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Abstract. Multi-band, multi-stream and multi-modal approaches have proven to be very suc-
cessful both in experiments and in real-life applications, among which speech recognition and
biometric authentication are of particular interest here. However, there is a lack of a theoretical
study to justify why and how they work, when one combines the streams at the feature or classifier
score levels. In this paper, we attempt to cast a light onto the latter subject. Our findings suggest
that combining several experts using the mean operator, Multi-Layer-Perceptrons and Support
Vector Machines always perform better than the average performance of the underlying experts.
Furthermore, in practice, most combined experts using the methods mentioned above perform
better than the best underlying expert.
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1 Introduction

Multi-band is a technique often used in speech recognition or speaker authentication that splits fre-
quency into several subbands so that each subband will be processed separately by its corresponding
classifier. The classifier scores are then merged by some combination mechanisms [1]. Multi-stream is
a similar technique except that each stream uses different features. Multi-modal is yet another tech-
nique that is applied in Biometric Authentication, where each modality is a biometric trait associated
to a person, such as face and speech. These approaches have proven to be very successful both in
experiments and in real-life applications, e.g, [2, 1] for speech recognition and [3, 4, 5] for face and
speaker authentication.

Unfortunately, there is a lack of a theoretical study to justify why and how they work, when one
combines the streams at the feature or classifier score levels. The former is called feature combination
while the latter is called posterior combination in [6]. In a separate study in biometric authentication
(BA) [7], these two approaches are called Variance Reduction (VR) via extractors and VR via classi-
fiers. The term variance reduction is originated from [8, Chap. 9], from the observation that when
two classifier scores are merged by a simple mean operator, the resultant variance of the final score
will be reduced with respect to the average variance of the two original scores.

To the authors opinion, theoretical justifications of these approaches have not been thoroughly
investigated. In particular, (i) how does correlation in the classifier scores affect the combination
mechanism, and (ii) how does this correlation affect the classification accuracy in terms of Equal Error
Rate? These issues are the focus of this paper. In this study, the mean operator is used as a case study
for studying these issues. In practice, non-linear trainable functions such as Multi-Layer Peceptrons
and Support Vector Machines can also be used. Our findings suggest that the combined experts using
the mean operator always perform better than the average of their participating experts. Furthermore,
in practice, most combined experts, particulary those using non-linear trainable classifiers, perform
better than any of their participating experts.

The rest of this paper is organised as follows: Section 2 studies variance reduction due to the mean
operator and Section 3 shows its relation with classification error reduction. Section 4 discusses how
non-linear combination mechanisms can be useful. Conclusions are in Section 5.

2 Variance Reduction

Let x be a biometric measurement that represents a person and y;(x) be the i-th measured relationship
between the biometric trait x and the person. For example, i could denote the i-th subband of a
spectrogram representing the speech of a person. i could also be the i-th stream for a given type of
feature (e.g. Mel-scale Frequency Cepstrum Coefficients and Linear Predictive Cepstrum Coeflicients).
In the context of multi-modal biometrics, i could be the i-th biometric measurement (e.g., speech,
face or fingerprint). In this context, ¢ could be the i-th sample, i-th feature and even i-th classifier.
y:(x) can be thought as the i-th response of the biometric measurement x given by an expert system.
Typically, this output (e.g. score) is used to make the accept/reject decision. It can be defined as:

yi(x) = h(x) + ni(x), (1)

where h(x) is the “target” function that one wishes to estimate and 7;(x) is a random additive noise
with zero mean, also dependent on x. h(x) can be viewed as the ideal function that consistently gives
1 when x corresponds to the client and —1 when corresponds to the impostor. The mean of y is

1 N
56) = 7 2w, @

where there are N responses of streams, subbands or biometric modalities. The expected value of
y;(x), denoted as E[y;(x)] is

Elyi(x)] = E[h(x)] + E[ni(x)] = h(x)
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By using one hypothesis of y per access, the variance, by definition, is:

VAR[yi(x)] = E[(y:(x) — Elyi(x)])?

