discussed above can be used to discriminate between the different
phoneme models. In this case, the method will have to be adapted for solving the problem of signal
segmentation.

The rest of the paper is organized as follow. Section 2 gives brief introductions to state-of-the-art
techniques: generative models, discriminative models, combining methods as well as the speech and
speaker recognition problems. Our research plan is described in Section 3. Preliminary experiments
on the speaker verification problem and results are presented in Section 4. Finally, Section 5 concludes
the report.

2 State of the art
2.1 Generative models and HMMs

Hidden Markov Models (HMMs) are statistical models for modeling sequential data, and have been
used successfully in artificial intelligence, pattern recognition, speech processing and biosequences
modeling. A good introduction can be found in [22]. The joint probability of a sequence of observations
y{ = y1,v2,,..y7 can always be factored as

T

P(yl) = P(y) [T P(welyi™) (1)
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which appears intractable in general. However, if we assume that the past sequence can be summarized
by a state variable q;, then one can rewrite the previous equation as

T
Pyi)=> P@ui,ql) (2)

where the sum over ¢} represents the sum over all possible state sequence qf = q1, ¢z, ..qr of length
T. Fortunately now, this can be factored as follows

T T

P@y{,q) = Pla) [ ] Paelae-1) [ ] P(uelar) (3)
t=2 t=1

using the first order Markovian assumption (one state depends probabilisticly on just the preceding
state) [23]. The joint probability is therefore completely specified in terms of initial state probabilities
P(q1), transition probabilities P(q¢|q:—1) and emission probabilities P(y.|q:). Since each state variable
g for the underlying Markov model is not directly observed but is a stochastic function of the previous
observations y?~! , such a model is called Hidden Markov Model. It can be trained to maximize the
likelihood of a training set of sequences (Maximum Likelihood criterion), using well known algorithms
such as Expectation Maximization (EM) [8], Viterbi [29], or gradient ascent [27].

For classification tasks, such as deciding if a given sequence belongs to a given target class, one
usually trains a different HMM for each class to maximize the likelihood of the training sequences
labeled for that class. Then, given a new sequence to classify, one usually computes the likelihood of
the sequence for each HMM, and selects the class that maximizes the Maximum A Posteriori (MAP)
criterion, P(y¥|class = ¢)P(class = c), the likelihood of the sequence given an HMM weighted by the
prior probability of the class.

We cite here some advantages of generative model for the purposes of both classification and
density estimation problems:

e Better inference algorithms: Generative models and joint densities can be computed using
reliable techniques for Maximum Likelihood or Maximum A Posteriori (MAP) estimation. These
estimation techniques include the popular EM algorithm and typically outperform gradient
ascent algorithms, which are the workhorses of some discriminative models (such as neural
networks). The EM algorithm provably converges monotonically to a local maximum likelihood
solution and often needs less parameter tuning than gradient ascent.

e Modular learning: In generative model, each class is learned individually and only considers
the data whose labels correspond to it. The model does not focus upon inter-model discrimina-
tion and avoids considering the data as whole. Thus the learning is simplified and the algorithms
proceed faster.

e New classes: It is possible to learn a new class (or retrain an old class) without updating the
models of previous learned classes in generative models since each model is trained in isolation.
In discriminative models, the whole system must be retrained since inter-model dynamics are
significant.

e Missing data: Unlike discriminative models, a generative model is optimized over the whole
dimensionality and thus models all the relationships between the variables in a more equal
manner. Thus, if some of the data that was expected to be observed for a given task is missing,
some joint model’s performance (for ex. Bayesian network or generative models with assumption
that all dimensions of data are statistically independent) will degrade gracefully. Discriminative
models are trained for a particular task and thus a different model must be trained for missing
data tasks.
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¢ Rejection of poor or corrupted data: Sometimes, very poor data could be fed into the
learning system and a generative model has the ability to detect this corrupt input (input which
has low likelihood) and possibly signal the user to take some alternative measure.

2.2 Discriminative models and SVMs

Another approach to solving classification tasks, called discriminative learning, consists in the creation
of a unique model trained with examples of all the classes and where the objective is to directly max-
imize the correct classification rate (which is not guaranteed by the Maximum Likelihood criterion).
It allows a discriminative model to better learn the interactions between classes and their relative
distributions for discrimination. We outline here some other advantages of this approach:

e Data that need complex generative model for modeling can be separated easily by
discriminative model : Tt is often the case that data which need complex generative models
can be easily separated by simple decision boundaries.

e Resource management: Discriminative models use resources exclusively for the classification
task. Thus, they might be more appropriate in limited resources environments.

