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Abstract. This paper investigates the recognition of group actions in meetings. A statisti-
cal framework is proposed in which group actions result from the interactions of the individual
participants. The group actions are modelled using different HMM-based approaches, where the
observations are provided by a set of audio-visual features monitoring the actions of individuals.
Experiments demonstrate the importance of taking interactions into account in modelling the
group actions. It is also shown that the visual modality contains useful information, even for
predominantly audio-based events, motivating a multimodal approach to meeting analysis.
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1 Introduction

Automatic analysis of meetings is an emerging domain for the research of a diverse range of speech,
vision and multimodal technologies. Sample applications include structuring, browsing and querying
of meeting databases, and facilitation of remote meetings.

Speech is the predominant modality for communication in meetings, and speech-based processing
techniques, including speech recognition, speaker identification, topic detection, and dialogue mod-
elling, are being actively researched in the meeting context [1, 2, 3, 4]. Visual processing, such as
tracking people and their focus of attention, has also been examined in [5, 6]. Beyond this work, a
place for analysis of text, gestures, and facial expressions, as well as many other audio, visual and
multimodal processing tasks can be identified within the meeting scenario.

While important advances have been made, to date most approaches to automatic meeting analysis
have been limited to the application of known technologies to extract information from individual
participants (e.g. speech, gaze, identity, etc). Such a perspective overlooks the potential for defining
new tasks based on the group nature of meetings. While producing accurate speech transcripts,
identifying participants, and recognising visual gestures are all important tasks, one of the ultimate
goals of automatic meeting analysis is the summarisation of the meeting into a series of high-level
agenda items. Such a summarisation at the meeting level should reflect the action of the group as
a whole, rather than simply actions of individual participants. Intuitively, the true information of
meetings is created from interactions between participants : the whole is greater than the simple sum
of the parts.

The automatic analysis of people interaction constitutes a rich research area. In domains other
than meetings, there is growing interest in the automatic understanding of group behaviour, where
the interactions are defined by individuals playing and exchanging both similar and complementary
roles (e.g. a handshake, a dancing couple, or a children’s game) [7, 8, 9, 10, 11]. Most of the previous
work has relied on visual information and statistical models, and studied three specific scenarios:
surveillance in outdoor scenes [10, 11], workplaces [8, 9], and indoor group entertainment [7]. In most
cases, the interactions are composed of problem-dependent “primitive” tasks of various degrees of
complexity performed by each individual, and selected from small sets of actions that are intuitively
relevant. The main hypothesis in each of these cases is that the behaviour of people during an
interaction is constrained by the behaviour of the others, so modelling such constraints amounts to
modelling the interactions.

While little work has been done to date on automatic analysis of multimodal group interactions
in meetings, group behaviour in meetings has been actively studied for over fifty years by social
psychologists [12, 13, 14]. To develop technologies capable of analysing meetings automatically, much
insight can be gained from familiarisation with this body of work. As a specific example, research has
analysed the mechanisms and significance of turn-taking patterns in group discussions [15, 16, 17].

In this paper, we propose a statistical framework for automatic meeting analysis based on modelling
interactions between participants (first presented in [18]). The actions of individual participants are
first measured using a variety of audio-visual features. These multimodal feature sequences are then
modelled in order to recognise actions belonging to the group as a whole (termed meeting actions). In
particular, a set of meeting actions is defined based on turn-taking events. In experiments, we extract
a range of audio-visual features from each participant (including speech activity, pitch, speaking
rate, and head and hand blobs) and model the participant interactions using hidden Markov models
(HMMs) [19]. The experiments aim to investigate the multi-modal and group natures of the actions by
using models that combine the streams of information (from audio, visual, or individuals) in different
ways, including early integration HMMs, multi-stream HMMs [20, 21], and asynchronous HMMs [22].

As a background to the approach, Section 2 reviews related work from the field of social psychology.
Section 3 then proposes a computational framework for automatic meeting analysis based on the
modelling of multimodal group actions. Experiments are presented in Section 4, and conclusions and
future directions are given in Section 5.
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System Basis Lexicon

IPA [12] Process | shows solidarity
shows tension release
agrees

gives suggestion

gives opinion

gives orientation

asks for orientation
asks for opinion

asks for suggestion
disagrees

shows tension

shows antagonism
McGrath [13] | Task planning tasks
creativity tasks
intellective tasks
decision-making tasks
cognitive conflict tasks
mixed-motive tasks
contests/battles
performances

Table 1: Alternative coding systems for group discussions in social psychology.

2 DMeeting Analysis : A Social Psychology Perspective

While automatic meeting analysis is a recent research domain, a large body of literature on group
interactions exists in the field of social psychology. This literature gives valuable insight into the
nature and value of information present in meetings. In the following, we summarise aspects of the
social psychology approach that are most relevant to the proposed computational perspective.

Social psychology concerns “the study of the manner in which the personality, attitudes, moti-
vations, and behaviour of the individual influence and are influenced by social groups” [23]. Social
psychology studies the above phenomena in a systematic manner and employs a variety of assess-
ment methodologies, ranging from self-report measures and observational measures to physiological
measures, among others [24]. Of these, we identify the structured observational approach (described
below) as being of particular relevance to a computational framework. Further restricting our scope,
we focus on studies of small group discussions [13, 17|, as they relate well to the type of meetings we
are currently investigating.

