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Abstract. In this paper, we present a simple yet effective way to improve a face verification
system by generating multiple virtual samples from the unique image corresponding to an access
request. These images are generated using simple geometric transformations. This method is
often used during training to improve accuracy of a neural network model by making it robust
against minor translation, scale and orientation change. The main contribution of this paper is
to introduce such method during testing. By generating N images from one single image and
propagating them to a trained network model, one obtains NV scores. By merging these scores
using a simple mean operator, we show that the variance of merged scores is decreased by a factor
between 1 and N. An experiment is carried out on the XM2VTS database which achieves new
state-of-the-art performances.
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1 INTRODUCTION

1.1 Problem Definition

Biometric authentication (BA) is the problem of verifying an identity claim using a person’s be-
havioural and physiological characteristics. BA is becoming an important alternative to traditional
authentication methods such as keys (“something one has”, i.e., by possession) or PIN numbers
(“something one knows”, i.e., by knowledge) because it is essentially “who one is”, i.e., by biometric
information. Therefore, it is not susceptible to misplacement, forgetfulness or reproduction. Examples
of biometric sources are fingerprint, face, voice, hand-geometry and retina scans. General introduction
of biometrics can be found in [5].

Biometric data is often noisy because of the failure of biometric devices to capture the plastic nature
of biometric traits (e.g. deformed fingerprint due to different pressures), corruption by environmental
noise, variability over time and occlusion by the user’s accessories. The higher the noise, the less
reliable the biometric system becomes. Current biometric-based security systems (devices, algorithms,
architectures) still have room for improvement, particularly in their accuracy, tolerance to various
noisy environments and scalability as the number of individuals increases. The focus of this study is
to improve the system accuracy by directly minimising the noise by using multiple virtual samples,
when multiple real samples are not available.

1.2 Related work in the literature

In the literature, to the best of our knowledge, the closest work to ours is the one reported by Kittler
et al [1]. The fundamental difference is that they assume that multiple samples are available. In
real-life situation, where a face image is scanned and transfered over a communication line, obtaining
multiple face images for each access may not be feasible. In this case, “virtual” samples could be used.
Although there is no gain in information, in this paper, it is shown that accuracy can still be exploited
by reducing variance of the virtual samples. Moreover, this approach can be easily generalised to other
pattern recognition problems. The rest of this paper is organised as follows: Section 2 explains the
theoretical bounds in the expected gain coming from averaging scores; a description of the experiment
can be found in Section 3; this is followed by conclusions.

2 VARIANCE REDUCTION VIA AVERAGING

2.1 Variance reduction

Let us assume that the measured relationship between a feature vector x; and its associated score y;
can be written as:

yi = f(xi) + ni- (1)
where f(-) is the true relation and 7; is a random additive noise with zero mean. The mean of y over

N trials, denoted as ¥ is:
N

g:%zyi- )

i=1
With enough samples, the expected value of y, denoted as E[y], which is estimated by the mean of y,
approximates the “true” measure:

Elyl = E[f®)]+ E[] 3)
= f(®). (4)

Moreover, the variance of y can be written as:

Varly] = - Varfs] 5)
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Therefore, it can be concluded that when N scores of a single biometric source are averaged, noise that
occurs due to classification can be reduced by a factor of N. The effect of averaging in Equation 2 can
best be observed using synthetically generated data in Figure 1. Assume that in the original problem,
the genuine user scores follow a normal distribution of mean 1.0 and variance 0.9, denoted as A'(1,0.9),
and that the impostor scores follow a normal distribution of A'(—1,0.6) (both graphs are plotted with
'+). If for each access, three confidence scores are available, according to Equation 5, the variance of
the resulting distribution will be reduced by a factor of three. Both resulting distributions are plotted
with ’0’. Note the area where both the distributions cross before and after. This area corresponds to
the zone where minimum amount of mistakes will be committed given that the threshold is optimal .
The decrease in this area means an improvement in the recognition rate. In general, the more samples
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Figure 1: Averaging scores distribution in a two-class problem

are used, the sharper (taller and with shorter tails at both ends) both the impostors’ and the clients’
score distributions become. The sharper they are, the lower the area where these two distributions
overlap. The lower this area is, the lower the number of mistakes committed.