Examples of discriminative models are Logistic regression, Neural Networks [4], and Generalized
Additive Models [12].

The problem here is that the training process for discriminative models is often cumbersome (i.e.
neural network back propagation and gradient ascent) and somewhat ad hoc, requiring many re-
initializations to converge to a good solution. Recently a new discriminative learning algorithm, the
SVM 28] [5], has been proposed. The appeal of SVM is two-fold. Firstly the process of tuning the
parameters in the training algorithm is simpler. Secondly they show great ability in generalization
performance, not only on classification tasks but also on regression and density estimation problems.
The key ideas in SVM are:

e In the case where data is linearly separable, the SVM simply looks for the separating hyperplane
with the largest margin, with respect to the labeled training set

M = arg m]zc]x min y; f(x;)
1

where f(x) = (x-w) +b=>, aiyi(xi-x) +b.
W=D 0y

for x, w € RV, b € R, a; € Ris the contribution of the sample i in the final solution , y; € {—1,1}
are the label corresponding to the training set {z;} and sign(f(z)) is the classification rule. «;
and b are determined in the training process. Intuitively this choice seems to be reasonable since
a slightly perturbation in data does not affect the resulting classification. This is achieved by
minimizing the square of 12-norm of w

1 2
— 4
> lwl 4)
subject to the inequalities
(xi-w+b)y,~ >1

for all i. The solution for the optimal hyperplane is a linear combination of a small subset
of training set , xs, s € {1,..N} known as support vectors. These support vectors satisfy
the equality (x;-w + b)y; = 1 This choice also follows Vapnik’s Structural Risk Minimization
principle [28].
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e If an algorithm can be described merely by dot product operation, then in principle we can
avoid the need to explicitly represent the acting vectors. This trick can be used for the case
where data is not linearly separable. We first map data into a very high dimensional (might
be infinite dimensional) space (feature space) which is more suitable for classification and then
use the linear classifier for doing classification. Note that the only way data appears in the
training problem, is in the form of dot product in that space. It can therefore be replaced by
kernels such as Radial Basis Function (RBF) [5] that map the data into the feature space. The
training algorithm’s complexity will then depend only on the dimension of input space and the
training set size, rather than the dimension of the feature space. Thus some parts of the “ curse
of dimensionality” (the fact that much more data is needed to ensure good generalization when
mapping data to higher dimensional space) might be solved in this way.

Origin

Figure 1: Among the separating hyperplanes, SVM choose the one which has largest margin. The
support vectors are circled.

Another important feature of SVM is the soft margin which is applied when the sample is linearly in-
separable even in the feature space. To overcome this problem positive slack variables §; are introduced
into the inequalities such that

X; wH+b>1-¢ fory; = +1
x; w+b>-1+4+¢ fory;, =—1
& > 0Vi.
Then & must exceed unity for an error to occur and ), &; is an upper bound on the number of training
errors. A natural way for choosing the resulting problem to minimize is then

SIwlE+C 36 )

subject to
X; wH+b>1-¢; fory; = +1
X; wW+b>-1+4+¢ fory;, =-1
& >0Vi
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where C is a parameter to be chosen by the user, a larger C corresponding to assigning a higher
penalty to errors.

The output of SVM is then a linear combination of the training examples projected in a high
dimensional feature space through the use of kernels (functions that represents the dot product in the
feature space)

y = szgn(z yio; K(x-x;) +b) (6)

i=1

where (z;,y;) are input/class from the training set (of size ), x is the current input and y is the
desired class € {—1,+1}, and K(.,.) is a kernel function.