In observational approaches, group behaviour is measured by an observer /analyst. The analyst can
observe either overtly or covertly, and may be external or internal to the group. Automatic analysis of
meetings fits into this observational paradigm, where the machine functions as the observer/analyst.

More specifically, structured observational measures improve the objectivity of the analysis by
defining a particular categorisation (the coding system) of group behaviour [24]. The categories in a
given coding system can generally be considered as mutually exclusive (non-overlapping) and ezhaus-
tive (covering the entire meeting duration). In this way, the meeting can be annotated as a continuous
sequence of these lexical labels. Structured approaches are commonly used when hypotheses about
group behaviour can be probed by quantifying specific aspects of the group [24].

One distinction between different coding systems is that of process versus task. One process-based
coding system is the Interaction Process Analysis (IPA) proposed by Bales [12], which is designed
to measure how the group progresses through phases of communication, evaluation, control, decision,
tension reduction and reintegration. The SYMLOG system (System of Multiple Level Observation
of Groups) [25], is another process-based system based on attitudes of individuals within the group.
The McGrath Task Circumplex [13] is an example of a task-based system. Its categories cover four
broad task types - generate, choose, negotiate and execute - that translate into eight specific group
tasks. An extension to the McGrath Task Circumplex was proposed in [26] to also include information
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sharing and gathering tasks. The lexica defined by the IPA and McGrath Task Circumplex coding
systems are given in Table 1.

These coding systems are used to measure how individuals interact in a group, as well as how the
group acts as a whole. Such group behaviours have direct relevance to potential applications, such as
a meeting browser. To illustrate, Bales [12] gives a specific example of how the IPA categories could
relate to potential meeting “agenda topics”, and concludes that:

“In brief, the functional problems of communication, evaluation, control, decision, tension
reduction, and reintegration, have been separated out, enlarged into informal ‘agenda
topics’ and made to form the skeleton of major events of the meeting.” [12, p11]

Relating this to a computational framework, it is clear that automatic analysis of meetings can be
considered a case of structured observational measurement. In this context, the meeting analysis task
is defined as the recognition of a continuous, non-overlapping, sequence of lexical entries, analogous to
the approach taken in speech or continuous gesture recognition [19, 27]. Each coding system provides
an alternative lexicon of meeting events : the same meeting could be viewed from different perspectives
by labelling according to a number of different coding systems in parallel.

One particular focus of group discussion research has been the ‘morphology’ of the group interac-
tion, which investigates patterns of individuals’ participation over time. Such analysis can give insight
into issues such as interpersonal trust, cognitive load in interactions, and patterns of dominance and
influence [14]. Recent work has shown that turn-taking patterns in meetings can be predicted [16] or
simulated [15] using simple probabilistic models.

While it is evident that speaking turns are characterised predominantly by audio information,
significant information is also present in non-verbal cues. Work has examined, for instance, how
participants coordinate speaking turns using a variety of multimodal cues, such as gaze, speech back-
channels, changes in posture, etc. [15, 16, 28]. Research has shown that in general, visual information
can help disambiguate audio information [29], and that when the modalities are discrepant, partici-
pants appear to be more influenced by visual than by audio cues [14, 30].

Summarising the above discussion, the social psychological literature on group research provides
valuable background information for automatic meeting analysis. In the current context, we have seen

e that definition of a lexicon (coding system) of group events allows the interactions in meetings
to be analysed in a systematic manner;

e that turn-taking behaviour provides a rich task for analysis; and

e that, while audio is the dominant modality in meetings, significant information is conveyed in
the visual modality, motivating a multimodal approach.

3 Automatic Meeting Analysis : A Computational Frame-
work

From the preceding discussion, we see that meetings can be analysed as a sequence of group actions
that result from individuals interacting through a series of multimodal cues. Motivated by this view,
this section proposes a computational framework for automatic meeting analysis that involves three
components : a set of multimodal group actions, a set of individual actions, and a model of the
interactions.

3.1 Multimodal Group Actions

The first task in implementing such a framework, is to define a set of relevant group actions. As the
actions belong to the meeting as a whole, rather than to any particular individual, we refer to them
as meeting actions.
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We model a meeting as a continuous sequence of exclusive events taken from the set of N meeting
actions

V={vi,va,...,vn}. (1)

We note that while the model of unambiguous, exclusive and exhaustive events provides a tractable
computational framework, these assumptions do not always reflect reality. For instance, for events to
be non-overlapping, it is implied that well-defined temporal boundaries exist. In reality, most events
are characterised by soft (natural) transitions, and specifying their boundaries beyond a certain level
of precision has little meaning. In addition, real events are not always perfectly unambiguous to
observers (see e.g. [15, 26]). Nevertheless, such modelling inaccuracies are not necessarily limitations,
depending on the particular application and assessment methodology.

While insight into the type of group actions present in meetings could be gained from the coding
systems described in Table 1, it is apparent that a computational framework requires a more con-
strained definition of meeting actions than that found in social psychology as recognition of the actions
must be feasible given state-of-the-art technology.

As discussed in Section 2, turn-taking provides a rich basis for analysing how people interact
in group discussions. At its simplest level, segmenting a meeting into speaker turns is useful for
structuring speech transcripts for browsing and retrieval. Analysis of speaker turns can also provide
insight into the participants, such as their inherent latency in responding and degree of ‘talkativeness’,
their role within a group, or their interest in particular topics [14, 15, 4].

