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Abstract. This paper presents a new algorithm for classifying distributions. The algorithm

combines the principle of margin maximization and a kernel trick, applied to distributions. Thus,

it combines the discriminative power of support vector machines and the well-developed framework

of generative models. It can be applied to a number of real-life tasks which include data represented

as distributions. The algorithm can also be applied for introducing some prior knowledge on

invariances into a discriminative model. We illustrate this approach in details for the case of

Gaussian distributions, using a toy problem. We also present experiments devoted to the real-life

problem of invariant image classification.
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1 Introduction

Large margin classifiers such as Support Vector Machines (SVMs) have shown to yield state-of-the-art
performance in various classification tasks (Burges, 1998). Moreover, classification tasks are known to
be in general better solved by discriminant approaches (which aim at providing a model that minimizes
some error on the training set of positive and negative examples), than by generative approaches (which
aim at providing class-specific models that maximize the likelihood of the corresponding class training
data).

On the other hand there are still several well-known classification tasks for which the current state-
of-the-art is based on generative models. This is in general due to one of many possible reasons. For
instance, in speech recognition, for which the best solutions are based on Hidden Markov Models and
Gaussian Mixture Models trained by EM (Rabiner, 1989), one faces datasets of potentially millions of
frame examples, which cannot be handled by SVMs given the (at least) quadratic training time and
space complexity.

Another example is the task of speaker verification, which consists of determining whether the
voice of a given person corresponds to the claimed ID. One problem with this task is that one can in
general only collect very small (and thus non representative) amount of data of a given client, but very
large datasets of potential impostors, which makes the problem highly imbalanced. State-of-the-art
systems are thus based on the likelihood ratio of generative models of the two classes, where the client
model is often adapted from the impostor model, given the lack of client specific data.

Based on these facts, there have been several attempts at integrating generative and discriminant
approaches into one framework. One such attempt is based on the Fisher Kernel (Jaakkola & Haussler,
1999), where an SVM with a specific kernel is trained on examples which are the derivative of the log
likelihood of the generative models of each class with respect to the parameters of the models.

Furthermore, in many classification tasks, feature extraction procedures sometimes result in huge
sets of features, which can be hardly processed in the raw representation. One solution often used
is to model them with distributions. In the field of image processing, this is the case for invariant
features, extracted at some points of interest of an image. This approach is extensively used in object
categorization problems. One of the direct solutions for this problem is to build a kernel classifier
(SVM) by defining the kernel over distributions, using either KL-divergence or similar methods.

Another field of applications concerns invariant learning. While constructing invariant learning
algorithms, it is reasonable to deal with the whole set of patterns which can be obtained from every
given training sample by applying some transformation (such as translation or rotation). These
sets are usually considered as some manifolds in the input space (Graepel & Herbrich, 2003; Fung,
Mangasarian & Shavlik, 2002). A “soft” representation of these manifolds as distributions could be
used instead.

Facing these problems, we feel it is worth developing a discriminative classifier which would directly
deal with generative models, i.e. distributions. The approach presented in this paper exploits some
nice performance of margin-based methods by constructing a maximum margin solution for a set of
distributions labeled into two classes. Experiments are concentrated on the task of invariant image
classification.

The rest of the paper is organized as follows. In Section 2, the notion of margin maximization for
distributions is defined. Some general facts, which provide a foundation for an approximate approach,
described in Section 3, are also presented. Section 4 justifies the proposed approximations. Next, we
consider the particular important case of Gaussian distributions in Section 5. Section 6 is devoted to
experiments, followed by discussion and conclusions in Section 7.

2 Margin Maximization for Distributions

The margin maximization principle is based on results from the Statistical Learning Theory (Vapnik,
1998), and provides a way to minimize the complexity of the model by bounding the VC-dimension
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of the modeling function. Intuitively, the same approach can be used for other learning tasks. We
thus now present a definition of margin for distributions, and provide a way for constructing learning
algorithms. The proof of the margin maximization principle for the considered problem is out of the
scope of this paper.

Suppose one is given a training set of L probability distribution functions p(x |x i,r i), centered at
x i and specified by some parameters r i. We also associate some label yi for each distribution. These
are {+1, -1} for binary classification problem.

2.1 Linear Decision Functions

Consider the set of linear decision functions {f = wx + b}, where w is a weight vector, and b is a
constant threshold. The actual decision is usually taken according to sign(f).