2.3 Combining generative and discriminative models
2.3.1 Combination of HMM and SVMs

Although having impressive performances for classical static problems it is not easy to apply SVM to
sequence processing problems because of the variable sizes of the sequences. Recently, in some papers
from Jaakkola et al [13], the authors have developed a general formalism for deriving kernel functions
from generative probability models. The approach here is to derive the kernel function from generative
models corresponding to the class of sequences of interest. More precisely, the kernel function specifies
a similarity score for any pair of sequences whereas the likelihood score from generative models only
measures the closeness of the sequence to the model itself. So generative models (HMMs) can assign
the same likelihood to two totally different sequences. Suppose we use the well-known HMMs to
construct a generative model for each class. Let that model be P(X|0), where parameter 6 includes
the emission and the transition probabilities of the trained HMM. The forward-backward algorithm
can then be used to evaluate the likelihood of a sequence. In addition to obtaining the likelihood
for the query sequence, the forward-backward algorithm also extracts the sufficient statistics for the
parameters. For HMMs, they are the posterior frequencies of having taken a particular transition or
having generated one of the residues of the query sequence X from a particular state. Now instead
of computing the likelihood we modify the HMM to compute a fixed size vector that contains a value
(sufficient statistics) for each independent parameter in the model. This vector should provide a
summary of the sequence in the parameter space of model. By this way we can encode the descriptive
power of generative models in a fixed size vector [13] which is an analogous quantity to the model’s
sufficient statistics. One such statistics is called the Fisher score:

Uy(X) = Vg log(p(X|6)). (7)

Each component of Ux is the derivative of the log-likelihood of the sequence X with respect to a
particular parameter. This is thus a very interesting way to turn a variable-length sequence problem
into a static problem, which can be handled by advanced kernels methods. A natural kernel in this
case is the inner product between these feature vectors, scaled by a positive definite matrix M :

K(XMXJ) = UXiM_lUXj (8)

where M = I = Ex(UxU%) is the Fisher Information matrix. Using Fisher score of all positive and
negative sequences computed on an HMM model, we can train an SVM to decide the class of such
vectors. The result is a discriminative model using information from generative models. It has been
proved [13] that the resulting method gives performance that is asymptotically never inferior to the
MAP method. Another choice is to set M as identity matrix if it is too difficult to compute 1.
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2.3.2 Ensemble of generative models

Machine learning algorithms work by searching in a hypothesis space H, which is supposed to contain
an “acceptable” classifier , in order to find the most accurate one. Two very important aspects of
the hypothesis space H are its size and whether it contains good approximations for the optimal
classifier. Because of the difficulty in finding a single optimal classifier, another method for improving
accuracy of a classifier is to use an ensemble of classifiers (a set of individually trained classifiers whose
decisions are combined in some ways). Recent research [16] [9] has shown that an ensemble is often
more accurate than any of the single classifiers in the ensemble. There are lots of appeals for using
such method.

First of all, most learning algorithms work in a very large hypothesis space, then the training
data might not provide sufficient information for choosing a single best classifier from H. After the
training process there are still many hypotheses which have the same performance on the training data,
but their generalization performance vary largely. Since there is no other information for choosing
the best one among them, an ensemble of classifiers built from these hypotheses will ensure a good
generalization performance.

The second reason for using ensemble methods is that the high complexity of the search problem
might require heuristics in the learning algorithm. For example neural networks algorithms employ
local search methods (such as gradient descent) to find a locally optimal set of weights for the networks.
The resulting classifier is then a suboptimal hypothesis. Changing the parameters of the learning
algorithms can lead to another suboptimal hypothesis. In this case ensemble methods can be used as
a way of compensating for imperfect search algorithms.

Another reason is that the hypothesis space H might not contain a good enough classifier. Instead
it might contain several weaker classifiers. Then combining these hypotheses can be used as a way to
expand the searching space in which we can find a better classifier lying outside of H.

Our approach here is to train many classifiers using generative models from the training data. All
outputs from these classifiers will be combined and used as inputs for training another discriminative
model. If classifiers are chosen such that output errors are uncorrelated, this method will improve the
accuracy of the classifier.

2.4 Speech and speaker recognition

Speech recognition is the most common and successful application of HMMs. A good survey of
statistical methods for speech recognition can be found in [14]. The basic task can be stated as
follows: given a sequence of acoustic vectors (usually obtained by preprocessing a speech signal, for
instance spectral information represented by vectors of 10 to 40 dimensions sampled at a rate of
around one centi-second per time frame), to find the corresponding sequence of words pronounced by
the speaker. This is usually done by training a big HMM which embodies one sub-HMM per word or
per phoneme and then using some optimization technique (such as Viterbi decoding [29]) find the best
possible sequence of words corresponding to the acoustic sequence. Since every sequence of phonemes
does not represent valid sequences of words, a language model is also used to constrain the search
during decoding.

