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1 Introduction

Boosting and other ensemble learning methods attempt to combine multiple hypotheses from a number
of experts into a single hypothesis. This is feasible for classification and regression problems, where
the hypothesis is a fixed-length, real-valued vector. Other problems, such as sequence prediction
and sequential decision making, can also be cast in the classification and regression framework, thus
making the application of ensemble methods to these problems feasible. However in some cases the
hypothesis is a sequence of symbols of unspecified length. One such application is speech recognition,
where the hypothesis can be a sequence of words or phonemes. The most common machine learning
algorithms for sequence processing employ Hidden Markov Models (HMMs) - however, little research
has been done in designing new ensemble learning algorithms that are specific to HMMs, or to sequence
processing in general.

This paper attempts to fill this gap by examining methods for boosting with HMMs with an
application to speech recognition. Firstly, we investigate two distinct methods of applying boosting to
HMM training: either perform boosting at phoneme classification level, or at the sentence recognition
level. This results in an ensemble of models, where each model has been trained on a different part
of the data. In the first case each expert is trained on a subset of frames, while in the second case
each expert is trained on a subset of sentences. The ensemble performance is then examined at the
sentence recognition level, and for the first case, also at the phoneme classification level. The paper
is organised as follows: An introduction to boosting and Hidden Markov Models is given in sections 2
and 3. A review of related research and an outline of methods used in this paper is given in section 4.
Experiments on two speech recognition tasks are described in section 5. We conclude with an outline
of open research problems in this direction.

2 Boosting

Boosting algorithms [9, 12, 7] are a family of ensemble methods for improving the performance of
classifiers by training and combining a number of experts through an iterative process that focuses
the attention of each new expert to the training examples that were hardest to classify by previous
ones. The most successful boosting algorithm for classification is AdaBoost [12], where an ensemble of
experts is able to decrease the training error exponentially fast as long as each one has a classification
error smaller than 50%.

More precisely, an AdaBoost ensemble is composed of a set of ne experts, E = {e1, e2, ..., ene}. For
each input x ∈ X, each expert ei produces an output yi ∈ Y . These outputs are combined according
to the reliability βi ∈ [0, 1] of each expert:

y =
ne∑

i=1

βiyi.

The expert training is an iterative process, which begins with training a single expert and subsequently
trains each new expert in turn, until a termination condition is met. The experts are trained on
bootstrap replicates of the training dataset D = {di|i ∈ [1, N ]}, with di = (xi, yi). The probability of
adding example di to the bootstrap replicate Dj is denoted as pj(di), with

∑
i pj(di) = 1. At the end

of each boosting iteration j, βj is calculated according to βj = 1
2 ln 1+εj

1−εj
where εh is the average loss

of expert ej , given by εj =
∑

i pj(di)l(di), where l(di) is the sample loss of example di. If, for any
predicate π, we let [π] be 1 if π holds and 0 otherwise, it can be defined as: l(di) = [hi 6= yi]. After
training in the current iteration is complete, the sampling probabilities are updated so that pj(di) is
increased for misclassified examples and decreased for correctly classified examples according to:

pj+1(di) =
pj(i)eβl(di)

Zj
,
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where Zj is a normalisation factor to make Dj+1 into a distribution. Thus, incorrectly classified
examples are more likely to be included in the next bootstrap data set. Because of this, the expert
created at each boosting iteration concentrates on harder parts of the input space.

3 Hidden Markov Models

A Hidden Markov Model is defined as a set of ns states Q = {q1, q2, ..., qns}, transition probabilities
from state qk to state qj and emission probabilities for each state qk. The following assumes a basic
knowledge of HMMs and introduces the basic notation and the definition of two tasks related to
sequence recognition: the classification of a given sequence to one of an a priori known number of
classes, which amounts to selecting the most likely class from the available selection; and the task of
sequence decoding, which amounts to finding the most likely state sequence through a given model,
given an observation sequence.

3.1 Sequence Classification

Let us define a sequence of n observations as S = {s1, s2, ..., sn}. Given a set of nc classes C =
{c1, c2, ..., cnc} we wish to determine which class ci ∈ C the sequence belongs to.

We train one HMM mi for each class ci. For each model mi ∈ M = {m1,m2, ...,mnc}, we can
calculate p(S|mi) for a given sequence S. Assuming the distribution of ci is modelled by mi the class
posterior can also be calculated, according to the Bayes rule: p(mi|S) = p(S|mi)p(m)

p(S) . The most likely
model m∗ is then selected, with m∗ = arg maxj p(mj |S).