Consider the optimization problem:

min
1

2
‖w‖2 + C

L
∑

i=1

ξi (1)

subject to the following constraints:

∫

yi(wx+b)≥1

p(x|xi, ri)dx ≥ η − ξi, i = 1, ...L, (2)

ξi ≥ 0, i = 1, ...L. (3)

The first constraint corresponds to the fact that η-quantile of the distribution lies outside the
margin, not taking into account the slack variable ξi. These slack variables are equivalent to the
analogue trick done in soft margin formulation of the Support Vector Machine.

2.2 Optimization Problem

The method of Lagrange multipliers can be applied to solve the problem stated in Section 2.1. Intro-
ducing the Lagrange multipliers {αi} and {βi}, one obtains the optimization problem of finding the
saddle point of Lagrangian. Differentiation in b and w gives:

L
∑

i=1

αi

∂

∂b

∫

yi(wx+b)≥1

p(x|xi, ri)dx = 0, (4)

L
∑

i=1

αi

∂

∂w

∫

yi(wx+b)≥1

p(x|xi, ri)dx = w. (5)

Analogously to the standard SVM, the multipliers βi vanish, resulting in a box-type constraints
for the weights αi. Next, introducing the following notation:

I(w,xi, t) =

∫

yi(wx+b)=1−t

p(x|xi, ri)dx, (6)

one yields the following optimization problem:

min
1

2
‖w‖2 −

L
∑

i=1

∞
∫

ξi

I(w,xi, t)dt, (7)
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s.t.

L
∑

i=1

αiyiI(w,xi, ξi) = 0, (8)

L
∑

i=1

αiyix
?
i I(w,xi, ξi) = w, (9)

0 ≤ αi ≤ C. (10)

Generally, this problem can not be reduced to the dual variable formulation since there is no closed
form solution for w . However, for a number of applications and particular types of distributions we
will approach this problem by an approximate solution. Let us note, however, that for the case
of traditional data samples, p(x |x i,r i)=δ(x -x i), the problem (7)-(10) reduces to the standard soft
margin SVM.

2.3 Iterative Solution

The general approach for solving the optimization problem (1)-(3), or its equivalent (7)-(10), is to
apply an iterative procedure to obtain an approximate solution. This type of optimization approach
has been described in (Bezdec & Hathaway, 2003), and applied in (Bi & Zhang, 2004). Generally, the
nature of SVM-related methods is that they try to find the Support Vectors, i.e. the samples which lie
closest to the discrimination surface. When discriminating some subsets S(x i), constraints of the type
max

x∈S(xi)
[yi(wx+b)] ≥ 1−ξi can be used. See (Graepel & Herbrich, 2003; Fung, Mangasarian & Shavlik,

2002; Bhattacharyya, Pannagadatta & Smola, 2004) for examples of such solution for different types
of S(x i). Solving problems with this type of constraints is roughly equivalent to the task of finding
the “optimal” or “effective” sample from the subset.

Here we show that a similar approach holds for the case of distributions. Let us consider the
following result.

Lemma. Consider the optimization problem (1)-(3). There exists a set of samples {x ∗
i , i=1,. . . L}

such that the optimal separating hyper-plane w
∗ for the set {x ∗

i } coincides with the solution of the
problem (1)-(3).

Proof. If the dimensionality of the feature space is less than the number of (non degenarative)
samples, then the proof is trivial. Otherwise, for high (infinite) dimensional feature spaces, let w

be the solution of (1)-(3). Since p(x |x i,r i) is a p.d.f., then for any w , and any fixed x i and
p(x |x i,r i), function I(w ,x i, t) is continuous and monotonically increases with t. Then, according
to the Weicherstrass theorem, there exists x

∗
i such that I(w ,x i,−yiwx

∗
i )=η. Thus, the optimiza-

tion problem (1) can be reformulated in terms of minimizing the regularized risk functional with
the cost function c(., ., .) that only depends on the choice of x

∗
i for any fixed x i, and p(x |x i,r i):

c(xi, yi,w) = C
L
∑

i=1

max(0, η − I(w,xi,−yiwx
∗
i )), and hence the semi-parametric generalized represen-

ter theorem (Scholkopf, Herbrich & Smola, 2001) can be applied. Thus, there exists a representation

w =
L
∑

i=1

αix
∗
i + b which coincides with the solution of the problem (1)-(3).