Speaker identification and verification are related tasks [6]: the identification task is to decide,
given a sequence of acoustic descriptors, who is talking from a set of known voices. In the verification
task, the client name is given together with the sequence of acoustic descriptors, and the task is then
to decide if the speaker is really who he pretends to be or not.These two tasks are very similar and
are usually solved by training one HMM per client and eventually one HMM for the world (which
represents the anti-client in the verification task), and then using some kind of thresholding method
and the MAP criterion to take a decision.
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3 Research plan

There are various schemes for combining generative models and discriminative models, which can be
categorized in one of these architecture: (i) parallel, (ii) serial combination and (iii) hierarchical. In
the parallel architecture, individual models are invoked independently and their results are combined.
As for the serial combination architecture, individual models are invoked in a linear sequence. And the
hierarchical architecture is a mixture of the first twos. In the first stage, we plan to try different serial
combination architectures with application to speech and speaker recognition. Different methods will
be used for mapping variable size sequences to fixed size vectors, such that they can be used as inputs
for discriminative models.

3.1 Combination using fixed size statistics computed from sequence data
and generative model

Different kinds of fixed size statistics computed from the sequence data and their corresponding
generative model can be used as input for discriminative models, for example the likelihood score and
Fisher score.

The speaker verification is clearly a binary classification task. We will use state-of-the-art HMMs
or Gaussian Mixture Models (GMMs) already proposed in the speaker verification community (as
well as at IDIAP), but instead of using the MAP criterion and some special tricks to estimate the
thresholds for deciding if a speaker is really who he claims to be, we propose to train a discriminative
SVM with statistics (likelihood scores, Fisher scores,...) computed from both clients and impostors
as inputs. The trained SVM is used for taking decision with statistics computed from the utterance
of speaker as input. In speaker identification, since the name of the client is not given, the task
is to decide to which client the given sequence correspond. It becomes a multi-class problem. Some
special treatment will have to be done in order to apply the discriminative model (SVMs) in that case.
Although the extension to multi-class problem is not trivial, some researchers have already proposed
methods to solve multiclass problems with SVMs [17].

In speech recognition, the combining methods will not be so clear. One of the difficulties of speech
recognition is the alignment problem: a training sequence usually corresponds to a speech signal
sequence associated with a word or phoneme sequence. But no information is available regarding
the exact alignment between these two sequences. So the task of speech recognition is more than a
classification task: one has to learn not only the correct class (here the class is a sequence of words
or phonemes) but also correct alignment. Moreover, there is also a decoding step where one selects
the best sequence of phoneme using a constrained graph (some sub-sequences of phonemes are more
probable than others, some are simply impossible, etc). Different solutions to this problem will be
investigated. As often done in advanced speech recognition system, one possible approach that will
be investigated is to rescore N-best word and phoneme sequence hypotheses, generated at the output
of a standard HMM-based speech recognition system, and thus providing us with possible phonetic
segmentation points. These phonetic segments can then be rescored using their fixed size statistics
taking into account the whole segment.

In most modern speaker recognition tasks where the sequence pronounced by the speaker is com-
posed by more than one word, one of the preprocessing tasks might be to try first to recognize what
the speaker said and use the obtained alignment in the decoding and classification task. In that case,
combination of discriminative models (SVMs) and generative models (HMMs, GMMs) could be tried
at both leves, recognition and classification.

3.2 Combining ensemble of generative models and discriminative models

Another general method for improving accuracy is to use ensemble methods (2.3.2). In our approach,
an ensemble of generative models will be generated for each class of sequence data. Their outputs
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(likelihood scores...) will then be combined and used as inputs for discriminative models. The ensemble
methods can be applied in the generative-discriminative hybrid system at different levels.

At the first level, the set of input features of sequence data will be divided into different subsets,
each feature subset being modeled by one generative model. This technique will work when the input
features are highly redundant.

The learning process can also be changed to create ensembles of generative models of each class.
A set of generative models with different capacities can be used for modeling the sequence data.
In Gaussian Mixture Models for example, one can use ensembles of GMMs with different number
of Gaussians. Different structures of generative models (GMMs, egordic HMM as in the speaker
verification problem) used in modeling sequence data also lead to different generative models.

One of the major techniques for estimating generative models is the EM algorithm. But it is well-
known that the EM algorithm only converges to a local maximum likelihood solution. By changing
the initial points in the model space the algorithms will converge to different generative models. This
can also be used to create ensembles of generative models, which also help solving the local optimum
problem.