Moving beyond simple speaker turns, turn-taking may be analysed at a higher-level by defining
actions that may span several individual speaker turns, such as distinguishing between a series of
monologues and a group discussion. Turns not based purely on speech, such as presentations, white-
board usage or group note-taking, could also be defined if visual cues such as gaze and gestures were
taken into account.

In this article, we propose an illustrative set of meeting actions based on high-level multimodal
turns, including :

Monologue:

one participant speaks continuously without interruption,

Presentation:

one participant at front of room makes a presentation using the projector screen,

White-board:

one participant at front of room talks and makes notes on the white-board,

Discussion:

all participants engage in a discussion, and

(Group) Note-taking:

all participants write notes.

Specifically, in a meeting assumed to have four participants, we define a set of eight meeting actions
to recognise as :

V' = {*monologuel’, ‘monologue2’; ‘monologued’, ‘monologues’, ‘presentation’,

(2)

‘white-board’, ‘discussion’, ‘note-taking’}.

These are all natural actions in which participants play and exchange similar, opposite, or com-
plementary roles. For example, during a monologue, one person speaks to the group, while the other
participants listen and direct their gaze towards the speaker or to their notes. During a discussion,
multiple participants take relatively short turns at speaking, and more movement could be expected.
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In this set of actions, we define note-taking as a group event, in which the majority of participants
take notes concurrently. Intuitively, it is expected that such an action would indicate periods where
important information has been conveyed.

The value of segmenting a meeting according to this set of meeting actions is evident : it would,
for example, facilitate browsing of a meeting archive by allowing the user to search for segments of
most interest across the archive (such as presentations, or monologues by a particular person), and
to quickly navigate between parts of the meeting for playback. Experiments to recognise this set of
meeting actions are presented in Section 4.

In a similar manner, other lexica of meeting actions could be defined to provide alternative views
of a meeting, for example based on tasks (brainstorming, information sharing, decision making, etc),
or the interest level of the group (high, neutral, low). While actions should be non-overlapping within
a given set, rich multi-layer views of meetings could be built by applying parallel sets of meeting
actions to the same meeting.

3.2 Individual Actions

While many interesting and useful sets of meeting actions could be defined, whether or not a system can
recognise them in practice depends on whether we can define and measure the constituent individual
behaviour. For example, a presentation could intuitively be characterised by individual cues such
as speech activity, location, and gaze. Similarly, brainstorming could involve short, approximately
even-distributed speaker turns, individual note-taking, white-board use, and a characteristic set of
speech keywords.

While the pertinence of these particular individual actions to the different meeting actions is
somewhat speculative, it is clear from the above examples that many useful individual actions can be
measured or recognised using state-of-the-art audio, visual and multimodal processing techniques.

These individual actions may be either fully recognised, or just measured. Recognised individual
actions have value as annotations for browsing and indexing, however measurements of the individual
actions could be used as observable features when recognition of the group-level meeting actions is
the goal. The experiments in this article investigate the latter approach. We denote an observation
sequence O of T feature vectors as

O = (01,09,...,07), 3)

where o; is the vector of multimodal features at time ¢. Specifically, the experiments in this article
investigate a set of audio-visual features, including : location-based speech activity; the pitch, energy
and speaking rate of each participant; the location and orientation of each participant’s head and
hands; and the location of moving objects in the presentation and white-board regions. These features
are described in detail in Section 4.

In general, such a set of features can be broken down into multiple feature streams, first according
to participant ¢, and second according to modality m. We define the feature vector

o™ e RNim, (4)

where N;,, is the number of features for individual ¢ and modality m. We handle the case of
participant-independent features (such as presentation area speech activity in this article), by repli-
cating these for all values of i. To consider only features corresponding to a single individual, we

define the notation
1M a [ 41 i,M
oy 7(0t ey Of ), (5)

where M is the number of modalities (here two, corresponding to audio and visual), and ¢ the frame

index. Similarly, to consider the feature vector for a single modality (across all individuals), we can
define o Lm - where T is the number of participants, or to consider the set of all features o} LM

. . . s 1:7 .
Accordingly, we can define sequences of observations in the same way. For instance, O; "™, is the

ith sequence of observations represented by features of modality m, for all individuals.
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3.3 Interaction Model

In order to model meeting actions, we propose to model the interactions between individuals. Con-
sidering these interactions as sequences of events, we can rely on the most successful approaches
currently used to model temporal sequences of events, which are all based on a statistical framework.
In this context, the general idea is to estimate, for each type of event v; € V, the parameters 0; of
a distribution over corresponding sequences of observations p(0|6;), where the sequence of observa-
tions O would correspond to the event v;. The most well-known solution to efficiently model such
distributions is to use Hidden Markov Models (HMMs).

HMMs have been used with success for numerous sequence recognition tasks [19]. HMMs introduce
a state variable ¢; and factor the joint distribution of a sequence of observations and the state using two
simpler distributions, namely emission distributions p(o:|q;) and transition distributions p(g:|gi—1)-
Such factorisation yields efficient training algorithms such as the Expectation-Maximisation algorithm
(EM) [31] which can be used to select the set of parameters 7 of the model corresponding to event
v; to maximise the likelihood of L observation sequences as follows:

L

0; = argmax [ [ p(0u/6)). (6)
=1

The success of HMMs applied to sequences of events is based on a careful design of sub-models
(distributions) corresponding to language units (phonemes, words, letters). In the current framework,
the language units are defined by the set of meeting actions v;, and a specific HMM will be created
for each action v;. Given a training set of observation sequences representing meetings for which we
know the corresponding labelling (but not necessarily the precise alignment), we create a new HMM
for each sequence as the concatenation of sub-model HMMs corresponding to the sequence of meeting
actions. This new HMM can then be trained using EM and will have the effect of adapting each
sub-model HMM accordingly.