3.2 Sequence Decoding

For the simple case where the objective is to determine the class that a particular sequence belongs
to, the Bayes Classifier approach described in section 3.1 is adequate. For other applications, such as
continuous speech recognition [10], this approach is no longer feasible. In the former case we know
that S belongs to one of a finite number of phoneme classes. In the latter case, S corresponds to a
sequence of segments of different classes, with the number and position of segments being unknown.
Ideally, one would like to exhaustively search through the complete space of possible class sequences
that would correspond to S and select the one whose likelihood is the highest. However, this is too
expensive in computation time and the Viterbi [14] approximation is used instead.

Assume a sequence S and a set of HMMs M = {mi|i ∈ [1, nc]}, where each model mi ∈ M has
a set of nsi states Qi = {qi,j |j ∈ [1, nsi]} and an emission distribution p(y|qi,j) at each state. Then
for each sequence sample sk ∈ S it is possible to calculate the likelihood of sk given state qi,j ∈ Q,
denoted by p(sk|qi,j). The states that make up each model mi correspond to speech data within a
short time-frame, while the models themselves may correspond to simple phonetic classes, such as
phonemes. The departure from the previous application of HMMs to sequence classification is that
instead of evaluating p(mj |S) for each model, the models are incorporated into a larger HMM, with
states Q = {Qi|i ∈ [1, ns]} whose transitions represent the allowed transitions from one phonetic
class to the next. These transitions define the vocabulary and language model from which allowed
words and sequences of words are obtained. Then, given p(sk|qi,j)∀mi ∈M, qi,j ∈ Qi, sk ∈ S, we can
calculate the likelihood of any given path V = (v1, v2, .., vn), where each vk ∈ V corresponds to one
of the possible qi,j and the set of all possible paths of length n is Qn. This is simply

p(V ) =
n∏

k=1

p(sk|vk)p(vk|vk−1). (1)

The aim of the Viterbi search is to find an optimal path

V ∗ = arg max
V ∈Qn

p(V ).
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The process is optimal in the sense that the maximally-likely state sequence is found. However,
this is not the same as finding the maximally-likely sequence of words.

3.3 Multi Stream Decoding

When the information is coming from multiple streams, or when there are multiple hypothesis models
available, it can be advantageous to employ multi-stream decoding techniques [5]. In multi-stream
decoding each sub-unit model mj is comprised of ne sub-models mj = {mi

j |i ∈ [1, ne])} associated with
the sub-unit level at which the recombination of the input streams should be performed. Furthermore
the data S is split into a number of vector components called streams such as S = (S1, S2, ..., Sne).

The problem formulation remains as in the previous section, but this time we are considering
likelihoods of combinations of states, rather than of single states. More specifically, we wish to find
the path V = (v1, v2, ..., vn) where each v ∈ V is a vector of states across models: vk = (qi

k|i ∈ [1, ne])
and

p(sk|vk) =
ne∏

i=1

p(si
k|qi

k)wi (2)

or, in an alternative formulation:

p(sk|vk) =
ne∑

i=1

p(si
k|qi

k)wi (3)

where path likelihoods are calculated according as previously (equation 1) and wi represents the
reliability of expert ei.

4 Boosting HMMs

Boosting had originally been defined for classification tasks, and recently it was generalised to the
regression case (See [9] for an overview). However, the amount of research in the application of boosting
to sequence learning has been comparatively small: In [13], boosting was used in a speech recognition
task. That particular system was HMM-based with ANNs for computing the a posteriori phoneme
probabilities at each state. The boosting itself was performed at the ANN level, using AdaBoost
with confidence-rated predictions and in which the sample loss function was the frame error rate. The
resulting decoder system differed from a normal HMM/ANN hybrid in that each ANN was replaced by
a mixture of ANNs. Boosting was also applied in the same context in [2], but in this case the example
selection was done at the sentence level, through the use of a sample loss function that considered a
classification as correct if its word error rate was below a certain threshold.

The work presented here explores the use of boosting for HMMs that employ Gaussian Mixture
Models at the state level. The following sections describe a number of boosting strategies for example
and model selection. In the first strategy a set of HMMs is used as Bayes Classifiers at the phoneme
level. The second strategy involves example and model selection at the sentence level. However, this
complicates the use of boosting, since the task is no longer a classification task. Regression boosting
methods are not directly applicable either, since there is no distance measure between the target and
the hypothesis at the word level. We attempt to alleviate this problem by introducing methods for
casting the word error rate as a bounded scalar quantity. Finally, different strategies for combining
the base models are explored.

4.1 Model Training At The Phoneme Level

The simplest way to apply boosting to HMM training is to cast the problem into the classification
framework. This is possible at the phoneme classification level, where each class ci corresponds to one
of the possible phonemes. As long as the available data are annotated in time so that subsequences
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containing single phoneme data can be extracted, it is natural to adapt each Hidden Markov Model
mi to a single class ci out of the possible nc, and combine the models into a Bayes Classifier in the
manner described in section 3.1. A Bayes Classifier can then be used as an expert in the AdaBoost
framework.

