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Abstract. We compare the use of two Markovian models, HMMs and IOHMMs, to discriminate
between three mental tasks for brain computer interface systems using an asynchronous protocol.
We show that IOHMMs outperform HMMs but that, probably due to the lack of any prior
information on the state dynamics, no practical advantage in the use of these models over their
static counterparts is obtained.
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1 Introduction
Over the last 20 years, several research groups have shown the possibility to create a new communica-
tion system, called Brain Computer Interface (BCI), which enables a person to operate computers or
other devices by using only the electrical activity of the brain, recorded by electrodes placed over the
scalp, without involving the muscular activity [8, 13]. Cognitive processing (e.g. arithmetic opera-
tions, language, etc.) and imagination of limb movements are accompanied by changes in oscillations
of the electro-encephalographic (EEG) signal, known as EEG rhythms [9], which can be captured
by classi�cation systems. Up to now, most proposed works in BCI research used static classi�ers,
while only a few works attempted to model the dynamics of these changes. For instance, in [10]
the authors used Hidden Markov Models (HMMs) to discriminate between two motor-related mental
tasks: imagination of hand or foot movement. These experiments were based on EEG signals recorded
with a synchronous protocol, in which the subject had to follow a �xed scheme before undertaking a
movement under the instruction of the machinery.

This paper contributes to exploring the use of Markovian models, in particular, HMMs and an
extension of them - the Input-Output HMMs - for distinguishing between three cognitive and motor-
related mental tasks, for BCI systems based on an asynchronous protocol [8]. In this protocol, the
subject does not follow any �xed scheme but concentrates repetitively on a mental task for a random
amount of time and switches directly to the next, without passing through a resting state. Thus the
signal associated to each mental task represents a continuous sequence of mental events without marked
beginning or end from which the Markovian models should extract some discriminant information
about the underlying dynamics.

The rest of the document is organized as follows. In Sec. 2 and Sec. 3 HMM and IOHMM models
are presented. Sec. 4 describes the data and the protocol used in the experiments. Experimental
results are presented in Sec. 5 and discussed in Sec. 6. Final conclusions are drawn in Sec. 7.

2 Hidden Markov Models
A Hidden Markov Model (HMM) is a probabilistic model of two sets of random variables Q1:T =
{Q1, . . . , QT } and Y1:T = {Y1, . . . , YT } [12]. The variables Q1:T , called states, represent a stochastic
process whose evolution over time cannot be observed directly, but only through the realizations of
the variables Y1:T .

In order to make the related computations tractable, the following conditional independence rela-
tions over the random variables are assumed:

{Qt} ⊥ {Q1:t−2, Y1:t−1}|Qt−1 , (1)

and
{Yt} ⊥ {Q1:t−1, Qt+1:T , Y1:t−1, Yt+1:T }|Qt , (2)

for each t ∈ [1, . . . , T ], where the symbol X ⊥ Y |Z indicates the conditional independence of X and
Y , given Z. We can express these conditional independence relations by the help of a graphical model,
as shown in Fig. 1.
The states Q1:T are discrete and can take a �nite number of values 1, . . . , N , while the random variables
Y1:T are continuous and represent the EEG signal recorded from several electrodes in the time interval
1, . . . , T . To simplify the notations, we will indicate with P (qt) the probability that the variable Qt

takes the value qt ∈ [1, . . . , n] (the probability of being in the state qt at time t), and with p(yt) the
probability density function associated to the random variable Yt.
From the independence relations in (1) it follows that:

P (qt|q1:t−1) = P (qt|qt−1) ,

that is, the states form a discrete time �rst order Markov chain. In addition, in order to reduce
the number of parameters, P (qt|qt−1) is considered to be independent of time t, that is, the chain is
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homogeneous.
Another important property that can be derived from (2) is the following:

Q Q Q

Y t-1 Y t Y t+1

  t-1   t   t+1

Figure 1: Graphical model specifying the conditional independence properties for a Hidden Markov
Model. The nodes represent the random variables, while the arrows express direct dependencies
between variables.

p(yt|q1:t, y1:t−1) = p(yt|qt) .

