
Tutorial on Statistical Machine Learning
with Applications to Multimodal Processing

Samy Bengio

IDIAP Research Institute
Martigny, Switzerland
bengio@idiap.ch

http://www.idiap.ch/~bengio

October 7th, 2005 - ICMI, Trento
Samy Bengio Tutorial on Statistical Machine Learning 1



Outline of the Tutorial

Outline

Introduction

Statistical Learning Theory

EM and Gaussian Mixture Models

Hidden Markov Models

Advanced Models for Multimodal Processing

Updated slides

http://www.idiap.ch/~bengio/icmi2005.pdf

Samy Bengio Tutorial on Statistical Machine Learning 2



What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

Part I

Introduction

Samy Bengio Tutorial on Statistical Machine Learning 3



What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

1 What is Machine Learning?

2 Why Learning is Difficult?

3 Types of Problems

4 Applications

Samy Bengio Tutorial on Statistical Machine Learning 4



What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

What is Machine Learning? (Graphical View)
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What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

What is Machine Learning?

Learning is an essential human property

Learning means changing in order to be better (according to a
given criterion) when a similar situation arrives

Learning IS NOT learning by heart

Any computer can learn by heart, the difficulty is to generalize
a behavior to a novel situation
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What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

Why Learning is Difficult?

Given a finite amount of training data, you have to derive a
relation for an infinite domain

In fact, there is an infinite number of such relations

How should we draw the relation?
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What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

Why Learning is Difficult? (2)

Given a finite amount of training data, you have to derive a
relation for an infinite domain

In fact, there is an infinite number of such relations

Which relation is the most appropriate?
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What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

Why Learning is Difficult? (3)

Given a finite amount of training data, you have to derive a
relation for an infinite domain

In fact, there is an infinite number of such relations

... the hidden test points...
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What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

Occam’s Razor’s Principle

William of Occam: Monk living in the 14th century

Principle of Parcimony:

One should not increase, beyond what is necessary,
the number of entities required to explain anything

When many solutions are available for a given problem, we
should select the simplest one

But what do we mean by simple?

We will use prior knowledge of the problem to solve to define
what is a simple solution

Example of a prior: smoothness
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What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

Learning as a Search Problem

Set of solutions chosen a priori
Initial solution

Optimal solution

compatible with training set
Set of solutions
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What is Machine Learning?
Why Learning is Difficult?
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Types of Problems

There are 3 kinds of problems:

regression
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What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

Types of Problems

There are 3 kinds of problems:

regression, classification
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What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

Types of Problems

There are 3 kinds of problems:

regression, classification, density estimation

X

P(X)
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What is Machine Learning?
Why Learning is Difficult?

Types of Problems
Applications

Applications

Vision Processing

Face detection/verification
Handwritten recognition

Speech Processing

Phoneme/Word/Sentence/Person recognition

Others

Finance: asset prediction, portfolio and risk management
Telecom: traffic prediction
Data mining: make use of huge datasets kept by large
corporations
Games: Backgammon, go
Control: robots

... and plenty of others of course!
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Data, Functions, Risk
The Capacity
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Part II

Statistical Learning Theory
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Data, Functions, Risk
The Capacity
Methodology

Models

The Data

Available training data

Let Z1,Z2, · · · ,Zn be an n-tuple random sample of an
unknown distribution of density p(z).

All Zi are independently and identically distributed (iid).

Let Dn be a particular instance = {z1, z2, · · · , zn}.

Various forms of the data

Classification: Z = (X ,Y ) ∈ Rd × {−1, 1}
objective: given a new x , estimate P(Y |X = x)

Regression: Z = (X ,Y ) ∈ Rd × R
objective: given a new x , estimate E [Y |X = x ]

Density estimation: Z ∈ Rd

objective: given a new z , estimate p(z)
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Data, Functions, Risk
The Capacity
Methodology

Models

The Function Space

Learning: search for a good function in a function space F

Examples of functions f (·; θ) ∈ F :

Regression:

ŷ = f (x ; a, b, c) = a · x2 + b · x + c

Classification:

ŷ = f (x ; a, b, c) = sign(a · x2 + b · x + c)

Density estimation

p̂(z) = f (z ;µ,Σ) =
1

(2π)
|z|
2

√
|Σ|

exp

(
−1

2
(z − µ)TΣ−1(z − µ)

)
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Data, Functions, Risk
The Capacity
Methodology

Models

The Loss Function

Learning: search for a good function in a function space F

Examples of loss functions L : Z × F
Regression:

L(z , f ) = L((x , y), f ) = (f (x)− y)2

Classification:

L(z , f ) = L((x , y), f ) =

{
0 if f (x) = y
1 otherwise

Density estimation:

L(z , f ) = − log p(z)

Samy Bengio Tutorial on Statistical Machine Learning 23



Data, Functions, Risk
The Capacity
Methodology

Models

The Risk and the Empirical Risk

Learning: search for a good function in a function space F

Minimize the Expected Risk on F , defined for a given f as

R(f ) = EZ [L(z , f )] =

∫
Z

L(z , f )p(z)dz

Induction Principle:
select f ∗ = arg min

f∈F
R(f )

problem: p(z) is unknown!!!

Empirical Risk:

R̂(f ,Dn) =
1

n

n∑
i=1

L(zi , f )
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Data, Functions, Risk
The Capacity
Methodology

Models

The Risk and the Empirical Risk

The empirical risk is an unbiased estimate of the risk:

E [R̂(f ,D)] = R(f )

The principle of empirical risk minimization:

f ∗(Dn) = arg min
f ∈F

R̂(f ,Dn)

Training error:

R̂(f ∗(Dn),Dn) = min
f ∈F

R̂(f ,Dn)

Is the training error a biased estimate of the risk?
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Data, Functions, Risk
The Capacity
Methodology

Models

The Training Error

Is the training error a biased estimate of the risk? yes.

E [R(f ∗(Dn))− R̂(f ∗(Dn),Dn)] ≥ 0

The solution f ∗(Dn) found by minimizing the training error is
better on Dn than on any other set D

′
n drawn from p(Z ).

Can we bound the difference between the training error and
the generalization error?

|R(f ∗(Dn))− R̂(f ∗(Dn),Dn)| ≤?

Answer: under certain conditions on F , yes.

These conditions depend on the notion of capacity h of F .
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Data, Functions, Risk
The Capacity
Methodology

Models

The Capacity

The capacity h(F) is a measure of its size, or complexity.

Classification:

The capacity h(F) is the largest n such that there
exist a set of examples Dn such that one can always
find an f ∈ F which gives the correct answer for all
examples in Dn, for any possible labeling.

Regression and density estimation: capacity exists also, but
more complex to derive (for instance, we can always reduce a
regression problem to a classification problem).

Bound on the expected risk: let τ = sup L− inf L. ∀η we have

P

sup
f ∈F

|R(f )− R̂(f ,Dn)| ≤ 2τ

√
h
(
ln 2n

h + 1
)
− ln η

9

n

 ≥ 1−η
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Theoretical Curves

Confidence Interval

h

Bound on the Expected Risk

Empirical Risk
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Theoretical Curves

inf R(f)

Empirical Risk

n

Bound on the Expected Risk
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Methodology

First: identify the goal! It could be
1 to give the best model you can obtain given a training set?
2 to give the expected performance of a model obtained by

empirical risk minimization given a training set?
3 to give the best model and its expected performance that you

can obtain given a training set?

If the goal is (1): use need to do model selection

If the goal is (2), you need to estimate the risk

If the goal is (3): use need to do both!

There are various methods that can be used for either risk
estimation or model selection:

simple validation
cross validation (k-fold, leave-one-out)
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Model Selection - Validation

Select a family of functions with hyper-parameter θ

Divide your training set Dn into two parts

Dtr = {z1, z2, · · · , ztr}
Dva = {ztr+1, ztr+2, · · · , ztr+va}
tr + va = n

For each value θm of the hyper-parameter θ

select f ∗θm
(Dtr ) = arg min

f∈Fθm

R̂(f ,Dtr )

estimate R(f ∗θm
) with R̂(f ∗θm

,Dva) =
1

va

∑
zi∈Dva

L(zi , f
∗
θm

(Dtr ))

select θ∗m = arg min
θm

R(f ∗θm
)

return f ∗(Dn) = arg min
f ∈Fθ∗m

R̂(f ,Dn)
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Data, Functions, Risk
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Model Selection - Cross-validation

Select a family of functions with hyper-parameter θ

Divide your training set Dn into K distinct and equal parts
D1, · · · ,Dk , · · · ,DK