More specifically, each example dk in the training dataset D will be a sequence segment correspond-
ing to data from a single phoneme ci ∈ C. So each example dk would be of the form dk = (Sk, yk), with
yk ∈ C and Sk being a subsequence of features corresponding to single phoneme data. At each iteration
j of the AdaBoost algorithm, a new classifier ej is created, which consists of a set of Hidden Markov
Models {mj

1, m
j
2, ...,m

j
nc
}. Each model mj

i is adapted to the set of examples {dk ∈ Dj |yk = ci}.
It is naturally expected that this type of training will improve performance in phoneme classifica-

tion tasks and this is tested in section 5.1. Different ways of combining the ensembles resulting from
this training in order to perform sequence recognition are described in section 5.2.

4.2 Model Training At The Sentence Level

An alternative way to apply boosting is to consider examples at the sentence level instead of the
phoneme level. One way to do this is to attempt to cast the problem as a classification task. In this
case, the output space is the space of possible sentences and it is not viable to construct a separate
model for each possible sentence. Furthermore, it might be desirable to recognise sentences that do
not appear in the training set. Thus, a Bayes Classifier approach is not possible. However, it is
possible to use standard speech recognition techniques [10].

Assume Y is the set of possible sentences. Let us define an example dk as the pair (Sk, yk), where
Sk is an input sequence and yk ∈ Y describes the sequence to be recognised. Given a model M ,
composed of several phoneme HMMs such as to allow for all legal sentences in Y, it is possible to
perform decoding on Sk as described in section 3.2. The result of this decoding is a hypothesis hk,
with hk ∈ Y . It is then possible to view the result of the decoding process as a prediction with
sample loss l(dk) = [hk 6= yk], a threshold loss function. Then the AdaBoost algorithm can be applied
normally. Although straightforward, such an approach is problematic if none of our models are good
enough to produce accurate hypothesis frequently. It is possible that most of the decoded sentences
differ from the desired outcome, resulting in a loss higher than 0.5.

One way to get around this problem is to define an appropriate distance metric between two
sequences. In that case, boosting techniques defined for regression problems [9, 3, 4, 8, 15, 11] can
also be used, though this avenue has not been explored in this paper. A distance metric frequently
used in the speech recognition literature is the word error rate:

WER =
Nins + Nsub + Ndel

Nwords

where, given a sentence y with Nwords words, Nins is the number of insertions, Nsub the number of
substitutions and Ndel the number of deletions of words required to create sentence h from sentence
y.

This leaves us with the question of determining the loss function from the word error rate. In
fact, an absolute error measure might not be necessary since all that we need to do at each boosting
iteration is to assign more weight to the hardest examples and less weight to the easiest ones. In order
to define a relative sample loss function from the word error rate, the following steps are performed:

After training an expert ej on Dj , the WERk is calculated for each example dk ∈ Dj . Then the
examples are ranked in Nr ranks1 according to their WER, yielding a rank r(dk) ∈ [1, Nr] for each
example. The loss of each example is defined as l(dk) = r(dk)/Nr. The question of what kind of
overall loss is minimised by the above ranking scheme has not been addressed in this work

1Some examples might have the same word error rate, so they would be in the same rank.
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Figure 1: Classification errors in testing for a boosted ensemble of Bayes Classifiers as the number of
experts is increased at each iteration of boosting. For reference, the corresponding errors for a Bayes
Classifier trained on the complete training set are also included.

5 Experimental Results

5.1 Phoneme Classification

An experiment was performed to test whether it is possible to apply boosting to a sequence classifica-
tion problem, namely a phoneme classification task. The phoneme data was based on a pre-segmented
version of the OGI Numbers 95 (N95) data set [1]. This data set was converted from the original raw
audio data into a set of features based on Mel-Frequence Cepstrum Coefficients (MFCC) [10] (with 39
components, consisting of three groups of 13 coefficients, namely the static coefficients and their first
and second derivatives) that were extracted from each frame. The data contains 27 distinct phonemes,
consisting of 3233 training utterances and 1206 test utterances. The segmentation of the utterances
into their consisting phonemes resulted in 35562 training segments and 12613 test segments, totalling
486537 training frames and 180349 test frames respectively. Since the data was pre-segmented, the
classification could be performed using a Bayes Classifier composed of 27 Hidden Markov Models,
each one corresponding to one class. Given a particular sequence S, model likelihoods are calculated
and the Bayes Classifier emits a class label which depends on which Hidden Markov Model had the
highest posterior class probability. The HMMs themselves were composed of five hidden states 2 in a
left-to-right topology and the distributions corresponding to each state were modelled with a Gaussian

2including two non-emitting states: the initial and final states



IDIAP–RR 03-41 6

Expert A

Expert B

Expert C

Expert A

Expert B

Expert C

B

w

wB

wA
Aw

w

C
Cw

Phoneme 1

B

w

wB

wA
Aw

w

C
Cw

Phoneme 2

Phoneme 2Phoneme 1

Word 1

Word 2

Figure 2: Single-path decoding for two vocabulary words consisting of two phonemes each. When
there is only one expert the decoding process is done normally. In the multiple expert case, phoneme
models from each expert are connected in parallel. The transition probabilities leading from the
anchor states to the Hidden Markov Model corresponding to each experts are calculated from the
expert weights βi of each expert.

