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Abstract. This report describes a novel technique to jointly train efficiently several streams of
data describing the same sequence of events using a unified EM algorithm.
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1 Introduction

Multi-stream HMMs is a very popular and efficient technique to decompose a complex problem such
as automatic speech recognition into several streams of information, where each stream of data is
trained independently of the others, while all streams are jointly used during decoding.

In this report, we propose a method to trained all streams simultaneously in order to maximize
the joint probability of all data streams. This can be done by adding an additional, but reasonable
assumption, which states that given the value of the state variable at time ¢, all streams up to time
t are independent from each other (hence, the state variable contains all the correlation between all
streams up to time ).

2 Notation
Let
e N be the number of streams.

e 27, be the observations of stream n between time a and b

3 Usual Derivation for Each Stream

Let us start by computing the normal forward and backward equations for each stream. First the
forward equation:

an(iyt) = platy, ¢ =1) (1)
= p(a}le =1) Y plar = ilgi—1 = j)an(j.t — 1) (2)

J
which can be used to compute the likelihood of one stream:

= Y o ar =)= Y auli. ) @

and then the backward equation:

ﬁn(iat) = p($?+1:T|Qt:i) (5)

> p@alae = )plaeer = dlae = 6)Ba(,t + 1) (6)
J

which, together with the forward equation, can be used to compute the posterior probability of a
state given the stream observation:

W(it) = pla = ilzir) (7)
o p(x?:tv'r?—i-l:Taqt = Z)
p(l"ﬁT)

_ an(’i,tgfn(i,t) (8)
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4 Derivation for Joint Streams

In this section, we derive the new EM training algorithm for multi-streams.

On top of the usual HMM assumptions accepted for the single stream case (emissions at time
t only depend on the state, and the current state only depends on the previous state), we need to
add one more assumption, which basically says that, given the value of the current state, the random
variables of all streams up to time ¢ are independent:

N

p(‘r%:t’x%:t’ T ,$f{t|Qt =1i) = H p(7ylge = 9) (9)

n=1

4.1 Joint Likelihood and Auxiliary Function

As usual when deriving an EM algorithm, we start by defining the following indicator variable:

1 ifg=
it = { 0 otherwise (10)

The joint complete log likelihood of the streams and the state [, is:

le. = logp(X', X2 ... XN Q) (11)
logp(X*, X2, , XV|Q) +1og P(Q)

= logp(X'|Q) +1og p(X?|Q) + - - + log p(X|Q) + log P(Q)

= > logp(X"|Q) +1log P(Q)

= Z Z Zzi,t log p(z}[g: = i) +
t n [
DD ziezie—1logplar = ilai—1 = j) (12)
t g

and the corresponding auxiliary variable becomes:
A = EQ [logp(I%Taz%Ta"' "E{VTaQ”Xl:N] (13)

= ZZZEQ (20,0 XN ] log p(a |qr = i) +
ZZZEQ ziaz—1 | X ] log (g = ilgi—1 = j) (14)
v

The forward recursion becomes:

a(ivt) = p(xi:taz?:ta"' 756{\:715,% :i) (15)
= p(z%:t’z%:t’ ) xivt|‘h = i)p(qr = 1)
P(CE%:tMt = i)p(x7. tht =) P(af{vtmt = i)p(q: = 1)
_ p(@lala = Dplae = 0) p(aiala = Dplge = 1) plathle = p(g=14) .
= — . — plg = 1)
plge =1) plgr = 1) plgr = 1)
_ P(@1, g = 1) p(aty, g = 19) ...p(ﬂﬁf{tvfh =1) (qr = 1)
plae=1)  pla=1i) pla = 1)
_ al(z,t)‘ ag(z,t). aN(z,t? plgs = )

plg =) plge =)  plg =1i)
[ on(is )

plge = i)N-1
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We can recover the joint likelihood of the streams as:

L

p(x%:Tv'r%:Ta"' 7${\:]T) (17)

2: 1 2 N .
p(mlzT"leT’ oy qr = ’L)
[

> a(i,T) (18)

%

Let us also compute the joint posterior probability of being in a state given all data of all streams,

the so-called gamma:
EQ I:Zi,thl:N:I _
V(i t) =

(i, t) (19)
pla: = i|x%:T’x%:Ta T axi\:[T) (20)
@1y @y T g = 0)

Pt @3, a‘T{YT)
p($%+1:T|Qt =1)-- ‘p(l’ﬁrhﬂ‘]t =)p(x1,, - 7${Yta gt =)

L

ﬁl (’L', t) e ﬁN(’L', t)a(L t)

L

O((i,t) Hn ﬁn(ivt) (21)

L

Note that we need to compute p(g; = ), which can be done recursively as follows:

plag =1) = Zp(qt =i,q—1=7) (22)

= Zp(qt = ilg—1 = j)plg-1 = j) (23)

J

We can also similarly compute the posterior of a transition as follows:

EQ [Zi,thﬂg_l |X1:N}

5 Conclusion

p(Qt =1,qt—1 :j|x%:Ta$%:T"" axf:[T) (24)
p(‘r%:T’ x%:T’ e 5$f;[Ta qt = ’i, qgi—1 = _7)
Pt @3, "T{\:[T)
a(j,t — Dpla = ilgs—1 = §) [ [ o7l = )Bn (i, 1)
n
L

While most multi-stream HMM techniques assume that each stream is first trained independently, we
have shown in this report a principled way to jointly trained all streams in order to optimize the joint

probability of all streams.