For each value θm of the hyper-parameter θ
For each part Dk (and its counterpart D̄k)

select f ∗θm
(D̄k) = arg min

f∈Fθm

R̂(f , D̄k)

estimate R(f ∗θm
(D̄k)) with

R̂(f ∗θm
(D̄k), Dk) =

1

|Dk |
X

zi∈Dk

L(zi , f
∗
θm

(D̄k))

estimate R(f ∗θm
(Dn)) with

1

K

∑
k

R(f ∗θm
(D̄k))

select θ∗m = arg min
θm

R(f ∗θm
(D))

return f ∗(Dn) = arg min
f ∈Fθ∗m

R̂(f ,Dn)
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The Capacity
Methodology

Models

Estimation of the Risk - Validation

Divide your training set Dn into two parts

Dtr = {z1, z2, · · · , ztr}
Dte = {ztr+1, ztr+2, · · · , ztr+te}
tr + te = n

select f ∗(Dtr ) = arg min
f ∈F

R̂(f ,Dtr )

(this optimization process could include model
selection)

estimate R(f ∗(Dtr )) with

R̂(f ∗(Dtr ),Dte) =
1

te

∑
zi∈Dte

L(zi , f
∗(Dtr ))
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Data, Functions, Risk
The Capacity
Methodology
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Estimation of the Risk - Cross-validation

Divide your training set Dn into K distinct and equal parts
D1, · · · ,Dk , · · · ,DK

For each part Dk

let D̄k be the set of examples that are in Dn but not in Dk

select f ∗(D̄k) = arg min
f∈F

R̂(f , D̄k)

(this process could include model selection)

estimate R(f ∗(D̄k)) with

R̂(f ∗(D̄k),Dk) =
1

|Dk |
∑

zi∈Dk

L(zi , f
∗(D̄k))

estimate R(f ∗(Dn)) with
1

K

∑
k

R(f ∗(D̄k))

When k = n: leave-one-out cross-validation
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Data, Functions, Risk
The Capacity
Methodology

Models

Estimation of the Risk and Model Selection

When you want both the best model and its expected risk.

You then need to merge the methods already presented.
For instance:

train-validation-test: 3 separate data sets are necessary
cross-validation + test: cross-validate on train set, then test
on separate set
double-cross-validation: for each subset, need to do a second
cross-validation with the K − 1 other subsets

Other important methodological aspects:

compare your results with other methods!!!!
use statistical tests to verify significance
verify your model on more than one datasets
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Data, Functions, Risk
The Capacity
Methodology

Models

Train - Validation - Test

Select a family of functions with hyper-parameter θ

Divide your training set Dn into three parts Dtr , Dva, and Dte

For each value θm of the hyper-parameter θ

select f ∗θm
(Dtr ) = arg min

f∈Fθm

R̂(f ,Dtr )

let R̂(f ∗θm
(Dtr ),Dva) =

1

va

∑
zi∈Dva

L(zi , f
∗
θm

(Dtr ))

select θ∗m = arg min
θm

R̂(f ∗θm
(Dtr ),Dva)

select f ∗(Dtr ∪ Dva) = arg min
f ∈Fθ∗m

R̂(f ,Dtr ∪ Dva)

estimate R(f ∗(Dtr ∪ Dva)) with
1

te

∑
zi∈Dte

L(zi , f
∗(Dtr ∪ Dva))
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Data, Functions, Risk
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Cross-validation + Test

Select a family of functions with hyper-parameter θ

Divide you dataset Dn into two parts:

a training set Dtr and a test set Dte

For each value θm of the hyper-parameter θ

estimate R(f ∗θm
(Dtr )) with Dtr using cross-validation

select θ∗m = arg min
θm

R(f ∗θm
(Dtr ))

retrain f ∗(Dtr ) = arg min
f ∈Fθ∗m

R̂(f ,Dtr )

estimate R(f ∗(Dtr )) with
1

te

∑
zi∈Dte

L(zi , f
∗(Dtr ))
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Data, Functions, Risk
The Capacity
Methodology

Models

Examples of Known Models

Multi-Layer Perceptrons (regression, classification)

Radial Basis Functions (regression, classification)

Support Vector Machines (classification, regression)

Gaussian Mixture Models (density estimation, classification)

Hidden Markov Models (density estimation, classification)

Graphical Models (density estimation, classification)

AdaBoost and Bagging (classification, regression, density
estimation)

Decision Trees (classification, regression)
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Preliminaries
Gaussian Mixture Models

Expectation-Maximization
EM for GMMs

Part III

EM and Gaussian Mixture Models
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Preliminaries
Gaussian Mixture Models

Expectation-Maximization
EM for GMMs

Probabilities

Reminder: Basics on Probabilities

A few basic equalities that are often used:

1 (conditional probabilities)