When a new sequence of observation features of a meeting becomes available, the objective is
to obtain the optimal sequence of sub-model HMMs (representing meeting actions) that could have
generated the given observation sequence. An approximation of this can be done efficiently using the
well-known Viterbi algorithm [32].

While HMMs can be used to model various kinds of sequences of observations, several problems are
in fact better described by multiple streams of observations, all corresponding to the same sequence of
events [10, 20, 21, 33, 34]. This setup more closely corresponds to the case where each stream would
represent the individual actions of a participant in a meeting, with the overall objective of analysing
the interactions between individuals in terms of meeting actions.

Several solutions to the multi-stream setup have been proposed in the literature. The first and
simplest one is to merge all observations related to all streams into one large stream (frame by frame),
and to model it using a single HMM as explained above. This solution is often called early integration.
Note that in some cases, when the streams represent information collected at different frame rates
(such as audio and video streams for instance), up-sampling or down-sampling of the streams is first
necessary in order to align the streams to a common frame rate.

Thus, using the notation introduced in Section 3.2, the early integration solution is based on the
creation of one model 7 for each event v; such that

L
0] = arg meaXHp(Oll:I’l:M\Gj). (7)
T =1

A more complex option is the multi-stream approach [20]: in that case, each stream is modelled
separately using its own HMM. For instance, if we consider the modalities as separate streams, we
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would create one model 67, . for each event v; and modality m such that

L
Or.,; = argmax [ [ p(O;"" |0 ;). (8)

md

Similarly, if we consider the individuals as separate streams, we would create one model 67 ; for
each event v; and individual ¢ such that

07y = argmax [ [ (O 10:)- ®)

Then when a new meeting needs to be analysed, a special HMM is created, recombining all the
single stream HMM likelihoods at various specific temporal points. Depending on these recombination
points, various solutions appear. When the models are recombined after each state, the underlying
system is equivalent to making the hypothesis that all streams are state-synchronous and independent
of each other given the state. This solution can be implemented efficiently and has shown robustness
to various stream-dependent noises. In the case of multiple modality streams, the emission probability
of the combined observations of M streams in a given state of the model corresponding to event v;
at time ¢ is estimated as:

M
1:1,1:M 1:I,m Qm
ploy " Mg) = T plor ™ la, Om ), (10)
m=1

where o, corresponds to a prior weight given to each modality m. Similarly, in the case of multiple
individual streams, the emission probability of the combined observations of I streams in a given state
of the model corresponding to event v; at time ¢ is estimated as:

1

I, 1M i,1: M .
plo; " M g) = [ [ p(or ™ [ar, 6:.5), (11)
i=1

where «a; corresponds to a prior weight given to each individual i. Other recombination strategies
exist but generally result in more complex underlying HMM models with much less efficient decoding
algorithms. The result is that for a real-life application such as meeting analysis, the only reasonable
multi-stream solution is to recombine the streams after each state.

The weights {a} should be interpreted as a confidence one has in the corresponding likelihoods.
Hence if for some reason it is known that modality 1 is more important for the final joint analysis than
other modalities, then «; should be accordingly higher. Various other solutions exist to select the
weights, such as training them according to a global criterion on a separate validation set. The stream
weights may also be determined dynamically using some time-varying estimate of relative confidences.
One example of such a dynamic weighting strategy is the Inverse Entropy Weighting (IEW) technique
proposed in [35], which uses the stream entropy as an indication of confidence. The IEW weights are
calculated at each time step as the reciprocal entropy within each stream, normalised to sum to unity.

Multi-stream models are typically employed with separate streams for audio and visual features in
multi-modal tasks [21], or for different frequency sub-bands in speech recognition [20]. In modelling
group interactions however, the streams might instead represent the individual participants. This
has the interesting advantage that the models can be trained for variable numbers of participants in
meetings, and can even be used to decode meetings with a previously unseen number of participants.
Moreover, the resulting decoding algorithm complexity is only linear in the number of participants.

A more recent approach based on Asynchronous Hidden Markov Models (AHMMSs) [22] models the
joint probability of several streams by combining them in order to account for a possible asynchrony
between them: it could be useful to temporarily stretch (or compress) a given stream with respect
to the other ones. For instance, in a group action recognition task, an individual might start playing
his/her role before the rest of the group. Being able to stretch the individual streams at specific points
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could yield performance improvement. While this approach has given promising results when there
were only two streams, the currently proposed training algorithm quickly becomes intractable when
extended to more than two streams. In the case of two modality streams (such as audio and video),
an AHMM representing the event v; models the joint distribution of the two streams by maximising
the likelihood of L observation sequences as follows:

L
* 1:1,1 I,
05 = arg me:%XHp(Ol ,051219). (12)
7 =1

By introducing a state variable ¢; (as for classical HMMs) and a synchronisation variable, 7, providing
the alignment between the streams, one can factor the joint distribution into four simpler distributions,
namely the transition distribution p(g:|q:—1), the joint emission distribution p(0§11’170i21’2|qt), the
audio-only distribution p(or"*|g,), and a distribution that models the fact that we should use the
joint or the audio-only distribution at a given time p(emit|g:). Such factorisation yields efficient
training and decoding algorithms when the number of streams is limited to two.