The considered result, however, does not provide a way for finding neither x
∗
i nor αi in the desired

representation.
A general iterative scheme includes iterations through a series of (currently) optimal samples for

a given approximation to the hyper-plane. Then the margin is maximised again for the modified
samples, etc. The major disadvantage of this type of approaches is the convergence of the described
procedure. Even if it is possible to prove that these iterations converge, the rate of convergence is
unknown and may appear to be unreasonably low. One of the successful attempts is (Tsochantaridis
et al., 2004), where the rate of convergence in the similar problem was estimated. However, the
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problem considered in (Tsochantaridis et al., 2004) is a quite specific case, where iterations are carried
out in the context of structured outputs.

We thus propose a simple 2-step method to obtain an approximate solution to (1)-(3).

3 Hyper-plane Projection Method

From now on, let us deal with the kernelized version of the proposed algorithm. Let K(., .) be a
reproducing positive definite kernel. Let some (w 0, b0) define the optimal separating hyper-plane
(in the feature space) for the training set of means {x i, yi} in the feature space induced by K(., .).
Actually, this is given by the set of Lagrange multipliers {αi}, obtained by solving the standard SVM
optimization. The proposed scheme is as follows:

• solve a standard SVM optimization problem for the means x i. The solution is (w0, b0);

• calculate the projections of p(x |x i, r i) on w0. This results in a 1-D optimization problem (see
Section 3.1);

• solve the 1-D problem according to the given value of η;

• compute the inverse projection. This results in a modified training set x
∗
i (see Section 3.2);

• solve a standard SVM optimization problem for the samples x
∗
i .

The detailed explanation of the projection steps is presented below. Please also refer to Figure 1
for an illustration.

3.1 Direct Projection

Consider the following averages in the feature space, which provide the means and variances of some
1-D distribution π(χ|µj , σj).

µj = E[w0Φ(xj) + b0] =
L
∑

i=1

yiαi

∫

X

K(xj ,xi)p(x|xi, ri)dx+ b0, (11)

σ2
j = E[(w0Φ(xj) − µj)

2] =
L
∑

i,k=1

yiykαiαk

∫

X2

K(xi,xk)p(x|xi, ri)p(x
′|xk, rk)dxdx′ − µ2

j .
(12)

These 1-D p.d.f.s correspond to p(x |x j ,r j) being projected to the 1-D subspace defined by w 0. Given
these projections, the constraints (2) can be (currently) satisfied by taking the χj in 1-D space such
that

∫

yjf(x)≥χj

π(χ|µj , σj)dχ ≥ η. (13)

It can be solved easily and results in some threshold constant cj
η such that χj = f(x∗

j ) = cjη . The
difficulty arises for the original samples that have been classified incorrectly. Currently, we propose to
neglect these samples. The reasoning is simple: one would not like to update the classification based
on doubtful sample distributions, which means have not been classified correctly.
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3.2 Inverse Projection

Next, given the set of χj one has to find an inverse projection of χj into the feature space. Obviously,
this transformation is not unique and some criteria are required to define it. At this step, it is hard
to control the margin; while the constraint (2) can still be satisfied. One would like to find x

∗
j such

that the inequality in (2) holds (or violated as slightly as possible) over variations in w and b. For
the majority of distributions which are used in real-life problems, the following criterion can be used
to obtain the inverse projection x

∗
j of the χj :

x
∗
j = arg max

x

p(x|xj , rj),

s.t. f(x) = cjη

(14)

Due to a lack of space, we omit the formal reasoning behind this criterion. A useful intuition is
as follows: if x

∗
j is fixed at the maximum of p(x |x j ,r j) at the surface f(x )= cjη, then the integral

in the left part of (2) is less likely to change. Problem (14) is a constrained optimization problem,
which has to be solved. It results in the desired inverse projections x

∗
j which form the new training

set. The standard SVM solution for the obtained training set approximates the solution of the initial
problem (1).

Figure 1: The illustration of the hyper-plane projection method. Refer to the text for the notations.