= El(yi(x) = h()))’] = Elmi(x)?], (3)

~—

When N hypotheses are available but are used separately, the average of variance of each hypothesis
is:

N
VAR4v (x) = %ZVAR[%(X)]

1 N
N ; E[n;(x)’], (4)

where Eqn. (3) is used. However, by combining N hypotheses per access via averaging, the variance
of average is:

VARCOM (X)

I
=
=
%
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o
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To expand Eqn. (5), one has to take into account the possible correlation among different 7;(x) values
which can be defined by:
p-E (i)
0i0;
where o; and o; are the standard deviations of 7; and 7;. Note that with the introduction of p,
Eqn. (3) can be written as: VAR[y;(x)] = pE[n;(x)’] = E[n:(x)’] = 02, since 5; = n; for ¥, ;, and
consequently p = 1 in this case. For clarity purposes, x will be dropped in all equations hereinafter.
Note that this correlation equation has the property that —1 < p < 41. By taking into account the

possible correlation in 7;, Eqn. (5) can be written as:

1 N N
VARcom = E |53 [ DD mm;
i i=1 j=1
[ 1 N N
= F e 2772‘24'2 Z niM;j
L =1 1=1,1<g
1 & 2 U
= ﬁZE[WQH'm > Elminl
i=1 i=1,i<j
1 & 2 &
= EXOitNE D iy (6)
=1 1=1,1<j

since E[n?] = 02. Now, we need to consider two cases: when 7; are independent from each other (i.e.,
p = 0) and when they are not (i.e., p # 0).



4 IDIAP-RR 03-59

2.1 Assuming independence in 7;: p =0

In this case, the right term in Eqn. (6) will be zero. In the same notation, Eqn. (4) can be rewritten
as:

N
1 2
VARav = Z;a (7)
Comparing Eqns. (6) and (7), it can be easily seen that:

1
VARcon = +VARav, (8)

which is true when 7; is uncorrelated. This is the lowest theoretical bound that VAR can achieve.
Basically, this shows that by averaging N scores, the variance of average (VARcon) can be reduced
by a factor of N with respect to the average of variance (VAR ay), when 7; is not correlated.

2.2 Assuming dependencies in n;: p # 0

The upper bound can be derived from the second assumption that 7; is correlated, i.e. p # 0. This
worst-case bound is in fact equal to VAR 4y, i.e., there is no gain. To be more explicit, we wish to
test the hypothesis that VARcon < VAR Ay . By using Eqns. 6 and 7, this can be shown as follows:

VARcom < VARav

1 & 9 2 & 1 2
ﬁzai+ﬁ Z PUinSNZUz' 9

i=1 i=1,i<j i=1
By multiplying both sides by N2 and rearranging, we obtain:
N N
OS(N—l)ZJ?—Q Z poio;.
i=1 i=1,i<j

Given that (N — 1) YN 02 = 3V, i<;(07 + 0%) (the proof can be found in the appendix), this

inequality can further be simplified to:

N N
0 < Z (02 + UJQ-) -2 Z pOi0;
i=1,i<j i=1,i<j
N
0 < Z (O’? —2poio; + O'JQ-)

N
0 < Z ((O’? —2poio; + p20]2, +(1- pz)o’?))

0 < Y ((oi-poy)t+ =)o) (10)

In other words, hypothesis in Eqn. (9) is always true, whether 7); is correlated or not. As a consequence,
we have just shown that VARcoym < VAR y. Taking this conclusion and that of Eqn. (8), one can
conclude that:

1
NVARAV < VARcom < VARay. (11)
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Referring back to Eqn. (6), if p < 0, i.e., 7; is negatively correlated, then the right hand term in this
equation would be negative and consequently VARcoy < %VAR av! Obviously, negative correlation
would help improve the results. However, and unfortunately, in reality, negative correlation will not
happen if the underlying experts are well-trained, i.e., for a given instant 4, y; for i = 1,..., N, will
tend to agree with each other (hence positively correlated) most often than to disagree with each other
(hence negatively correlated).

2.3 Introduction of o as a gain factor

To measure ezplicitly the factor of reduction, we introduce «, which can be defined as follows:

A
o VAR 4v (%) ' (12)
VARCOM (X)
By dividing Eqn. (11) by VARcon and rearranging it, we can deduce that
1<a<N. (13)

One direct implication of variance reduction is that the more hypotheses used (increasing N), the
better the combined system, even if the hypotheses of underlying experts are correlated. This will
come at a cost of more computation proportional to N. Experiments in [1] (in speech recognition)
and [3] (in face verification) provide strong evidences to support this claim. Moreover, the gain « is
often very small (near 1) compared to N [9].