Other variants proposed in the literature, but not used in this article, include Coupled Hidden
Markov Models (CHMMs) and Layered HMMs. CHMMs [33, 10] can model two concurrent streams
(such as one audio and one video stream, or two individuals interacting) with two concurrent HMMs,
however, like AHMMs, the training algorithm becomes intractable for more than 2 streams. More
recently, Layered HMMs [34] were proposed to model multi-modal information at various time granu-
larities. Layered HMMs are composed of layers, each of which takes its observation from the previous
layer and generates the observation for the next layer.

4 Experiments

This section describes experiments to recognise multimodal meeting actions based on turn-taking
events, as discussed in Section 3.1. The following sub-sections describe the collection of a multi-modal
database of these meeting actions, and then detail the experimental configuration and present results.

4.1 Data Collection

The IDIAP Smart Meeting Room is a 8.2mx3.6mx2.4m rectangular room containing a 4.8mx1.2m
rectangular meeting table. The room has been equipped with fully synchronised multi-channel audio
and video recording facilities. For audio acquisition, 24 high quality miniature lapel microphones are
simultaneously recorded at 48kHz with 24-bit resolution. The microphones are identical and are used
both as close-talking lapel microphones attached to meeting participants, and in table-top microphone
arrays. For video acquisition, three closed-circuit television cameras output PAL quality video signals,
which are recorded onto separate MiniDV cassettes using three “video walkman” digital video tape
recorders. Each camera is fitted with an adjustable wide-angle lens with a 38° — 80° field of view. Full
details of the hardware setup are presented in [36].

A “scripted meeting” approach was taken to collect the required audio-visual data for the meeting
action recognition experiments, to ensure adequate examples of all actions were included and also to
facilitate annotation for training and testing.

An ergodic Markov model was used to generate meeting scripts. Each meeting action corresponded
to a state in the Markov model with the self-loop transition probabilities governing the relative du-
ration of each action. The transition probabilities were tuned by hand to ensure that the generated
action sequences and durations were realistic. To illustrate this, the relative occurrences of different
actions are shown in Figure 1 for the train and test sets (described below). On average, each meeting
contained 5 actions. After generation of each meeting script, the action durations were normalised
using a random time (in minutes) drawn from a N'(5,0.25) distribution, in order to constrain the total
time to be approximately five minutes.
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Figure 1: Histogram showing occurrences of meeting actions in the train and test sets.
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Figure 2: Meeting recording configuration.

Two disjoint sets of eight meeting participants each were drawn from the research staff population
at IDIAP. For each set, thirty 4-person meeting scripts were generated as described above. The four
participants for each meeting were chosen at random from the set of eight people. Every scripted
meeting action in which a key role was played by a single participant (monologues, presentations,
and white-boards) was then allocated at random to one of the four participants. Each meeting script
was assigned a topic at random out of a small set of topics (e.g. my favourite movie). A dedicated
timekeeper (off-camera) monitored the scripted action durations during meeting recording, and made
silent gestures to prompt transitions between actions in the script. The behaviour of participants
during actions was otherwise natural and unconstrained.

The meeting room configuration for the recordings is illustrated in Figure 2. Two cameras each
acquired a front-on view of two participants including the table region used for note-taking. A third
wide-view camera looked over the top of the participants towards the white-board and projector screen.
The seating positions of participants were allocated randomly, with the constraint that participants
who presented or used the white-board sat in one of the two seats closest to the front of the room
(the latter was not exploited during analysis). All participants wore lapel microphones, and an eight-
element circular equi-spaced microphone array of 20cm diameter was centrally located on the meeting
table.

A total of 60 meeting recordings were collected (30 recordings x 2 participant sets), resulting in
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Figure 3: Blob extraction in the multicamera meeting room. The top row of images shows a frame
from each of the 3 cameras, and the bottom row shows the detected skin blobs (left and right) and
moving blobs (centre).

approximately 5 hours of multi-channel, audio-visual meeting data. Each recording consists of three
video channels, and twelve audio channels. The data is available for public distribution at [37].

4.2 Feature Extraction

Observation vectors are formed from a range of audio-visual features that measure the actions of
individuals. These consist of :
Audio features :

Audio features were extracted from two different sources : the microphone array and the four
lapels (one per participant).

From the microphone array signals, “speech activity” was estimated at 6 different locations : each
of the four seats as well as the two locations corresponding to ‘presentation’ and ‘white-board’. These
locations were fixed 3-D vectors measured on-site, describing approximately where people would be
standing or seated. “Speech activity” was computed as the Steered Response Power coming from each
location using the SRP-PHAT measure [38, 39], which is a continuous, bounded value that indicates
the activity of a particular location.

Using the streams of SRP-PHAT features, we were able to determine when each location was
active. We thus obtained a speech/silence segmentation for each location, using a technique described
in [40]. The segmentation was stored in order to compute the other features, but not present as a
feature itself.

From each of the four lapel signals, we computed three additional acoustic features. The three
acoustic features were energy, pitch and speaking rate, and were computed only on speech segments,
setting a default value of zero on silence segments. Pitch was computed using the SIFT algorithm [41]
and speaking rate was obtained from a combination of estimators [42].

Finally, all 18 audio features were downsampled to match the 5 Hz rate chosen for video. Consec-
utive frames were merged, keeping the maximum value for each of the 6 SRP-PHAT features, and the
median value for each of the 12 acoustic features.