4 Discrimination of Gaussian Distributions

For the particular case of Gaussian distributions, p(x |x i,r i) = N (x i,Σi), the presented scheme results
in the following algorithm. The exact linear optimization problem reduces to:
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min 1
2‖w‖2 −

L
∑

i=1

αi(1 − erf yi(wxi+b)−1√
2wT Σ−1

i w

), (15)

L
∑

i=1

yiαi

(

w
T Σ−1

i w

)− 1

2 exp(− (yi(wxi+b)−1)2

2wT Σ−1

i w
) = 0,

w =
L
∑

i=1

yiαix
?
i

(

w
T Σ−1

i w
)− 1

2 exp(− (yi(wxi+b)−1)2

2wT Σ−1

i w
).

Note that the term in the exponent is a Mahalanobis distance from x i to the line yi(wx i+b)=1 .
This formulation can be used to control the precision of the approximate solutions. We now present
the non-linear version of the algorithm using the Gaussian isotropic RBF kernel with parameter δ.
The method of hyper-plane projections can be applied using the following results for the direct step:

µj =
L
∑

i=1

yiαiD(xj ,xi) + b,

σ2
j =

L
∑

i,k=1

yiykαiαkM(xj ,xi,xk) − µ2
j ,

(16)

where

D(xk,xi) =
∣

∣Σ−1
i + δ

∣

∣

− 1

2 (17)

exp(−1

2
(xk − xi)

T δΣ−1
i (Σ−1

i + δ)−1(xk − xi)),

M(xk,xi,xj) =
∣

∣Σ−1
i Σ−1

j + δ(Σ−1
i + Σ−1

j )
∣

∣

− 1

2

exp(−1

2
(xk − xi)

T Ω(xk − xi)), where

Ω = δΣ−1
i ((Σ−1

i Σ−1
k )−1(Σ−1

i + Σ−1
k ) + δ)−1.

The inverse projection can then be carried out by solving the following optimization problem:

x
∗
j = arg min

x

(x− xj)
T Σ−1

j (x− xj),

s.t.
L
∑

i=1

yiαi exp(−δ(x− xi)
2) + b = cjη .

(18)

This problem has the following approximate analytical solution:

x
∗
j = (I + 2γδcjηΣi)

−1

(xj + 2γδ
L
∑

i=1

yiαi exp(−δ(xj − xi)
2)Σixi),

(19)

for some positive constant γ, which has to be chosen to satisfy the constraint in (18).
Despite the cumbersome expressions above, the real computations are significantly simplified, since

for high-dimensional input data diagonal covariance matrices are often used.

4.1 Links to Related Methods

A related general problem was considered by Leen (1995) with a different aspect of modifying the risk
functional according to some prior input distribution. A very promising (although tricky) approach
is known as Vicinal Risk Minimization (Vapnik, 2000).

The most related methods for the particular case of Gaussian distributions discrimination were
proposed recently by Bhattacharyya, Pannagadatta and Smola (2004) and Bi and Zhang (2004) and
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deal with uncertain data. The training samples are considered to be given with some uncertainty,
presented in a form of Gaussian distributions.

The method of Bhattacharyya, Pannagadatta and Smola (2004), which is aimed at classifing
datasets with missing (uncertain) samples, considers margin maximization under the following con-
straints:

Pr[yi(wxi + b) ≥ 1 − ξi] ≥ η, ξi ≥ 0. (20)

As one can see, this formulation is similar to the constraint (2). The relevance can be shown by appling
the Chebyshev inequality in order to obtain the corresponding deterministic constraint from (20).

Bi and Zhang (2004) instead deal with the constraint

Pr[yi(wxi + b) ≥ 1 − ξi] ≤ η, ξi ≥ 0. (21)

This type of approach leads to more robust models, since, in the end, the less certain samples obtain
the least weights. However, this intuition is hardly applicable for the problems we are aiming to. It
was developed for a specific medical applications considered by the authors.

Despite these differences, both models lead to a Second Cone Programming Optimization (SOCP)
problem. This optimization problem can be solved numerically by Interior Point methods (Nesterov
& Nemirovskii, 1993), which are, however, quite costly in terms of computational time. The proposed
approximate approach involves standard SVM QP optimization only.