4 Preliminary experiment in speaker verification

4.1 Introduction

Speech carries information on several level. It includes linguistic message, speaker specific informa-
tion, and information about the transmission environment... Speaker specific information contains the
identity of the speaker, the gender of speaker, the idiosyncrasy and dialect of speaker, and even the
emotional condition. Such information can be used in many applications, like access control, trans-
action authentication, or voice mail.The process of recognizing speaker’s identity from the acoustic
signal is then called speaker recognition. Broadly speaking, speaker recognition can be classified in
two specific tasks: speaker identification and speaker verification [11].In speaker identification the task
is to determine whom is talking from a set of known voices without identity claim from the speaker.
In speaker verification, the task is to use acoustic signal to determine whether a person is who he
claims to be.

Speaker recognition can also be divided into text dependent and text independent methods. The
former requires the person to say the same text during the training and testing phase, whereas the
latter does not constrain speaker on the content of his spoken text. Since text dependent methods can
exploit speaker specific information associated with each phoneme or syllable, it generally achieves
higher recognition performance than text-independent methods. But there are many applications
where one can not predetermine the text being spoken, in which we have to use text-independent
speaker verification methods.

In this experiment, we try to use a combination of Generative Gaussian Mixture Models (GMMs)
and SVMs in the text-independent speaker verification task.

4.2 System outline
4.2.1 Traditional speaker verification system using generative models

The speaker verification problem can be considered as a statistical hypothesis testing problem where
we test the hypothesis that the speaker is the true person that he claims to be (in which case, he is
called a client) against the hypothesis that he is not (in which case he is called an impostor).

Given an utterance X = {x1,..,X7}, we are interested in P(S;|X) the probability that speaker S;
has pronounced utterance X. Using Bayes theorem, we can write it as follows:

p(X|5i)P(5i)‘

(9)
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where p(X|S;) is the likelihood that utterance X was generated by speaker S;, P(S;) is the prior
probability of speaker S; and p(X) is the likelihood of utterance X.

Let us assume that P(S;|X) is the probability that utterance X was pronounced by any other
speaker. When P(S;|X) is the same for all clients, we replace it by a speaker independent model
P(Q|X). Using Bayesian criterion, we then derive the decision rule:

if P(S;|X) > P(Q|X) then X was generated by S;. (10)
Using equation (9) , inequality (10) can be rewritten as:

p(X[S) S P()
p(X[Q) © P(S)

Test(X) = = d;. (11)

Since it is more convenient to deal with log-likelihood ratio statistic rather than likelihood ratio statistic,
taking logarithm of (11) leads us to inequality:

test(X) = log p(X|S;) — log p(X|Q) > logd; = A;. (12)
With the assumption (most probably false) that x1,x5..x7 are conditionally independent and identi-
cally distributed, the log-likelihood ratio statistic becomes:

test(X) =y _(log p(x:|Si) — log p(x¢|2)) (13)

t=1
where test(X)’s are also independent, and identically distributed with

E(test(X)) = TE(test(x))

Var(test(X)) = TVar(test(x))

Normalizing by T" will give us average log-likelihood ratio statistic which does not depend on the
length of the utterance:

T
Ttest(X) = . S (logp(xt|S) ~ logp(x.[2). (14)

t=1

The system might have two types of errors: false acceptance (FA), when the system accepts an
impostor, and false rejection (FR), when the system rejects a client. In order to be independent on
the specific dataset distribution, the performance of the system is measured in terms of these two
different errors, as follows:

FAR — num'ber of FAs 7 (15)
number of impostor accesses

FRR = number'of FRs ‘ (16)
number of client accesses

An evaluation measure can be constructed as a combination of these two ratios, called the decision
cost function (DCF):

DCF = Cost(FR) - P(client) - FRR + Cost(F A) - P(impostor) - FAR (17)

where P(Client) is the prior probability that a client will use the system, P(impostor) is the prior
probability that an impostor will use the system, Cost(FR) and Cost(F A) are the cost associated
with a false rejection and false acceptance respectively.
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Figure 2: An example of a DET curve. The circle represents the threshold at equal error rate(EER),
i.e. when FA=FR.