Visual features :

Visual features were extracted using standard methods from image regions enclosing the seated

participants (head and shoulders, the workspace at the table), and the white-board/presentation
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Modality Participants

Feature Audio (m =1) | Visual (m =2) || Individual (i =1:4) | Other

seat speech activity v
white-board speech activity
presentation speech activity
speech pitch

speech energy

speaking rate

head blob vertical centroid
hand blob horizontal centroid
hand blob eccentricity

hand blob angle

combined motion

white-board /presentation blob

AN
NN N N SN NEN

ENENENENENEN

Table 2: Break-down of features according to streams.

screen area.

For the cameras looking at people at the table, Gaussian Mixture Models (GMMs) of skin color
in RGB space were used to extract head and hand/forearm blobs [43]. A 20-component GMM was
estimated from the faces and arms of the people in the training set, which included caucasian, indian,
and latin-american individuals. Skin pixels were then classified based on thresholding on the skin
likelihood. A morphological postprocessing step was performed inside image regions enclosing typical
head locations and the workspace to extract blobs.

For each person, the detected head blob was represented by the vertical position of its centroid
(normalized by the average centroid computed over the meeting duration). Additionally, hand blobs
were characterized by three features: the horizontal normalized centroid, the eccentricity, and the
angle with respect to the horizontal [27]. Hand blob extraction and identification is especially difficult
due to the free gesticulation patterns present in meetings. For instance, during a discussion the current
speaker might introduce considerable self-occlusion while moving his hands (which might also occlude
his face), while other participants might cross their arms or clasp their hands while listening. In
this view, we opted to represent the hand blob information by using the described features for the
right blob only (most participants in both training and test set are right-handed). Finally, a rough
person motion feature was computed as the average of the individual motions of head and arms blobs,
where motion was computed as the centroid difference between consecutive frames. Note that while
no tracking was performed at all, the tradeoff between the potential benefits for feature extraction,
and the additional computational cost of a multi-part, multi-person tracker, remains to be seen.

For the wide-view camera, moving blobs were detected by background substraction and represented
by their (quantised) horizontal position. A fixed background image was used, so errors in feature
extraction due to sudden variations in the camera response occur, although not frequently. Adaptive
background subtraction should improve robustness [44].

A typical result of blob extraction is shown in Figure 3 for the 3 different camera views. The
final set of visual features consists of 21 features (5 for each seated participant, plus one from the
whiteboard /screen camera).

This gives a total of 39 audio-visual features that were extracted at a frame-rate of 5 Hz.

4.3 Experimental Configuration

For the experiments, six different feature subsets were defined :

Audio-only:

all 18 audio features, trained according to Equation 8 with m = 1.
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Visual-only:

all 21 visual features, trained according to Equation 8 with m = 2.

Individual participants (4):

12 (audio-visual) features. This consists of 9 person-specific features, plus the 3 other (participant-
independent) features (replicated in each participant stream). Four separate streams trained
according to Equation 9 with i =1 : 4.

The specific features in these streams are summarised in Table 2. We note that, the four streams
for individual participants in fact correspond to the four different seating locations, and thus are
independent of actual participant identities.

For the models, four HMM systems (mentioned in Section 3.3) were used to combine these streams
in different ways :

Early Integration:
single HMM trained on all 39 features, according to Equation 7.

Participant Multi-stream:

multi-stream HMM combining the 4 streams for individual participants, with streams trained
according to Equation 9, and combined according to Equation 11.

Audio-Visual Multi-stream:

multi-stream HMM combining the audio-only and video-only streams, according to Equations 8
and 10.

Audio-Visual Asychronous:

asychronous HMM combining the audio-only and video-only streams, according to Equation 12.

For the single and multi-stream HMMs, the emission distributions of the HMM states were mod-
elled using GMMs having 10 components (selected using trial and error on the train set). Only one
emitting state was used in training each event, and this was then replicated to impose a minimum
duration of 10 seconds per event during decoding. For the multi-stream HMM, a weighted product
rule was used to recombine the stream likelihoods at the frame-level according to Equations 10-11,
using two different schemes to select the a weights. The first was to use fixed stream-dependent
weights, and the second was a dynamic strategy based on inverse entropy weighting (IEW), as pro-
posed in [35] (although in our case the probabilities in the entropy calculation were estimated by
normalising likelihoods within each stream).

For the AHMM, there were three distributions per state [22]: the audio distribution (10-component
GMM), the joint audio-visual distribution (10-component GMM), and the visual emission probability
distribution (binomial distribution). For this system, the audio stream was instead sampled at 10
Hz to allow some form of asynchrony with the video stream, and the maximum allowed asynchrony
between the states was 2.2 seconds.

All experiments were implemented using the Torch machine-learning library [45] (publicly available
at [46]).