From (2) it can also be seen that each observation Yt is independent from every other observation
given the current state, that is:

p(yt:t+h|qt:t+h) =
t+h∏
τ=t

p(yτ |qτ ) .

It is assumed that the observations are also identically distributed given the state sequence.
Given the above assumptions, to completely de�ne an HMM model it su�ces to give:

• the initial state probabilities πi = P (Q1 = i), i ∈ [1, . . . , N ],

• the state-transition probabilities matrix A, where aij = P (Qt = i|Qt−1 = j), i, j ∈ [1, . . . , N ],

• the emission probability density functions bi(yt) = p(yt|Qt = i), i ∈ [1, . . . , N ].

Thus the complete parameter set can be denoted as Θ = (π, A, B), where B indicates the parameters
corresponding to the emission density functions.
Given these parameters, we can compute the likelihood of an observed output sequence y1:T , by
considering all the possible state sequences q1:T :

p(y1:T ) =
∑
q1:T

p(y1:T |q1:T )P (q1:T ) ,

where:

p(y1:T |q1:T ) =
T∏

t=1

p(yt|qt) = bq1(y1) . . . bqT
(yT ) ,

and:

P (q1:T ) = πq1

T∏
t=2

P (qt|qt−1) = πq1aq1q2 . . . aqT−1qT
.



4 IDIAP�RR 03-49

However, the number of calculations required in the above formulas is of the order of 2T · nT , thus
a recursive procedure, based on dynamic programming, which requires a number of computations of
the order of n2T is used in practice [1, 3].

For classi�cation, a di�erent model with associated parameters Θi for each class i is trained so
that the likelihood: ∏

m∈Mc

p(ym
1:T |Θc)

is locally maximized over the set of training sequences using the Baum-Welch method, which is a
particular case of the EM algorithm [5].
Once the HMMs have been trained, we assign an unknown test sequence y1:T to the class whose model
gives the highest likelihood:

c∗ = arg max
c

p(y1:T |Θc) .

We assume that in each state j ∈ [1, . . . , N ] our observations are generated by a Gaussian mixture
model (GMM), that is:

bj(·) =
K∑

k=1

cjkN(·, µjk, Σjk) ,

where N(·, µjk, Σjk) is a Gaussian distribution, with mean vector µjk and diagonal covariance matrix
Σjk, and cjk is the mixture coe�cient for the k-th mixture of state j.

3 Input Output Hidden Markov Models
An Input-Output Hidden Markov Model (IOHMM) is an extension of an HMM to the case in which
the distribution of the output variables Y1:T and the states Q1;T are conditioned on a set of input
variables X1:T [2]. For classi�cation, the input variables are associated to the observed sequences and
the output variables to the classes.

As shown in Fig. 2, independence properties analogue to the HMM case are assumed, from which
the following principal relations can be derived:

P (qt|q1:t−1, x1:t) = P (qt|qt−1, xt) ,

and
P (yt|q1:t, y1:t−1, x1:t) = P (yt|qt, xt) .

Thus to parametrize an IOHMM we need:

• the initial state probabilities πi = P (Q1 = i|x1), i ∈ [1, . . . , N ],

• the state-transition probabilities P (Qt = i|Qt−1 = j, xt), i, j ∈ [1, . . . , N ], t ∈ [2, . . . , T ],

• the emission probabilities P (Yt = c|Qt = j, xt), c ∈ [1, . . . , C], j ∈ [1, . . . , N ], t ∈ [2, . . . , T ].