Moreover, due to the computational costs of the SCOP, both papers mention the need of an
approximate solution. The approximation is also based on modifying the means. However, the update
rule of Bi and Zhang (2004) is very straightforward, as it suggests updating the samples along the w

without taking into account any information on the covariance of the parent distribution.
The related update rule can be easily derived from the approximate formulation proposed by Bhat-

tacharyya, Pannagadatta and Smola (2004). This, however, was not done by the authors. Nevertheless,
let us note that for the linear case of (18) the exact solution of the inverse projection for the Gaussians
is given by

x
∗
j = xj +

cjη − (wxj + b)

wT Σjw
Σjw. (22)

This linear case almost perfectly coincides with the result which could be derived from the formulation
considered by Bhattacharyya, Pannagadatta and Smola (2004).

The significant difference with our method lies in the way the algorithms were kernelized. Non-
linearity through the kernel trick is introduced under a number of assumptions in all the methods.
It is not possible to “kernelize” the initial algorithms directly. This is also the case for the general
original problem (7)-(10), presented above (and for the particular case of Gaussian distributions as
well). However, the developed approximate procedure deals with precise kernels directly by using the
feature space of the original SVM for making projections, hence this drawback is partly avoided.

Finally, as it was mentioned above, a number of papers devoted to invariant learning are based
on discriminating different objects in the input space. Methods aimed at direct margin maximization
were recently proposed by Graepel and Herbrich (2003), Fung, Mangasarian and Shavlik (2003).
Furthermore, a general method for defining an SVM kernel function for pairs of distributions was
presented by Kondor, Jebara and Howard (2004).

5 Experiments

As mentioned in the introduction, there is a broad field of applications of the proposed approach. This
includes problems from speech processing, biometric client identification, object categorization, etc.

However, the presented and some related approaches can also be used for handling invariances in
pattern recognition problems. A similar setting can also be applied for the task when data sample
are given with some uncertainty of a known nature. Here, we present experiments on invariant face
image classification.
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Let us start with a simple synthesized 2-D data example, which nicely illustrates the presented
approach.

5.1 Toy Data Experiments

The task to be solved is a 2-class classification of 2-D Gaussians (see Figure 2). The dataset contains
several samples of each class; their covariances are illustrated by ellipses around the means. The
modified training set of {x∗

−} is shown with black dots, which form a curve for different value of γ.
The samples x

∗
j coincides with the means xj for γ = 0, and tend to the decision boundary according

to the covariance of their parent distribution, as γ increases. Final samples (shown by filled boxes)
correspond to the η = 0.9. The modified decision boundary f ∗(x) = 0 is shown with a thick line.

Figure 2: Toy Data Discrimination

5.2 Invariant Image Classification

The task of invariant image classification is still a challenging problem in computer vision. While
a number of approaches for dealing with simple images like Optical Characters exist, methods for
complex real-life images are still under development.

A natural way to model invariances is to consider how the desired transformation change the input
samples. Generally, this dependence is very complex and highly non linear, hence difficult to model.
Linear approximations are thus used instead.

5.2.1 Tangent Vectors

Suppose we are given grey-scaled images on the plane (ζ, ψ). The intensity of the image is defined
by some function U(ξ, ψ). It provides a high-dimensional input vector x for a given discrete set
of coordinates (ξ, ψ). Then, it is possible to introduce the invariant transformations by the corre-
sponding tangent vectors (Simard et al., 1998). Consider the transformation tα defined by the set of
parameters α in some region of D ∈ R2:

tα : D ∈ R2 7→ tα(D) ∈ R2. (23)

This transformation is assumed to be differentiable with respect to α and (ζ, ψ) ∈ D, and reduces to
the identity transformation for some value of α0. The linear approximation to the invariant manifold
is thus

S(U, α) = U +

J
∑

j=1

(αj − α0
j )Lαj (U), (24)
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where Lαj (U) are local transformations of U defined by:

Lαj (U) =
∂S(U, α)

∂αj

∣

∣

∣

∣

α=α0

. (25)

Tangent vectors `
j
i can be obtained by discretising the result of applying the operators Lαj to the

continuous image U which correspond to a discrete sample xi. Hence, `ji denotes the tangent vector,
which corresponds to the jth invariant transformation of the sample xi.

