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Abstract. State-of-the-art text independent speaker verification systems use silence/speech
detectors to get rid of silence frames which are considered to be non discriminative. This paper
explores a possible replacement to this silence/speech detector by considering each Gaussian of a
GMM as modeling a specific speech class and by using discriminant models like SVMs and MLPs
in order to fuse the corresponding class-specific scores to obtain a final decision. Experiments on
the NIST 2001 database yielded statistically significantly better performance for the new model
as compared to our best baseline system involving a silence/speech detector, without having to
rely on uncertain hypotheses.
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1 Introduction

The goal of speaker verification is to decide whether a given speech utterance was pronounced by
a claimed client or by an impostor. One of the steps involved in the classical approach converts
the continuous speech signal into a sequence of vectors called frames. These frames can contain
silence or speech information but the silence frames are believed not to contain any speaker informa-
tion. Hence, state-of-the-art text-independent speaker verification systems based on Gaussian Mixture
Models (GMMs) normally use a silence/speech detector to discard these frames.

However, using such a detector (which is prone to error since there is no precise definition of a
silence frame) as a preprocessing step could remove frames that would have in fact contained useful
information with regard to the final task, or could keep some unwanted frames, which, as we will see
later in section 2.2, could harm the quality of the resulting model.

Instead of using a silence/speech detector, this paper proposes a new approach: given the hypoth-
esis that each Gaussian of a GMM represents a certain class of speech sub-unit, a discriminant model
could be used to weight the scores given by each of these Gaussian/class of speech sub-unit.

The experiments performed on the NIST 2001 database show that the new approach yields results
better than the baseline system with the advantage that no a priori knowledge is used regarding the
discrimination of the input frames.

The next section describes the baseline system, including the GMM model and the silence/speech
detector. The following section exposes the new model based on class-specific Gaussians. Finally some
experiments on the 2001 NIST database are presented and analyzed.

2 Baseline Speaker Verification System

Classical speaker verification models are based on a statistical framework. We are interested in
P (Si|X) the probability that a speaker Si has pronounced sentence X. Using Bayes theorem, we can
write it as follows:

P (Si|X) =
p(X|Si)P (Si)

p(X)
. (1)

In order to decide whether or not Si has pronounced X, we compare P (Si|X) to the probability that
any other speaker has pronounced X, which we write P (S̄i|X). When P (S̄i|X) is the same for all
clients, which is the case in this paper, we replace it by a speaker independent model P (Ω|X) where
Ω represents the world of all the speakers. The decision rule is then:

if P (Si|X) > P (Ω|X) then X was uttered by Si. (2)

Using equation (1), inequality (2) can then be rewritten as:

p(X|Si)
p(X|Ω)

>
P (Ω)
P (Si)

= δi (3)

where the ratio of the prior probabilities is usually replaced by a threshold δi since it does not depend
on X. Taking the logarithm of (3) leads to the log likelihood ratio:

llr = log p(X|Si)− log p(X|Ω) > log δi = ∆i. (4)

In order to implement this, we usually train a world model p(X|Ω) by Maximum Likelihood (ML),
and then adapt it using a Maximum A Posteriori (MAP) technique for each client model p(X|Si) [5].
As the number of client data is limited, we often estimate a client independent decision threshold ∆.
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2.1 Gaussian Mixture Models

In the context of text-independent speaker verification, both p(X|Si) and p(X|Ω) are most often
modeled by Gaussian Mixture Models (GMMs) with diagonal covariance matrices. In order to use
such a model, we make the assumption that the frames of the speech utterance are independent from
each other: the probability of a sequence X = {x1,x2, . . . ,xT } given a GMM with N Gaussians is
computed as follows:

p(X) =
T∏

t=1

p(xt) =
T∏

t=1

N∑
n=1

wn p(xt|n) (5)

where wn is the weight of Gaussian n and p(xt|n) is the corresponding Gaussian probability density
function.

In equation (5), the magnitude of p(X) depends of the number of frames T . In order to use a
threshold ∆ independent of T , a normalization factor is thus added. Using equations (5) and (4), and
adding the normalization factor we obtain:

llr =
1
T

T∑
t=1

log
N∑

n=1

wn p(xt|Si, n)

− 1
T

T∑
t=1

log
N∑

n=1

wn p(xt|Ω, n) (6)

where p(xt|Si, n) is the density of Gaussian n of the client model and p(xt|Ω, n) is the density of
Gaussian n of the world model.

2.2 Silence Frames

In any given sentence, silence often appears between words. These silence segments obviously do not
contain much speaker information. Hence, state-of-the-art systems usually remove them with the help
of a silence/speech detector. In fact, the main reason to get rid of them is that they influence the
normalization factor described in section (2.1): The more there are silence frames, the smaller will be
the score after normalization, which is not a desirable behavior of the system, which should be robust
to silences.