2.2 Error reduction

The above discussion is only true when scores are corrupted by noise with zero-mean and uncorrelated.
In reality, one knows that scores coming from virtual samples are dependent on the original image.
What would then be the upper and lower bounds of such a gain? Here, we refer to the work of
Bishop [2, Chap. 9] who has shown that by averaging scores of N classifiers, a committee could
perform better than a single classifier. The assumptions were that each classifier was not correlated
and that the error of each classifier had zero mean. He showed that:

1 N

err, = ﬁ Z err; (6)
=1

= %mean(erri). )

where err. is the error of the committee and err; is the error associated to the i-th classifier. Note
that the major difference between Bishop’s context and ours is that scores are due to variation of
N classifiers. In our context, scores are due to variation in the “virtual” samples obtained from N
geometric transformations. The index i is referred to a sample hereinafter.

1Optimal in the Bayes sense, when (1) the cost and (2) probability of both types of errors are equal.
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Due to the false assumption of uncorrelation in scores obtained from virtual samples, the error
reduction obtained using the mean operator will not be N as shown in Equation 7 but less. This
equation should be rightly written as:

1
err, = amean(err) (8)

1<a<N.

where a can be understood as a “gain” in error reduction. It shows that the maximum gain in
averaging scores is N with respect to the average performance of each virtual sample. This is, in
practice, not attainable since the scores are correlated. The minimum gain, according to Equation 8
is 1, which means that there is no gain but one does not loose in the combination neither. This can be
understood as follows: If the errors made by each virtual score are dependent, i.e., they make exactly
the same error in the extreme case (V; ;(err; = err;)), then mean(err) = err; = err., which implies
that a = 1.

As in the case of committee of classifiers, by averaging N scores from N transformed images, the
gain factor in terms of error reduction with respect to a single input image is in the range [1, N].
Therefore, score averaging is a simple yet effective way to increase system accuracy.

3 EXPERIMENT

3.1 Database and Protocols

The XM2VTS face database is used for this purpose because it is a benchmark database with well-
defined protocols called the Lausanne Protocols [3]. The XM2VTS database contains synchronized
image and speech data recorded on 295 subjects during four sessions taken at one month intervals.
On each session, two recordings were made, each consisting of a speech shot and a head rotation shot.

The database was divided into three sets: a training set, an evaluation set, and a test set. The
training set was used to build client models, while the evaluation set was used to compute the decision
(by estimating thresholds for instance, or parameters of a fusion algorithm). Finally, the test set was
used only to estimate the performance of the system.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors, and 70 test
impostors. Two different evaluation configurations were defined. They differ in the distribution of
client training and client evaluation data. Both the training client and evaluation client data were
drawn from the same recording sessions for configuration I (LP1) which might lead to biased estimation
on the evaluation set and hence poor performance on the test set. For configuration IT (LP2) on the
other hand, the evaluation client and test client sets were drawn from different recording sessions
which might lead to more realistic results. More details can be obtained from [3].

In this database, each access is represented by only one face image. We can increase the number of
images by using geometric transformations. In this way, we obtain multiple “virtual” samples from a
single access. For each virtual image, features will be extracted in the same way as a real face image.
Both feature extraction and geometric transformations are explained in sections below.

3.2 Features

In the XM2VTS database, a bounding box is placed on a face according to eyes coordinates located
manually. This assumes a perfect face detection. The face is cropped and the extracted sub-image is
downsized to a 30 x 40 image. After enhancement and smoothing, the face image has a feature vector
of dimension 1200.