To model the above conditional distributions, we de�ne a Multilayer Perceptron (MLP) [4] state
network Nj and an MLP output network Oj for each state j ∈ [1, . . . , N ]. Each state network Nj has
to predict the next state distribution:

P (Qt = i|Qt−1 = j, xt) ,

based on the current input and on the previous state, while each output network Oj computes the
distribution of the current output of the system:

P (Yt = c|Qt = j, xt) ,
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Figure 2: Graphical model specifying the conditional independence properties for an Input-Output
Hidden Markov Model.

based on the current state and input. Thus each output of the state network Nj is associated to one
of the successor i of the state j, while each output of the output network Oj is associated to one of
the classes.

Training maximizes the likelihood over the M training sequences:
∏

m∈M

P (ym
1:T |xm

1:T ,Θ1) ,

using a generalized EM algorithm [7]. As in the standard EM algorithm, the expectation step estimates
the expectation of the joint likelihood of the data and the state variables, given the data and the old
model parameters, while in the maximization step the MLP networks are trained to �nd a new set of
parameters which increases the expectation using gradient ascent techniques.
Note that, as opposed to the HMM framework where for each each class a di�erent model is trained on
examples of that class only, here a unique IOHMM model is trained, thus yielding more discriminant
properties.
Once the IOHMM model has been trained, to assign an unknown test sequence to a class we compare
the probabilities of observing a sequence of outputs of the same class2:

c∗ = arg max
c

P (Y1 = c, . . . , YT = c|x1:T , Θ)3 . (3)

4 Data Acquisition
The EEG potentials were recorded with a portable system using 32 electrodes located at standard
positions of the 10-20 International System, at a sample rate of 512 Hz. The raw potentials (without
artifact rejection or correction) were spatially �ltered using a surface Laplacian computed with a
spherical spline [9]. Then the power spectral density over 250 milliseconds of data was computed with
a temporal shift of 31.2 milliseconds, in the band 4-40 Hz and for the following 19 electrodes: F3,
FC1, FC5, T7, C3, CP1, CP5, P3, Pz, P4, CP6, Cp2, C4, T8, FC6, FC2, F4, Fz and Cz.

Data was acquired from two healthy subjects without any experience with BCI systems during
three consecutive days. Each day, the subjects performed 5 recording sessions lasting 4 minutes,
with an interval of around 5 minutes in-between. During each recording session the subjects had to

1Here Θ represents the set of MLP network parameters.
2In our case the whole test sequence belongs to one class, as explained in the next section.
3Another way to use the model is to assign class label only at the end of the sequence, modifying the likelihood

maximization. Experiments carried out with this method gave worse performance, and thus are not reported here.
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concentrate on three di�erent mental tasks: imagination of repetitive self-paced left and right hand
movements and mental generation of words starting with a given letter. The subjects had to change
every 20 seconds between one mental task and another under the instruction of an operator4.

In this study we have analyzed the performance on the last two days of recording, when the subjects
already acquired some con�dence with the mental tasks.

5 Experiments
The HMM and IOHMM models have been trained on the EEG signal of the �rst three sessions of
recordings of each day, while the following two sessions were used as validation and test sets. In the
HMM model, the validation set was used to choose the number of states, in the range from 2 to 7,
and the number of Gaussians (between 3 and 15). In the IOHMM, the validation set was used to
choose the number of states (from 2 to 7), the number of iterations and the number of hidden units
(between 25 and 200) for the MLP transition and emission networks. The MLP networks had one
hidden layer. For the reasons explained in the next section, we used a fully connected topology in
which each hidden state could be reached by any other state. We split each recording session into
segments of signal lasting 1, 2 and 3 seconds, with a shift of half a second, obtaining a number of
examples between 360 and 420.

Tables 1 and 2 show the performance of the two subjects over the second and third day of recording,
using HMM and IOHMM models and their static counterparts, that is, GMM and MLP models
respectively. GMMs and MLPs correspond to HMMs and IOHMMs with only one hidden state and
can thus serve as direct veri�cation of the advantage obtained using dynamical models. For each day,
the columns give the error rate for di�erent window lengths.