The simplest approach to remove silences compares the energy of each frame to a given threshold
learned on the first few frames [3]. Our own baseline approach learns in an unsupervised way a bi-
Gaussian model with the hypothesis that the distribution of the silence parts should be different from
the speech part and that the energy of the speech is bigger than the silence one. Afterward, we remove
all frames xt such that

p(xt|Gspeech) < p(xt|Gsilence) (7)

where Gspeech is the Gaussian representing the speech while
Gsilence represents the silence. Note that the bi-Gaussian model is a simple GMM with two Gaussians
learned on the complete feature vector. The enrollment is unsupervised because the silence/speech
segmentation is unknown. Moreover, while in the simple energy based approach, one needs to use
the first few frames (which are hypothesized to be silence) to estimate the level of silence energy, this
unsupervised technique does not need such hypothesis. A similar approach is described in details
in [3].

3 Gaussians Represent Classes

Based on this silence removal approach, we would like to propose the following idea: if a bi-Gaussian
model can discriminate between silence and speech frames, the world model (a GMM with more that
100 Gaussians in general) can probably also perform something similar. It is often conjectured that
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each Gaussian of the world model represents a different class of the signal (silence, noise, vowels, sub-
phonemes, etc...) and it is reasonable to think that some classes contain more discriminant information
than others. Moreover, removing silence frames can be seen as a hard case where the corresponding
soft case would attribute a weight for each class.

For a given client, let us now consider, for each Gaussian i of the world model, the couple containing
Gaussian i and its associated Gaussian from the client model. This couple contains discriminative
information between client and world regarding a given class.

We already know, that the silence class does not contain discriminant informations. In a similar
way, the other classes could have different levels of discrimination.

3.1 From GMMs to Gaussian Scores

In order to consider couples of Gaussians, we first need to enforce an exact correspondence between
the world and client Gaussians. This is in fact already the case when using MAP adaptation to train
client models.

Let us now assign each frame xt to only one Gaussian using a kind of Viterbi approximation of
equation (6) as follows. Let n∗t,θ be the Gaussian in model θ that best represents xt:

n∗t,θ = arg max
n

[log wn p(xt|θ, n)] . (8)

We can compute a Viterbi approximation of llr as follows:

llr ≈ llrv =
1
T

∑
t

[
log p(xt|Si, n

∗
t,i)− log p(xt|Ω, n∗t,Ω)

]
. (9)

Note that there are no constraint in (9) that guarantees that a given frame is assigned to the same
Gaussian in the client and world models. In order to enforce this, a synchronous alignment procedure
is used [4]:

n∗t = arg max
n

[
α log wn p(xt|Si, n)+
(1− α) log wn p(xt|Ω, n)

]
(10)

where α is a trade-off between placing our confidence in the world or the client model. Using this
synchronous alignment, we define a new score as follows:

llrv ≈ llrs =
1
T

∑
t

[log p(xt|Si, n
∗
t )− log p(xt|Ω, n∗t )] . (11)

We can also compute separately llrs for each Gaussian n, as follows:

llrs(n) =
1

T (n)

∑

t:n=n∗t

[log p(xt|Si, n)− log p(xt|Ω, n)] (12)

where T (n) is the number of frames captured by Gaussian n in equation (10). For each access having
a variable length, we thus obtain a vector which size is equal to the number of Gaussians (N). Each
value of this vector is the score (12) given by the corresponding couple of Gaussians. Hence, this
model produces a fixed length vector from a sequence of variable number of frames.

3.2 Fusion of Scores

The goal of this last step is to obtain a single decision score out of the vector of scores obtained using
equation (12). The simplest way to merge several scores is to average them. However, in some cases,
a more complex fusion process might give better results. For instance, one could use a weighted sum,
where the weights would be trained by maximizing the likelihood on a separate training set. Another
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solution, favored in this paper, is to use powerful machine learning techniques such as Support Vector
Machines (SVMs) [6] or Multi-layer Perceptrons (MLPs) [1].

The output score S of the fusion model is then:

S = f(llrs(1), . . . , llrs(N)|Θ) (13)

where llrs(i) is the Gaussian specific log likelihood ratio obtained by equation (12) for Gaussian i,
f(·; Θ) is a set of functions (such as the set of linear functions, or the set of functions induced by
an MLP), and Θ is the parameter vector that optimizes a given criterion (such as Equal Error Rate,
EER, see experimental section) on a separate development set.

4 Experiments

4.1 Database and Protocol

We tested the new speaker verification model on a subset of the database that was used for the 2001
NIST Speaker Recognition Evaluation, which comes from the Switchboard-2 Phase 3 Corpus collected
by the Linguistic Data Consortium. While in the original database two different handsets were used
(carbon and electret), in the subset selected for this paper, we only used data from electret handsets.

The database was separated into three subsets: a training set for the world model, and both a
development set and an evaluation set of clients. Furthermore, for each client, there was training
material and test accesses.

We separated the data into male and female data, in order to create two different world models.
The male world model was trained on 137 speakers for a total of 1.5 hours of speech, while the
female world model was trained on 218 speakers for a total of 3 hours of speech. After that, the two
world models were merged: the new world model have the same mean and variance vectors as the
concatenation of the two gender dependent world models and the weights are normalized in order to
satisfy the constraint that they should sum to 1.