4.4 Results and Discussion

Results are presented in Table 3 in terms of the action error rate, which is equivalent to the word error
rate used in automatic speech recognition (ASR). It is defined as the sum of insertion, deletion and
substitution errors, divided by the total number of actions in the ground-truth, times one hundred.
The use of the action error rate as a metric is appropriate when determining the correct sequence of
events is more important than determining their precise time alignment . This is the case here, due to
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’ Model \ Action Error Rate \ Std Dev ‘
Audio-Only 7.0 0.8
Visual-Only 50.9 1.7
Individual Participants 40.2 2.5
Early Integration 8.8 1.7
Participant Multi-stream (Equal) 13.3 0.4
Participant Multi-stream (IEW) 11.7 0.7
Audio-Visual Multi-stream (Equal) 16.3 1.5
Audio-Visual Multi-stream (0.8,0.2) 5.5 0.5
Audio-Visual Multi-stream (IEW) 13.9 1.2
Audio-Visual Asynchronous 8.3 0.1

Table 3: Action Error Rates (in percent, lower is better) on the test set with various HMM architec-
tures modelling meeting actions. Multi-stream o« weights are indicated in parentheses. In each case,
the values given are the mean and standard deviation over 10 runs, where variation is due to random
initialisation procedure.

the natural (ill-defined) transitions between the meeting actions [47]. Results varied according to the
random initialisation procedure in the EM-based training, which was exaggerated by the low number
of training examples (see discussion on significance below). For this reason, results are presented as
the mean and standard deviation over 10 runs.

4.4.1 Single Streams

To help analyse these results, confusion matrices (from a randomly chosen single run) for the audio-
only, visual-only and individual participant streams are shown in Tables 4-6. It is clear that audio
is the predominant modality for the set of meeting actions investigated here, being basically based
on speaking turns, and this is reflected in the audio-only results. While less relevant information is
present in the visual features, they are still able to give some discrimination between events. As would
be expected, the visual features allow presentation, white-board and note-taking to be recognised well.
More interesting is the fact that they also give reasonable discrimination for discussion, which may
be attributed to increased motion of participants.

Similarly, the single participant streams are able to give some discrimination between events, how-
ever as the actions essentially occur at the group level, the individual streams contain insufficient
information to distinguish them reliably. In particular, the individual streams are not able to distin-
guish monologues well. This behaviour could be improved if accurate gaze features were used, as this
should be a reliable indicator of silent participants’ focus of attention (during others’ monologues) [15].
We also see that note-taking here is commonly confused with monologues and discussion. This can
be attributed to the fact that during these actions, single participants may in fact be taking notes,
making it impossible for streams trained on features from one participant to distinguish between this
and note-taking at the group level (as it was defined for these experiments).

4.4.2 Early Integration

Examining the different combination approaches, we note that, while early integration gives good
results, a slight degradation over audio-only is observed (although not significantly - see discussion
below). While the visual features do contain valuable information, they also introduce confusion for
some events, and so the net effect of including them in this way is minimal.
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monol | mono2 | mono3 | mono4 | white | note | disc | pres | DEL

monol 11
mono?2 10 1
mono3 17
mono4 11
white 18
note 5 1
disc 51 1
pres 1 12 1
INS 1 2 2 1

Table 4: Confusion matrix of recognised meeting actions for audio-only, including monologues (monol-
4), white-boards (white), note-taking (note), discussions (disc), and presentations (pres), as well as
insertion errors (INS) and deletion errors (DEL). Zero values are represented as empty cells. Columns
and rows show desired and obtained labels, respectively.

monol | mono2 | mono3 | mono4 | white | note | disc | pres | DEL
monol 2 2 2 3 2
mono2 2 3 5
mono3 3 1 7 4 1 1
mono4 3 6 1 1
white 18

note 6

disc 2 1 7 1 35 6

pres 1 1 11 1

INS 1 3 9 1 2 5 2

Table 5: Confusion matrix of recognised meeting actions for video-only.

4.4.3 Audio-Visual Multi-stream and AHMM

A better means of combining the audio and visual modalities is the multi-stream approach. The
multi-stream HMM allows us to give a greater weight to the audio information, while still making
use of the visual information where this is complementary and helps to disambiguate actions. The
optimal fixed stream weights were chosen from experimentation on the train set (audio 0.8, visual 0.2)
and then applied to the test set. The effect of different fixed stream weights on results is shown in
Figure 4 for both the train and test sets. While the IEW dynamic weighting scheme out-performed
fixed equal weights, this was not as good as the optimal fixed weighting scheme. In examining the
frame weights in the IEW scheme, it was seen that while they consistently favoured the audio stream,
this was not to the same degree as the empirically optimal fixed approach.

The audio-visual asynchronous HMM results do not differ significantly from those of the early
integration approach. This tends to show that there was no particular asynchronous effect between the
audio and visual modalities in this data, hence the opportunity to desynchronise the streams did not
bring significant improvement. Intuitively, it could be expected that any asynchronous effect in such

monol | mono2 | mono3 | mono4 | white | note | disc | pres | DEL
monol 2 9 1 1
mono2 4 1 5
mono3 1 5 2 2 7
mono4 3 1 3 1 3
white 16 1 1
note 4 2
disc 1 1 1 4 35 10
pres 1 12 1
INS 1 1

Table 6: Confusion matrix of recognised meeting actions for an individual participant (participant 2).
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Action Error Rate

201

10

. .
0 0.2 0.4 0.6 0.8 1
Audio Stream Weight

Figure 4: Performance of audio-visual multi-stream HMM as a function of audio stream weight (ay),
showing the mean and standard deviation of the action error rate over 10 runs. A weight of a; = 0 is
equivalent to visual-only, and a weight of 1 is equivalent to audio-only.

group actions would be more likely to occur between participant streams, rather than modalities, but
unfortunately a 4-stream AHMM is currently computationally infeasible. Addressing this limitation
will be a focus of continuing research.