Mixture Model employing ten Gaussian distributions. 3

It then becomes possible to apply the boosting algorithm by using Bayes Classifiers as the experts.
The N95 data was pre-segmented into training examples, so that each one was a segment containing
a single phoneme. Thus, bootstrapping was performed by sampling through these examples. Fur-
thermore, the classification error of each classifier is used to calculate the weights necessary for the
weighted voting mechanism. The data that was used for testing was also segmented to subsequences
consisting of single phoneme data, so that the models could be tested on the phoneme classification
tasks. The results, shown in Figure 1, were validated against the performance of a single Bayes
Classifier that was trained on the complete data set.

5.2 Continuous Speech Recognition

The approach described in section 5.1 is only suitable when the data is segmented at the phoneme
level both during training and testing. However we can still employ boosting by training with seg-
mented data to produce a number of expert models which can then be recombined during decoding

3These values are within the range commonly employed in phoneme recognition tasks where the data is composed of
MFCC features. Since this preliminary work was a proof of concept, there was no attempt to perform cross-validation
in order to choose those hyper-parameters optimally.
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Figure 3: Word error rates in testing when training with segmentation information. Decoding results
are shown for a single HMM, and for single-path, multi-stream (product and sum) and ROVER
recombination schemes.

on unsegmented data.
The first technique employed for sequence decoding uses an HMM comprising of all phoneme

models created during the boosting process, connected in the manner shown in Figure 2. Decoding is
performed using the Viterbi algorithm in order to find a sequence of states maximising the likelihood
of the sequence. Only single state likelihoods are considered in this case, so only single models are
contributing to the final decision. The transition probabilities leading from anchor states to each model
are calculated from the boosting weights βi so that they sum to one and represent the confidence weight
of each expert according to:

wi =
βi∑ne

j βj
. (4)

The models may also be combined using multi-stream decoding. This has the advantage of utilising
information from all boosted models. The type of multi-stream decoding used was synchronised at
the state level, according to either equation 2 or 3,where the stream weights are given by equation 4.

Another method of combining the models created from boosting is to perform decoding separately
using each model and then attempt to combine their outputs. Such a technique is employed by
ROVER [6], which uses dynamic programming to find an alignment between the sequences of words
output by each expert. Experimental results comparing the performance of the above techniques to
that of an HMM using segmentation information for training are shown in Figure 3. While there was a
consistent performance increase in training (not shown), this did not result in very good generalisation
abilities: while model performance was better than that of the baseline system, it was only improving
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Figure 4: Word error rates in testing when training at the sentence level. Decoding results are shown
for a single HMM and for single-path, multi-stream and ROVER recombination schemes for the
boosted models. Two types of boosted models are shown, the Rank models, which have been trained
with a ranking loss function, and the Threshold models, which have been trained with a thresholded
loss function.

for the first 2-3 boosting iterations.
Training was also performed on the sentence level, using no prior segmentation information for the

training data. Both the thresholded method and the ranking scheme were investigated as sample loss
functions and the resulting models were combined using the techniques outlined above. Since at the
sentence level no segmentation information is available, embedded training was used to directly adapt
the models to target sentences. The results, shown in Figure 4 were compared with the performance
of a single HMM. At the sentence level of example selection, boosting fails to improve training perfor-
mance after six or seven iterations and stops. Generalisation results tend to be better for the weighted
sum multi-stream decoding and the ROVER recombination scheme, while in general the thresholded
loss function performs better.

6 Conclusion and Future Work

The experimental results indicate that boosting at the phoneme level can significantly improve phoneme
classification performance, while also increasing the performance for sentence recognition. While there
is only one way to combine the experts for phoneme classification, the task of sentence recognition does
not present an obvious (optimal, yet tractable) method for the combination of experts. Indeed, the
performance varies significantly depending on the combination method used. An interesting subject
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of further research would be to pursue better methods for expert combination during decoding, such
as an alternative to the current multi-stream methods, or a Monte Carlo approximation to the full
likelihood estimation.

In the case of boosting at the sentence level, there was no consistently significant performance
difference with the baseline. This indicates the need for a better formulation of boosting in gen-
eral sequence recognition tasks, rather than sequence classification tasks. That would include the
formulation of sample loss functions and overall cost functions for indefinite length sequences.
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