The corresponding tangent vector based Gaussian distribution is as follows:

P (x|xi, {`1i , . . . `Ji }) =
exp(−(x−xi)

T L−1

xi
(x−xi))

(2π)N/2|Lx|1/2
,

where L−1
x =

J
∑

j=1

`
j
i `

j
i

T

2γ2

j `
j
i

2 .
(26)

We consider these distributions as a training set for our algorithm. Parameter γj controls the effective

width of the distribution for the given direction of `ji . It can be fixed to some value according to
some prior knowledge, since the resulting transformed images can be visualized. We used the same
value of γ for all the invariances. Generally, the resulting Gaussians have full-ranked covariances, that
dramatically slows down the overall computations.

5.2.2 Face Data Classification

We conducted experiments using images of the faces detected from movie scenes using a face detector,
described in (Schneiderman & Kanade, 2000). There is a total of 2899 images in the database. The
data is available at [http://www.robots.ox.ac.uk/∼vgg/data]. The original image dimension is 81 by
81 pixels, and a grey-scale level is 8 bit. We present an approach to the problem of binary classification
of the main actor against all the other captured images. Example images and their corresponding labels
are presented in Figure 3.

We used the following experimental setting: the training set consisted of 300 samples, taken
randomly from the database. The rest 2599 images were used as a testing set. Two basic invariant
transformations were considered: scalings and rotations. Finite difference vectors, obtained as a
difference of an original and a transformed images were used instead of the original tangent vectors.
The reason is that real tangent vectors fail for such complex and non-smooth images as faces when
the transformation is more than infinitely small. Different tangent vectors were used for the rotations
to the left and right, as well as for the zoom in and zoom out scalings.

Figure 3: Examples of training (left) and testing (right) face data images with the corresponding class
labels below.

The parameters of the algorithms were chosen according to the minimum of cross-validation error
over the training set, resulting in the following values: δ = 2 · 10−5, C = 100, γ = 1000. Table
1 presents training and testing errors obtained with SVM with Gaussian RBF kernel (SVM), SVM
trained with virtual samples (VSV SVM), and the developed method (SVM Gauss). We consider the
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Table 1: Classification accuracies for the compared margin-based algorithms.

Algorithm Tr.Err.,% Test.Err.,% Time, s

SVM 0.5 11.2 0.75

VSV SVM 0.4 9.9 9.6

SVM Gauss 0.5 9.7 2.8

Virtual SV method as a state-of-the-art approach to invariant learning with SVM-based methods.
Given unlimited computational resources, this is currently the method of practical choice.

While both methods are statistically significantly better than baseline SVM (with 95% confidence),
no significant improvement was observed in comparison with Virtual Support Vectors in terms of the
testing error. However, the proposed approach is faster in terms of operational time. This advantage
is even more significant if the covariance matrices are diagonal.

6 Discussion and Conclusions

While classical SVMs discriminate between example points of two classes, we proposed in this paper
a novel SVM formulation to discriminate between example distributions of two classes, while still
keeping advantages of SVMs such as margin maximization and kernel trick. This extension can
be used for many different settings, including principled incorporation of invariances described by
distributions, which was illustrated in this paper. Other possible uses of this model include the
possibility to maximize the margin for problems that were traditionally solved by generative models
and log likelihood ratios such as speech processing.

Since the direct solution was not tractable, the paper presented an approach for an approximate
solution of the optimization problem. This approach consists of two simple projection steps, resulting
in a modified training set. Thus, possible problems with the convergence of an iterative scheme are
avoided. Next, the algorithm was turned into a nonlinear version through the usual “kernel trick”.
The feature space of the original SVM (trained on the means of the distributions) is exploited for the
latter. The algorithm demands a standard SVM QP solver only. The case of Gaussian distributions
was considered in details, and some links to related research were provided.

The algorithm was applied to the real problem of invariant face image classification. The knowledge
on invariances was incorporated into the algorithm by considering a special type of distributions,
based on tangent vectors. The comparison to the state-of-the-art virtual support vector was provided.
Currently, the method is found to be competitive with the state-of-the-art, and the proposed solution
was preferable in terms of computational time.

Concerning invariant learning problems, the basic advantage of the proposed method is that it
maximizes the margin between invariance-modelling distributions directly. Note that approaches based
on measuring the pair-wise overlap between distributions are subject to the curse of dimensionality if
the linear approximation to the invariant transformations is used.

For a practitioner, the algorithm provides a nice feedback. As x
∗
j are known, these samples can

be visualized. An interesting question is whether these samples coincide with human’s intuition to be
the most discriminative. To our knowledge, the answer is positive most of the times.
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