P(A,B) = P(A|B) · P(B)

2 (Bayes rule)

P(A|B) =
P(B|A) · P(A)

P(B)

3 If (
⋃

Bi = Ω) and ∀i , j 6= i (Bi
⋂

Bj = ∅) then

P(A) =
∑

i

P(A,Bi )
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Preliminaries
Gaussian Mixture Models

Expectation-Maximization
EM for GMMs

Gaussian Mixture Models

What is a Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a distribution
The likelihood given a Gaussian distribution is

N (x ;µ,Σ) =
1

(2π)
|x|
2

√
|Σ|

exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
where µ is the mean and Σ is the covariance matrix of the
Gaussian. Σ is often diagonal.
The likelihood given a GMM is

p(x) =
N∑

i=1

wi · N (x ;µ,Σ)

where N is the number of Gaussians and wi is the weight of
Gaussian i , with ∑

i

wi = 1 and ∀i : wi ≥ 0
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Preliminaries
Gaussian Mixture Models

Expectation-Maximization
EM for GMMs

Gaussian Mixture Models

Characteristics of a GMM

While Multi-Layer Perceptrons are universal approximators of
functions,

GMMs are universal approximators of densities.

(as long as there are enough Gaussians of course)

Even diagonal GMMs are universal approximators.

Full rank GMMs are not easy to handle: number of
parameters is the square of the number of dimensions.

GMMs can be trained by maximum likelihood using an
efficient algorithm: Expectation-Maximization.

Samy Bengio Tutorial on Statistical Machine Learning 47



Preliminaries
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Preliminaries
Gaussian Mixture Models

Expectation-Maximization
EM for GMMs

Graphical View
More Formally

Basics of Expectation-Maximization

Objective: maximize the likelihood p(X ; θ) of the data X
drawn from an unknown distribution, given the model
parameterized by θ:

θ∗ = arg max
θ

p(X |θ) = arg max
θ

n∏
p=1

p(xp|θ)

Basic ideas of EM:

Introduce a hidden variable such that its knowledge would
simplify the maximization of p(X ; θ)
At each iteration of the algorithm:

E-Step: estimate the distribution of the hidden variable given
the data and the current value of the parameters
M-Step: modify the parameters in order to maximize the joint
distribution of the data and the hidden variable
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Preliminaries
Gaussian Mixture Models

Expectation-Maximization
EM for GMMs

Graphical View
More Formally

EM for GMM (Graphical View, 1)

Hidden variable: for each point, which Gaussian generated it?

A

B
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Preliminaries
Gaussian Mixture Models

Expectation-Maximization
EM for GMMs

Graphical View
More Formally

EM for GMM (Graphical View, 2)

E-Step: for each point, estimate the probability the each Gaussian
generated it

A

B

P(A) = 0.6
P(B) = 0.4

P(A) = 0.2
P(B) = 0.8
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Preliminaries
Gaussian Mixture Models

Expectation-Maximization
EM for GMMs

Graphical View
More Formally

EM for GMM (Graphical View, 3)

M-Step: modify the parameters according to the hidden variable to
maximize the likelihood of the data (and the hidden variable)

A

B

P(A) = 0.6
P(B) = 0.4

P(A) = 0.2
P(B) = 0.8
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Preliminaries
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EM for GMMs

Graphical View
More Formally

EM: More Formally

Let us call the hidden variable Q.

Let us consider the following auxiliary function:

A(θ, θs) = EQ [log p(X ,Q|θ)|X , θs ]

It can be shown that maximizing A

θs+1 = arg max
θ

A(θ, θs)

always increases the likelihood of the data p(X |θs+1), and a
maximum of A corresponds to a maximum of the likelihood.
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Preliminaries
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Auxiliary Function
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EM for GMM: Hidden Variable

For GMM, the hidden variable Q will describe which Gaussian
generated each example.

If Q was observed, then it would be simple to maximize the
likelihood of the data: simply estimate the parameters
Gaussian by Gaussian

Moreover, we will see that we can easily estimate Q

Let us first write the mixture of Gaussian model for one xi :

p(xi |θ) =
N∑

j=1

P(j |θ)p(xi |j , θ)

Let us now introduce the following indicator variable:

qi ,j =

{
1 if Gaussian j emitted xi

0 otherwise
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Preliminaries
Gaussian Mixture Models
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Auxiliary Function
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EM for GMM: Auxiliary Function