3 Variance Reduction and EER Reduction

Until now, it is not clear how variance reduction can lead to better classification, in terms of false
rejection rate (FRR) and false acceptance rate (FAR) in a biometric authentication system. Figure 1
illustrates the effect of averaging scores in a two-class problem, such as in BA where an identity claim
could belong either to a client or an impostor. Let us assume that the genuine user scores in a situation
where 3 samples are available but are used separately, follow a normal distribution of mean 1.0 and
variance (VAR 4y (x) of genuine users) 0.9, denoted as A(1,0.9), and that the impostor scores (in
the mentioned situation) follow a normal distribution of N'(—1,0.6) (both graphs are plotted with
“47). If for each access, the 3 scores are used, according to Eqn. (13), the variance of the resulting
distribution will be reduced by a factor of 3 or less. Both resulting distributions are plotted with
“0”. Note the area where both the distributions overlap before and after. The latter area is shaded in
Figure 1. This area corresponds to the zone where minimum amount of mistakes will be committed
given that the threshold is optimal'. Decreasing this area implies an improvement in the performance
of the system.

Let the scores’ probability density function (pdf) be P(y|x € x¢) for the client set C and P(y|x €
x7) similarly for the impostor set I. Let us first assume that these pdfs are Gaussians. FRR and FAR
can then be defined as:

0
FRR(9) = / P(ylx € x¢)dy
0 2
1 —(y —pc) }
= e d
[w ocV2m P [ 20¢, Y
o 1 1 0 — UC
= 2+2erf(gcﬂ), and (14)

1Optimal in the Bayes sense, when (1) the cost and (2) probability of both types of errors are equal.
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Figure 1: Averaging score distributions in a two-class problem
FAR(0) — / Plylx € x)dy
0
0
= 1—/ P(ylx € x1)dy
1 1 60— ,LL[)]
= 1— |-+ cerf
[2 2 ( orv2
1 1 0 — m)
= - — —erf , 15
2 2 < orvV2 (15)

where

erf(z) = % /OZ exp [—t*] dt,

which is the so-called error function. puc and o¢ are the expected value and the standard deviation
of scores belonging to the client set C' and similarly p; and o; for the impostor set I. Note that
the use of an error function for such analysis has been reported in [10], but with differences in the
definition of the error function. In another similar work (but limited to the context of combining
multiple samples) [3], the Equal Error Rate (EER) curve was not calculated explicitly and validated
via experiments as done here. Furthermore, the issue on how the dependency among samples affects
the resultant variance was not studied theoretically as done in Section 2.

The minimal error happens when FAR(f) = FRR(6) = EER, i.e., the Equal Error Rate. Making
these two terms equal (Eqns (14) and (15)) and using the property that erf(—z) = —erf(z), we can
deduce that:

0 — proc + poor

16
p— (16)
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Figure 2: Equal error rate versus the sum of standard deviations of client and impostor scores

By introducing Eqn. (16) into Eqn. (15) (or equivalently into Eqn. (14)), we obtain:
11 I — jC >
EER = - + —erf ( . 17
22 (oc +or)V2 1

To check the validity of Eqn. (17), we actually compared this theoretical EER with the empirical
EER, calculated by using the optimal threshold:

0* = arg miny|FAR(0) — FRR(0)|
and approximated by the commonly used Half Total Error Rate:
HTER = (FAR(6*) + FRR(6%))/2.

The difference between the theoretical EER and HTER is actually very small, as shown in Figure 3.
This difference is due to the fact that the client and impostor distributions are not truly Gaussian.
On the other hand, it also reveals that the Gaussian assumption is acceptable in practice.

Assuming that yc = 1 and pu; = —1, we plot the graph EER by varying the term o7 4+ o¢ in
Figure 2. EER is therefore a monotonically increasing function as o; + o¢ increases.

Let o} and o be the new o; and o¢ due to variance reduction for the impostor and client
set, respectively. Using the annotations in Section 2, 0/ = /VARcoy and 0 = VAR y. These
definitions apply for both the client and impostor distributions. From Eqn. (11), we can deduce that:

o7 <oy and i < oc.
Since EER is a monotonically increasing function as shown in Figure 2, these inequalities imply that:

EER(O’II, O'/C) < EER(U[,O’(]),
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Figure 3: The theoretical and empirical EER, as a function of ratio (u; — uc)/(or + o¢), carried out
on 72 independent experiments on the NIST2001 database with HTER ranging from 10% to 456%

when both the puc and py are normalised such that they are constant across different streams, bands
and modalities.

In fact, without assuming the Gaussian distribution, as long as the EER function has a monoton-
ically increasing behaviour with respect to o5 + o¢ , the above conclusions remain valid. To require
that EER be a monotonically increasing function, the necessary condition is that the right tail of the
impostor pdf is a decreasing function and the left tail of the client pdf is an increasing function. A
Gaussian function exhibits such behaviour on its left and right tails. Unfortunately, in the case of
non-Gaussian pdfs, the analytical analysis such as the one done here is more difficult.