The tradeoff between FAR and FRR will depend on the application. In order to see the performance
of a verification system with respect to this tradeoff, we can use the detection error tradeoff (DET)[19]
plot (which represents FAR as a function of the FRR in logarithmic scale). An example of this curve
is shown in figure 2

For this experiment, we chose a particular case of the DCF where the costs are equal to 1 and the
probabilities are 0.5 each, which is known as half total error rate (HTER):

FAR+ FRR

HTER =
R 2

(18)

A traditional speaker verification system can be built following three main steps [2]:

e Preprocessing: This step transforms the original speech waveforms into some specific feature
vectors adapted to the training and decision steps.

e Training: During this step, one generative model(GMMs) is trained for the world model and
then adapted for each client model.

e Decision: In this step, a threshold parameter A is chosen to optimize a criterion such as HTER.

4.2.2 Speaker verification system using hybrid GMM /SVM approach

Based on the idea discussed in section (2.3.1), instead of using the average log-likelihood ratio we will
use the Fisher score computed from input data and generative models in order to train a discriminative
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model and take a decision. Our speaker verification system is then built following the traditional
speaker verification system with some additional steps:

e Preprocessing

¢ Dimensionality reduction: Because the size of the Fisher score is equal to the number of
parameter in the generative model, which is very large, the purpose of this step is to reduce the
dimension of the acoustic vector, hence the number of coefficients in generative models.

e Training generative model

e Computing Fisher score: From the trained generative model, Fisher score for each acoustic
sequence will be computed.

e Training discriminative model: The Fisher score is then used for training the discriminative
model (SVM) in supervised mode.

In the next part of the paper, we will present the main components in the hybrid GMM /SVM speaker
verification system as follows: section (4.3) describes the statistical (baseline) system, section (4.4)
discusses the construction of a hybrid GMM/SVM classification system using Fisher scores, and the
next section (4.5) mentions the dimensionality reduction problem. The results of some preliminary
experiments are presented in section (4.6).

4.3 The baseline system

In the first stage of our system, a statistical generative model is chosen to serve as parametric basis
for the Support Vector Machine and also as the baseline for performance evaluation.

For text-independent speaker verification, where there is no prior knowledge of what the speaker
will say, the most successful statistical generative model has been Gaussian mixture models [25] [24].
Because of that reason and its other favorable properties [30], Gaussian mixtures have been chosen as
the baseline system in our experiment.

The distribution of feature vectors extracted from a speaker’s speech is then modeled by a Gaussian
mixture density. Using i.i.d assumption, the likelihood of a sequence X = {xi,..,xr} given a GMM
can be computed as follows:

T

T N
p(X16) = [T ptx) = [T 3 wn - N (53 #8, =) (19)

t=1 t=1n=1

where the parameter set of the GMM is 6 = {wn, t,,, S} with w, € R, p,, € R4, 5, € R being
respectively the prior probability, the mean vectors, and the covariance matrices of the nt* Gaussian
component and d is the dimension of acoustic vectors:

N3 s ) = ——— exp (—l(x ) TR (x un)) . (20)

(2m)% /%, 2

Usually diagonal covariance matrices are used in order to limit the model size, which implies the
hypothesis that all features in acoustic vectors are uncorrelated.

From a large amount of speech data, maximum likelihood estimates of the speaker-independent
model’s parameters (also called the world model) are obtained using Expectation-Maximization algo-
rithm [8]. Then, based on sequences of training vectors belonging to a particular speaker, the client
model’s parameters are trained via Bayesian adaptation technique from the world model GMM [1].
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4.4 The Fisher kernel

From the approach discussed in the first part of the paper (section 2.3.1), we first map the input data
to a (fixed dimension) feature space by computing Fisher scores from the client model and the world
model:

Up(s:)(X) = Vi(s;) log(p(X|0(S:))) (21)

Ug(a)(X) = Vy(q) log(p(X[0(02)))- (22)

Theses scores are then concatenated to form the input of the discriminative model (SVM).

4.5 Parameter reduction

Since the size of the Fisher score is the number of parameters in the model, which is some tens of
thousands (in diagonal covariance matrix GMM model, the number of parameters is: 2 X number
of Gaussians x number of features in frame ~ 2 x 100 x 30) in state-of-the-art speaker verification
systems, doing parameter reduction is an important step so that the computational complexity of
the training algorithm for SVM becomes feasible. In this experiment parameter reduction is done in
two stages: doing dimensionality reduction in input data space and parameter selection in generative
models.