In addition to these normalised features, RGB (Red-Green-Blue) histogram features are used. To
construct this additional feature set, a skin colour look-up table must first be constructed using a
large number of colour images which contain only skin. In the second step, face images are filtered
according to this look-up table. Unavoidably, non-skin pixels are captured as well. This noise will be
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submitted to a classifier to discriminate its degree of relevance. For each color channel, a histogram
is built using 32 discrete bins. Hence, the histograms of three channels, when concatenated, form a
feature vector of 96 elements. More details about this method, including experiments, can be obtained
from [4].

3.3 Geometric Transformations

The extended number of patterns is computed such that given an access image, N geometric trans-
formations are performed. This number is calculated as follows: N = 2 x A x B, which shows the
mirrored number of shifted and scaled face patterns. A = number of shifts x 8 + 1 is the total number
of shifts, in 8 directions, including the original frame, for each scale. B = number of scales x 2 + 1 is
the total number of scales, in 2 directions (zooming-in and zooming-out), including the original scale.
In the experiment, 4 shifts and 2 scales are used. This produces 330 virtual images per original image.

In the following experiments, we compared the system from [4] (denoted “original”) to our system
(denoted “averaged”). In the original system, geometric transformations were added to the training
set only, while in the averaged system, they were also added to the evaluation and test sets.

The training set is used to train an MLP for each client and the evaluation set is used to stop the
training using an early-stopping criterion. At the end of training, the trained MLP model is applied on
the evaluation set again to estimate the global threshold that optimises the Equal Error Rate (EER).
Once all parameters are set, including threshold, the trained MLP model is applied on the test set.
Thus the obtained Half Total Error Rate (HTER) on the test set is said to be a priori, while if the
threshold was optimising EER on the test set, it would be called a posteriori. Of course, the a priori
results are more realistic. In the experiment, the optimised client dependent MLPs had 20 hidden
units each.

3.4 Results

The experiments are carried out on LP1 and LP2 configurations of XM2VTS database. The results
are shown in Tables 1 and 2. Odd lines in these tables show the HTERSs of the original approach while
even lines show the HTERs after averaging virtual scores. In all comparisons, the improvements are
obvious. The HTERs in Table 1 are a posteriori and thus not realistic, but nevertheless give insights
of the expected improvements. The HTERs in Table 2 are a priori. The corresponding DET curves
of Table 2 are shown in Figure 4. As expected, the performance obtained by averaging is always
superior. Moreover, to the best of our knowledge, the newly obtained a priori results appear to be
the best published ones on this benchmark database.

Table 1: Performace of averaging scores versus original approach based on a posteriori selected thresh-
olds

Data sets | Models | FA[%] | FR[%] | HTER[%)]
LP1 Eval | Original 1.667 | 1.667 1.667
LP1 Eval | Averaged | 1.333 | 1.333 1.333
LP2 Eval | Original 1.250 1.250 1.250
LP2 Eval | Averaged | 1.107 | 1.000 1.054
LP1 Test | Original 1.817 | 1.750 1.783
LP1 Test | Averaged | 1.692 | 1.750 1.721
LP2 Test | Original 1.726 | 1.750 1.738
LP2 Test | Averaged | 1.514 | 1.500 1.507
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Table 2: Performace of averaging scores versus original approach based on a priori selected thresholds

Data sets | Models | FA[%] | FR[%] | HTER[%]
LP1 Test | Original 1.230 | 2.750 1.990
LP1 Test | Averaged | 1.474 | 1.750 1.612
LP2 Test | Original 1.469 2.250 1.860
LP2 Test | Averaged | 1.285 | 1.750 1.518
DET curve DET curve
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Figure 2: Test sets on XM2VTS database

3.5 Analysis of virtual distribution scores

One insight to examine the effectiveness of this method is by looking at the probability density
function (pdjf) of the 330 virtual scores with respect to a false rejection and a correct acceptance.
This is shown in Figure 3. When given an upright-frontal image of a client within a certain allowed
degree of transformation, one obtains a sharply picked pdf (with very low variance) around the mean
1. The MLP associated with client 006, in this case, was trained to give a response of 1 for a genuine
access and —1 for an impostor access. When the original image is “out” of the allowed transformation
range, the pdf of virtual scores has a large variance and a mean displaced away from 1. Note that
the logarithmic scale for the probability is used in the graph to amplify the changes in distribution
accross the score range [—1,1].