Subject Second Day Third Day
A 1 s 2 s 3 s 1 s 2 s 3 s

HMM 40.0% 36.4% 29.5% 24.3% 15.8% 09.0%
GMM 41.7% 34.3% 32.7% 22.4% 14.3% 12.1%

IOHMM 39.6% 32.8% 28.9% 19.6% 13.3% 09.3%
MLP 40.5% 29.4% 27.0% 19.3% 14.5% 09.8%

Table 1: Error rate of Subject A on the second and third day of recording, using HMMs and IOHMMs
and their static counterparts: GMMs and MLPs.

Subject Second Day Third Day
B 1 s 2 s 3 s 1 s 2 s 3 s

HMM 47.2% 46.2% 43.8% 49.1% 40.0% 36.3%
GMM 50.1% 45.9% 40.7% 45.7% 43.4% 34.9%

IOHMM 34.5% 29.4% 28.6% 36.7% 33.0% 27.5%
MLP 36.2% 29.7% 24.5% 40.0% 35.9% 31.4%

Table 2: Error rate of Subject B on the second and third day of recording.

4During the real operation of the system the changing of mental task is performed as soon as the task has been
recognized by the system.
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6 Discussion

From the results presented in Tables 1 and 2 it can be seen that the correct classi�cation of the three
mental tasks is signi�cantly better than chance, even with almost no user' s training, and shows a great
improvement when increasing the window length from 1 up to 3 seconds (which would correspond to
a still reasonable speed for a BCI system, because of the short window shift).

We can also observe the superior performance of IOHMMs and MLPs compared to HMMs and
GMMs. This can theoretically be explained by the fact that, when using HMMs, a separate model is
trained for each class on examples of that class only. As a consequence, the training focuses on the
characteristics of each class and not on the di�erences among them. On the contrary, in the IOHMM
framework, a single model is trained using the examples from all the classes. This type of learning
turned out to be more appropriate for a high variable signal such as the EEG, giving also more stable
performance in di�erent runs of the same experiments.

Another important result, shown in Tables 1 and 2, is the impossibility to choose between dy-
namical models and their static counterparts, which can be due to several reasons. The use of an
asynchronous protocol in which the subject performs repetitive self-paced mental actions makes im-
possible to determine the beginning of each mental event. This fact, together with the lack of prior
information about the dynamics of the rhythms hinders the selection of a state topology more ap-
propriate than the fully connected one (which is known to have weak learning capabilities) and the
modeling through an appropriate, and often crucial, state initialization. Furthermore, the high vari-
ability of the EEG signal recorded during di�erent sessions, even if very close in time, often makes
the hyper-parameters chosen from an independent validation set not suitable for the test set. This
problem can eliminate, in practice, the eventual bene�t in using dynamical models, as we have noticed
in our experiments, where we have compared both the results obtained selecting the hyper-parameters
in the test set directly and using an independent validation set. The �rst case (not shown here) corre-
sponds to the unrealistic situation in which the correct parameters would be known a priori and thus
can be used only for analyzing the change in performance of dynamical models.

7 Conclusions

This work pointed out two important aspects in the Markovian modeling of EEG, which are arousing
growing interest in BCI research: �rst, the superiority of more discriminant models like IOHMMs over
generative ones like HMMs; second, the lack of practical advantage in using sequential models when
no prior information can be used to build an appropriate structure, like in the case of modeling EEG
rhythms with asynchronous BCI systems.

A future direction could be to analyze the use of IOHMMs to model the switching between mental
tasks, in which case it would be possible to initialize properly the model (this requires an appropriate
protocol with fast switching between mental tasks). Furthermore, given the high presence of noise in
the EEG, another direction could be the use of IOHMMs for modeling regimes corresponding to part
of the signal which is not discriminant, after constructing an appropriate model for the noise.
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