To evaluate the improvement due to variance reduction, we can define a gain factor 3, similar to
« defined in Eqn. (12), as follows:

mean; (EER;)

where EERco)s is the EER of the combined system (with reduced variance) and EER; is the EER of
the i-th system. In our previous work [9] in the context of biometric authentication, all experiments
verified that Bpeqan > 1, which is theoretically achievable. [pecan can only measure the relative
improvement with respect to the average EER of the underlying expert. In practice, one wishes to
know whether the resultant combined expert is better than the best underlying expert. This can be
measured using:

min; (EER;)

Bmin: EERCOM ;

(19)
which is defined very similarly to Bean, €xcept that the minimum EER of the underlying experts is
used. Opmin > 1 implies that the resultant expert is better than the best underlying expert. In fact,
for both Bean and Bmin, (871 — 1) x 100% measures the relative reduction of the combined expert
with respect to the EER of the mean or the mininum EER’s of the underlying experts.
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4 Non-linear Combination Strategies

The analysis in the previous section is indeed based on the combination using the mean operator,
which is a special case of a weighted sum with equal weights. One can also use non-linear methods
such as Multi-Layer Perceptrons (MLPs) and Support Vector Machines (SVMs).

It is obvious that by using higher capacity (flexibility of a classifier to represent the underlying
function), variance can be further reduced on the training set; see for instance [8, Chap 9] which
demonstrated that a weighted sum reduces more variance than the mean operator. However, it is
less obvious how this variance is reduced on unseen data. Hence, using an empirical procedure such
as cross-validation to find the suitable capacity is of pivotal importance [7]. In this work, non-linear
combination mechanisms such as MLPs and SVMs are superior over the average operator most of the
time. Furthermore, the higher the independence of the underlying experts, the greater the 3 values.
In this study, based on the XM2VTS database, combining face and speech experts can yield Bean
as high as 5.56 (and S, as high as 3.10), whereas combining experts due to different features of the
same modalities yields Gpean as high as 1.84 (and [, as high as 1.12). Finally, diversity due to
classifiers (therefore same features) yields Bpean as high as 2.05 (and 8, as high as 1.22). All these
experiments show that [,,cqn > 1 and non-linear combination mechanisms, such as MLP and SVM,
are often (there are exceptions) better than the mean operator, i.e., 8, of MLP and SVM > Bin
of the mean operator.

5 Conclusions

This study contributes to fusion field in several aspects. Firstly, it clarifies the intuition that inde-
pendence of streams, subbands or modalities (as observed in each individual expert hypothesis/score)
is crucial in determining the success of posterior combination. This is explained by variance reduc-
tion due to the combination. Secondly, variance reduction can be derived in many ways, other than
streams, bands (both are considered features) and modalities: samples, virtual samples and classi-
fiers 7, 9]. Thirdly, analytical analysis shows that the more hypotheses that are available the more
robust the system will be. This is confirmed by experiments as reported in [1]. Finally, the successful
use of non-linear techniques in combining scores really depends on the correct estimate of the under-
lying hyperparameters using techniques such as cross-validation, as supported by evidences in [7].
Although the study here concerns only classification of two-class problems, extending the analysis to
N-class problems is straightforward, e.g., by using one-against-all encoding scheme. This theoretical
study is certainly limited in scope as it does not provide a means to predict the best combination out
of N streams/bands/modalities.

6 Appendix: Proof of (N — 1) N 0?2 =SV . (02 + )

i i=1,i<j
Let 0; be a random variable and i = 1,..., N. The term

ZfV:LKj(U? + 07) can be interpreted as Zf\il Z;V:Z-H(Uf + 02). The problem now is to count how
many o; there are in the term, for any k=1,..., N.

There are two cases here. The first case is when ¢ = k, the term ZZV:I E;-V:iﬂ
Z;y:kﬂ(o,% + 7). There are (N — k) terms of o}.

In the second case, when j = k, the term Zf\;l >
There are (k — 1) terms of o7.

The total number of o7 is just the sum of these two cases, which is (N — k) + (k — 1) = (N — 1),
for any k drawn from 1,...,N. The sum of (N — 1) ai over all possible k = 1,..., N then gives

N

(N - 1) Zk:l Uz'

Therefore, (N — 1) YV 02 = Zfil,i<j (07 +07). a

(07 + 07) becomes:

N
j=it1

k—1

(02 + O'JQ») then becomes: Y i | (02 + 07).
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