For both development and evaluation clients, there was about 2 minutes of telephone speech used
to train the models and each test access was less than 1 minute long. The development population
consisted of 45 males and 45 females, with 417 males and 506 females in the evaluation set. The total
number of accesses in the development population was 5135 and 63573 for the evaluation population
with a proportion of 10% of true accesses.

4.2 General Methodology

All the experiments described here have followed the same methodology. First, the original waveforms
were sampled every 10ms and then parameterized into 16 LFCC coefficients and their first derivative,
as well as the energy together with its first derivative, for a total of 34 features.

Afterward, a bi-Gaussian method (see section 2.2) was used in the baseline system in order to
remove the silence frames from the data. With the new approach, we kept all frames and let the
fusion model discard the (non-informative) silence frames.

While the energy was important in order to remove the silence frames, it was not appropriate for
the task of discrimination between clients and impostors, and was thus removed from the features
after silence removal. Hence, the world and client models were trained with 33 features (instead of
34).

In order to select the various hyper-parameters (such as the number of Gaussians, the MAP factor,
etc), we used the following methodology: using the development set, for each value of the hyper-
parameter to tune, we trained the client models using the training data available for each client. We
then selected the value of the hyper-parameter that optimized the Equal Error Rate (EER) on the
test accesses of the development set. Finally, we trained the models of the evaluation set using these
hyper-parameters and report the results obtained on the test accesses of the evaluation set. Hence,
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these results are unbiased as the corresponding data has not been used for any purpose during the
development of the models.

4.3 Specific Methodology for the Proposed Model

In this case, two discriminant models are created, one for each gender (as we do for world mod-
els). First, a 5-fold cross-validation method is used in order to tune the hyper-parameters such as
learning rate, number of hidden units, “a priori” decision threshold, etc. Then, given the best hyper-
parameters, the model is retrained on the whole training data.

4.4 Experimental Results

The values of the hyper-parameters found on the development set were the following: 128 Gaussians
for the world model, the MAP adaptation factor is equal to 0.5, the variance flooring is equal to 60%
of the global variance, α = 0.6 for the synchronous alignment factor.

Concerning the SVM, we give results for two kernels, a linear kernel and a Gaussian kernel with
σ = 800. The MLP is in fact a simple regression model (no hidden units).

Results of the experiments are given in Table 1. FAR represents the false acceptance rate (number
of false acceptances divided by number of impostor accesses), FRR is the false rejection rate (number
of false rejections divided by number of client accesses), while HTER is the half total error rate (the
average of FAR and FRR). The DET curves of the two best methods are also shown in Figure 1.

Method FAR FRR HTER
Baseline 13 9.72 11.36

Linear SVM 14.57 8.93 11.75
Gaussian SVM 15.3 8.22 11.76
Linear MLP 8.83 12.02 10.42

Table 1: Comparison between baseline (GMMs with MAP), simple linear regression (using an MLP),
and SVMs on the evaluation set of the NIST 2001 database when the decision threshold has been
selected according to the EER criterion on the development set.

Figure 1 shows that the linear MLP gives overall better results than the baseline system1: the
DET curve of the MLP is always under the DET curve of the baseline system.

Moreover, the a priori results, given in Table 1, show that the new approach gives statistically
significantly better results than the baseline system with a confidence level of 99%2. Both the DET
curve and the a priori results show that it is indeed possible to replace a silence/speech detector by a
discriminant model.

While getting good performance is important, there are still other reasons to opt for the new
model:

• no a priori knowledge is used regarding the discrimination of the input frames, hence the resulting
system should be more robust to variable environmental conditions,

• since no frames are removed from the inputs, there is no discontinuity in the data, which can
be useful for models that use temporal information (for instance, discriminant models such as
MLPs could more easily integrate temporal windows of several consecutive input frames, which
is much more difficult to do when there are discontinuities in the temporal sequence),

• this approach can help to better understand GMM models for speaker verification, especially in
the way these local models cluster the frames.

1SVMs results are not given, but they are not as good as the Linear MLP and similar to the baseline system.
2with a standard proportion test, assuming a binomial distribution for the errors, and using a normal approximation.
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Figure 1: DET curves on the NIST 2001 evaluation set for the baseline (GMMs with MAP) and simple
linear regression (using an MLP).

5 Conclusion

In this paper, we have proposed a new method to replace the usual silence/speech detector in text
independent speaker verification systems. A new scoring method was proposed, in order to have one
score per pair of Gaussians (world/client). Discriminant models such as MLPs or SVMs were then
trained to fuse these scores. The experimental results showed that the new system performed statisti-
cally significantly better than the baseline system without having to decide on any prior segmentation
of the input data.

Regarding future work, the hypothesis that each Gaussian represents a class of sub-unit of speech
should be verified more extensively experimentally, and based on these results, new discriminant
models could emerge.
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ELISA consortium research activities. In 2001 A Speaker Odyssey, pages 67–72, June 2001.
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