4.5.1 Dimensionality reduction

In general two approaches are available to perform dimensionality reduction:

e Feature extraction: in this approach, a subset of new features is created by combination of
the existing features.

e Feature selection: here we reduce the dimensionality by choosing a subset of all features which
are most informative.

T T T
o Ty o n T2
| : | v
feature selection : feature extraction =f
Lin Ym
D D D

Our first approach is using feature extraction methods, which reduce dimensionality by projecting the
original D dimensional feature space onto a smaller subspace through a transformation. The optimum
transformation y = f(x) will be the one that results in no increase in the minimum probability of
error (when the probability of error is the same when a Bayes decision rule is applied on original
space R and in the reduced space ®M). Two commonly used linear feature extraction methods in
multivariate statistic analysis are principal component analysis (PCA) and linear discriminant analysis
(LDA). Whereas PCA method tries to represent the samples accurately in a lower-dimensional space,
the goal of LDA method is to enhance the class-discriminatory information in the lower-dimensional
space. Since our purpose is to keep as much as possible information in the high-dimensional space and
doing PCA also helps decorrelate features in input space (which makes data fit better to the assuming
diagonal covariance matrices GMMs), principal component analysis is chosen in this experiment.

In the method of principal components [15], dimensionality reduction is achieved by finding the
orientation of a subspace which best preserves the information available in the original space and
projecting the original space onto that subspace. The first principal component (PC) of a pattern
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vector is the projection of that sample onto the direction of largest variance as estimated over a
training set. The rationale behind principal component analysis is the assumption that the direction
of maximum variance contains most of the information about the various classes that the input pattern
represents. Indeed, the PCA method is identical to the Karhunen-Loéve transformation (KLT) [10]
used in speech coding. The resulting transformation is given by a D x M unitary matrix U whose
columns are the eigenvectors corresponding to the M largest eigenvalues of the covariance matrix of
the data.

Applying this method in our speaker verification system, we first compute the M largest principal
component from the training data for the world model. Then all data for the world model as well as
client models is transformed by projecting into these components.

4.5.2 Parameter selection

In this experiment, parameter selection is simply done by the selection of a set of important mixture
components. The components of the world model are sorted according to their occurrence frequencies
in the speaker training data. The occurrence frequencies are established by the weights of the com-
ponents in the world model. Only the components corresponding to the highest weights are kept and
their weights are normalized (Normalization is done by multiplying the weights of selected components
by a constant such that the sum of these weights is equal to 1).

4.6 Results

All experiments described in this report were done using the publicly available SVMTorch toolkit |7]
and the state-of-the-art GMM based speaker verification system developed at IDIAP [2] with some
modifications to adapt systems to our purpose. The database for our experiments is the configuration 2
of the XM2VTS speech database [20] and its associated experimental protocol, the Lausanne Protocol
[18]. The database contains four recording sessions of 295 subjects taken at one month intervals.
On each session, one speech shot consisting of three sentences was made. The three sentences were
the same for all speaker to allow the simulation of impostor accesses by all subjects. Sentences were
chosen to compensate for prosodic and co-articulation effects. The database was divided into three
sets: training set for building client models, evaluation set for computing the decision threshold and
test set for estimating the performance of different verification algorithms.

During the preprocessing step, the speech signal was sampled every 10 ms and then parameterized
into Mel Frequency Cepstral Coefficients (MFCC) frames [23], keeping 12 coefficients and their first
derivative (also known as delta), as well as the energy together with its first derivative, for a total of
26 features computed every 10 ms. Then a bi-Gaussian method [2] is used for removing silence frames
from data.

The world model (GMM) is then trained from the world data set (taken from another speaker
verification database because of the size limit of the XM2VTS database) and adapted to client models
using the training data set. For the baseline system, the HTER threshold is computed from log-
likelihood ratio statistics of the evaluation data set and verified on the test data set. In the hybrid
system, the input data for training and testing SVM is computed from the evaluation data set (includ-
ing 40,000 impostor accesses and 400 client accesses) and the test data set (112,000 impostor accesses
and 400 client accesses) respectively. Parameters of the SVM are chosen by cross-validation

4.6.1 Fisher score experiment

In initial experiments different dimensionality reduction methods were tried. At first, the PCA method
was used for reducing the dimensionality of the data. Experiments with different number of principal
components were done on two baseline systems (one with 100 Gaussians and one with 60 Gaussians
in the GMM). The result is shown in figure 3.