While a single image normally produces only one score, a set of virtual images has the advantage
of producing another information: the score distribution. One way to measure this distribution is
by its variance. For instance, for the example above, the variance for the correct acceptance case is
1.5670e-05 while the variance for the false rejection case is 0.0181. Clearly, variance of virtual scores
can give supplementary information that the original approach cannot. In general, the pdf (not just
the variance) could probably provide useful insights to improve this method further.

3.6 Variance and error reduction

This section tries to examine the relationship between the reduction of both variance and error. The
hypothesis here is that, when N (N = 400 in our case) virtual scores are averaged, Equation 5 says that
the reduction is by a factor of N, assuming that the scores are indepedence. They are unfortunately
not, in our case. To measure this, we introduce a variance reduction ratio, defined as:

Var [yewtended]
o = ——Jextended] 9
Var[yoriginal] ( )

where y are either client or impostor scores. These values are shown in Table 3.
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Figure 3: Examples of “bad” and “good” photos and their corresponding distribution of virtual scores
for client 006

Table 3: The gain factor a between the scores virtual of virtual samples and the original scores.

Data sets | Access type LP1 LP2
Eval Client pdf | 1.2716 | 1.2561
Eval Impostor pdf | 1.0960 | 1.0769
Test Client pdf | 1.1689 | 1.2675
Test Impostor pdf | 1.1642 | 1.0507

To illustrate the effect of variance reduction, we literally computed the score distribution of client
and impostor scores over all data available for both the LP1 and LP2 evaluation set. Note that the
extended data (with virtual scores) has 330 times more data than the original data set. These pdfs
are calculated using Gaussian-kernel based approach, which is defined as follows:

How about the gain factor of HTER? These are readily available from Table 1 by dividing the
odd lines HTER by the corresponding even line HTER. The definition of alpha can be derived from
Equation 8.

Table 4: The gain factor of error reduction according to Table 1

Data sets | Gain factor
LP1 Eval 1.251
LP2 Eval 1.186
LP1 Test 1.010
LP2 Test 1.153

Note that the variance reduction (Table 4) and error reduction (Table 4) are proportional. In

general, if there is a reduction in variance of client or impostor pdf, there will be a reduction in
classification error (specifically HTER, in our case).

As can be observed, these gain factors are very close to the lower bound, i.e., 1. These confirms
to the fact that the virtual samples are dependent. Thus, this also confirms to the proposed thoery.
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Figure 4: The client and impostor pdfs of the evaluation sets of LP1 and LP2 configuration

4 Conclusion

By applying N various geometric transformations to a given original face image access, it is shown that
one could reduce the variance of the original score by a factor between 1 and N, by taking into account
the assumption that these N image samples are dependent on the original image. As a consequence,
the classification error, with respect to the original method is reduced by a factor between 1 and N
as well.

To put in a formal framework, our proposed approach can be summarised as:

1
Y= > f(h(g(x,1)) (10)

teT

instead of y = f(h(x)) for the test set, where, t € T is a set of geometric transformation parameters
applied by g (the transformation function) on the feature vector x, h is a feature extraction function
and f is a trained classifier on h(f(x,t)) over t € T with x sampled from a training set. Equation 10
explains why this method is robust against minor geometric transformations: it is integrated over the
space of these transformations and hence achieves invariance over this space.

This method has the advantage of being simple to implement. Furthermore, it does not require
multiple real examples. This makes it easily extendable to many general classfication and regression
problems. The only added complexity during testing is proportional to the number of artificially
generated samples, given that a suitable transformation for a given data set can be defined.
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