While the best audio-visual multi-stream results show improvement over audio-only, this is mini-
mal, and so we may well ask whether a multimodal approach is justified. The confusion matrix from
a particular run of the audio-visual multi-stream is shown in Table 7. Comparing with the audio
stream confusion matrix in Table 4, we see that the addition of visual information has mostly helped
in reducing the monologue and discussion insertion errors. The extra monologues in the audio-only
results were mostly inserted in the middle of discussions, and so it is seen that the motion present in
the video stream helps in discriminating discussion from monologues. While the currently used visual
information makes little other difference to the recognition results in this case, it can be supposed
that the audio-visual system results would be more robust to different conditions than the audio-only
system. For example, the group note-taking in the current corpus is essentially characterised by silence
in the audio stream, and so can be recognised reliably here without visual information. This is not
expected to be the case in real meetings, and so the visual information would be essential. Similarly,
the white-board and presentation events can be recognised well using only audio information, however
the visual modality can be expected to help in detecting the start and end times of these events
more reliably, such as when someone first writes notes on the white-board before talking about them.
Also, other sets of meeting actions could better utilise the visual modality : for example, voting could
be indicated by raising hands, emotions could be characterised by facial expressions, and audio-only
would be insufficient to determine if multiple people were talking at the white-board.

4.4.4 Participant Multi-stream

Combining the four participant streams in a multi-stream HMM, we see that results are worse than for
an early integration approach. For the fixed weight scheme, equal stream weights were adopted (c; =
0.25,Vi), as the individual streams should contain similar amounts of information (each achieving the
same error rate when used in isolation). In this case, the dynamic weighting scheme based on stream
entropy (IEW) attained better performance than the fixed equal weights, however, the performance
was still significantly less than the early integration approach. The performance difference between
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monol | mono2 | mono3 | mono4 | white | note | disc | pres | DEL
monol 11
mono2 10
mono3 17
mono4 11
white 18
note 5 1
disc 51 1
pres 1 12 1
INS 1 1

Table 7: Confusion matrix of recognised meeting actions from audio-visual multi-stream system.

early integration and the participant multi-stream system suggests that important information exists
in the correlation between individuals, that is, in their interactions.

4.4.5 Significance of Results

As a final important remark, due to the small number of actions present in the training and testing
sets (around 140 in each), it is worth discussing the significance of these findings. While standard
deviations give an idea of how the various models are robust to initial conditions, statistical significance
tests are often used to assess whether a model would be better than other ones on similar yet different
test data. We have used a standard proportion test! [48], assuming a binomial distribution for the
targets and using a normal approximation, which is often done in similar cases. With 95% confidence,
we cannot differentiate the four best models, namely audio-visual multi-stream (with optimal fixed
weights), early integration, audio-visual asynchronous and audio-only. However, we can state that
the audio-visual multi-stream approach was statistically significantly better with 95% confidence than
the participant multi-stream approach. This tends to show that correlation between individuals is
essential (recall that in the multi-stream approach, we train streams separately), while correlation
between audio and video is more anecdotal.

4.5 Application to Real Meeting Data

The meeting corpus for the above experiments was necessarily constrained to facilitate training and
testing. To verify the robustness of the technique on natural data, a real meeting was recorded for
analysis. The meeting lasted one hour and contained four participants. Features were extracted for
the meeting and meeting actions were recognised using the simple early integration system as trained
on the scripted meeting corpus, without any tuning.

To objectively assess the ability of the system to recognise the meeting actions, an effort was
made to produce a ground-truth transcription of the meeting. In observing this data, however, it
was apparent that in reality it is difficult to draw an absolute distinction between the monologue and
discussion actions. In recognition of the difficulty in defining an absolute ground-truth, two separate
‘ground-truth’ transcriptions were produced independently by different observers.

Comparing the automatic transcription with the two ground-truths showed action error rates
of 32% and 44%. However, when comparing the two ground-truth transcriptions with each other,
they were found to differ by an error rate of 52% (made symmetric by averaging), highlighting the
subjectivity of the annotation task. In particular, we note that most sources of error were due to
difficulties in distinguishing monologues from discussions. To give a better indication of the success of
the system on real data, the automatically generated annotation was checked manually for ‘correctness’
by someone not familiar with the system. This test gave an correct classification rate of 85%.

While highlighting the difficulty and subjectivity of the task, this analysis confirms that the sys-
tem provides a segmentation that is reasonable to a human observer, and which thus has value for

1Note that action error rates are not really proportions/percentages since they can be greater than 100. Nevertheless,
this test is often used to assess word error rates in ASR.



18 IDIAP-RR 03-27

applications such as browsing and indexing. However, it is apparent that future research needs to
address the ill-defined nature of some actions in real data.

5 Conclusions and Future Directions

In this paper we have presented an approach to automatic meeting analysis that considers a meeting
as a sequence of group-level events, termed meeting actions. These meeting actions result from the
interactions between individual participants, and are inherently multimodal in nature.

An illustrative set of meeting actions, based on high-level turn-taking behaviour, was defined.
These actions were recognised in experiments using a range of audio-visual features extracted from
each participant, and modelled using different HMM-based approaches. The best results were achieved
by the audio-visual multi-stream HMM system, which gave an action error rate of 5.5%, confirming the
importance of modelling the interactions between individuals, as well as the advantage of a multimodal
approach.

While the experiments in this article have shown the successful recognition of a set of turn-based
meeting actions, there is much scope for future work to recognise other sets of high-level meeting
actions. To achieve this goal, ongoing work is investigating richer feature sets and different means
of modelling the multimodal interactions of participants. This will involve the collection of a larger,
more natural, meeting corpus, as well as the development of more flexible assessment methodologies.
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