Independently, the parameter selection method (4.5.2) was used for reducing the number of compo-
nents in generative models. For each number of components to be selected in the parameter selection
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Figure 3: Plot of HTER using different number of principal components.

experiment, we also built a traditional speaker verification system with the same number of Gaussians
for comparing purpose. The method was tested with different number of components to be selected
(from the 100 Gaussians baseline system), as shown in table 1.

| System | HTER(%) |

100 Gaussians baseline 2.4

20 best Gaussians 5.459
20 Gaussians 4.06
40 best Gaussians 3.324
40 Gaussians 3.078
60 best Gaussians 2.247
60 Gaussians 2.596
80 best Gaussians 2.426
80 Gaussians 2.447

Table 1: Comparing results from the parameter selection experiments.

Our initial purpose was to use a state-of-the-art speaker verification system (with 100 Gaussians
GMM) and then to do dimensionality reduction to reduce the number of components in the Fisher
score. However applying dimensionality reduction methods with the 100 Gaussians baseline made the
HTER increase dramatically. So we decided to use the 20 Gaussians baseline system for the Fisher
score experiment instead. Noticing that the mean coeflicients are more important in the generative
model (only mean adaptation is applied in our system), we keep only derivatives of the means in the
Fisher score. The result from this experiment (table 2) shows that the hybrid system still has not
obtained competitive results compared to the performance of other state-of-the-art speaker verification
systems.

4.6.2 A simple GMM/SVM hybrid system experiment

Because of the inferior performance of the hybrid GMM/SVM system in the previous experiment,
another simple experiment was done for verifying the advantage in combining generative and discrim-
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| System | HTER(%) |
20 Gaussians baseline 4.06
Hybrid GMM-SVM using Fisher score 8.864

Table 2: Fisher score experiment.

inative models. This approach has been mentioned in [3] in which instead of using log likelihood ratio
(the Bayesian decision criterion) the log likelihood scores from the world model and the client model
are used as input for training another discriminative model (SVM). From the experimental protocol
we know that the impostors in the test data are different from the ones in the training data. A
minor change was made in the cross-validation method to model the difference between the training
population and the test population. In this database tailored cross-validation method, the training
data were divided into the train data and the validation data in a way such that impostors in the
validation data are different from impostors in the train data. This change has helped improve a little
bit the performance of the hybrid system and the result is shown in table 3.

| System | HTER (%) |
The best system using Bayesian decision (with 400 Gaussians ) 1.432
The hybrid GMM-SVM system using loglikelihood score 1.139

Table 3: Experiment with connectionist GMM-SVM system

5 Conclusion and future objectives

Although results from experiment in 4.6.2 shows that combining generative and discriminative models
is a promising approach, the hybrid GMM/SVM system using Fisher score is still inferior to other
state-of-the-art speaker verification systems. We mention here some problems which might be reasons
of these results:

e The dimensionality reduction algorithm does not work well. By projecting client data to the
principal components of the training data of the world model we might loose speaker specific
information in this data.

e The distribution of our training data is extremely biased, the number of negative training samples
is one hundred times higher than the number of positive training samples. It is even more biased
in the test data. This makes the training of SVMs much harder.

e The optimization criterion in training algorithm of SVM is not the HTER but the number of
classification errors.

e The mapping from the Fisher score space to lower dimensional space might not keep all the
important discriminant information.

e Because of the small size of the database, we had to use one universal discriminative models for
all Fisher scores computed from different client models. This is somehow like comparing data
from different spaces and might be an essential reason for the inferior performance of the system.

Our work in the following months will be to propose solutions to these problems, including:

e Finding more appropriate methods for dimensionality reduction and parameter selection.We
might have to modify the PCA method or apply other nonlinear transformations (for example
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Kernel PCA [21] or Locally Linear Embedding [26]). These dimensionality reduction methods
might be applied not only to the input data space but also to the Fisher score space.

e Changing the parameters of the training algorithm of SVM so that the optimization criterion
becomes HTER.

e The GMM model (can be considered as HMM model with one node) does not keep information
about the temporal evolution of speech data. A better HMM model might be used for modeling
data.

e Trying other discriminative model, such as the Multilayer Perceptron (MLP).
e Finding other methods for extracting speaker specific information from speech data.
e Trying some kinds of speaker specific discriminative models.

e Trying other approach using ensemble methods in combining generative and discriminative mod-
els (3.2).
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