We can now write the joint likelihood of all the X and Q:

p(X ,Q|θ) =
n∏

i=1

N∏
j=1

P(j |θ)qi,j p(xi |j , θ)qi,j

which in log gives

log p(X ,Q|θ) =
n∑

i=1

N∑
j=1

qi ,j log P(j |θ) + qi ,j log p(xi |j , θ)
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Auxiliary Function
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EM for GMM: Auxiliary Function

Let us now write the corresponding auxiliary function:

A(θ, θs) = EQ [log p(X ,Q|θ)|X , θs ]

= EQ

 n∑
i=1

N∑
j=1

qi ,j log P(j |θ) + qi ,j log p(xi |j , θ)|X , θs


=

n∑
i=1

N∑
j=1

EQ [qi ,j |X , θs ] log P(j |θ) + EQ [qi ,j |X , θs ] log p(xi |j , θ)
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Preliminaries
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EM for GMM: Update Rules

Means µ̂j =

n∑
i=1

xi · P(j |xi , θ
s)

n∑
i=1

P(j |xi , θ
s)

Variances (σ̂j)
2 =

n∑
i=1

(xi − µj)
2 · P(j |xi , θ

s)

n∑
i=1

P(j |xi , θ
s)

Weights: ŵj =
1

n

n∑
i=1

P(j |xi , θ
s)

Samy Bengio Tutorial on Statistical Machine Learning 58



Preliminaries
Gaussian Mixture Models

Expectation-Maximization
EM for GMMs

Auxiliary Function
Update Rules

Initialization

EM is an iterative procedure that is very sensitive to initial
conditions!

Start from trash → end up with trash.

Hence, we need a good and fast initialization procedure.

Often used: K-Means.

Other options: hierarchical K-Means, Gaussian splitting.
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Part IV

Hidden Markov Models
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Markovian Models
Hidden Markov Models

Speech Recognition

Definition
Graphical View

Markov Models

Stochastic process of a temporal sequence: the probability
distribution of the variable q at time t depends on the variable
q at times t − 1 to 1.

P(q1, q2, . . . , qT ) = P(qT
1 ) = P(q1)

T∏
t=2

P(qt |qt−1
1 )

First Order Markov Process:

P(qt |qt−1
1 ) = P(qt |qt−1)

Markov Model: model of a Markovian process with discrete
states.

Hidden Markov Model: Markov Model whose state is not
observed, but of which one can observe a manifestation (a
variable xt which depends only on qt).
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Markovian Models
Hidden Markov Models

Speech Recognition

Definition
Graphical View

Markov Models (Graphical View)

A Markov model:

2 31

A Markov model unfolded in time:
q(t)q(t-2) q(t-1) q(t+1)

1

2

3
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Hidden Markov Models

A hidden Markov model:

2 31

A hidden Markov model
unfolded in time:

1

2

3

q(t)q(t-2) q(t-1) q(t+1)

y(t-2) y(t-1) y(t) y(t+1)
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Elements of an HMM

A finite number of states N.

Transition probabilities between states, which depend only on
previous state: P(qt=i |qt−1=j , θ).

Emission probabilities, which depend only on the current
state: p(xt |qt=i , θ) (where xt is observed).

Initial state probabilities: P(q0 = i |θ).
Each of these 3 sets of probabilities have parameters θ to
estimate.
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The 3 Problems of HMMs

The HMM model gives rise to 3 different problems:
Given an HMM parameterized by θ, can we compute the
likelihood of a sequence X = xT

1 = {x1, x2, . . . , xT}:

p(xT
1 |θ)

Given an HMM parameterized by θ and a set of sequences Dn,
can we select the parameters θ∗ such that:

θ∗ = arg max
θ

n∏
p=1

p(X (p)|θ)

Given an HMM parameterized by θ, can we compute the
optimal path Q through the state space given a sequence X :

Q∗ = arg max
Q

p(X ,Q|θ)
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HMMs as Generative Processes

HMMs can be use to generate sequences:

Let us define a set of starting states with initial probabilities
P(q0 = i).

Let us also define a set of final states.

Then for each sequence to generate:
1 Select an initial state j according to P(q0).
2 Select the next state i according to P(qt = i |qt−1 = j).
3 Emit an output according to the emission distribution

P(xt |qt = i).
4 If i is a final state, then stop, otherwise loop to step 2.
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Markovian Assumptions

Emissions: the probability to emit xt at time t in state qt = i
does not depend on anything else:

p(xt |qt = i , qt−1
1 , x t−1

1 ) = p(xt |qt = i)

Transitions: the probability to go from state j to state i at
time t does not depend on anything else:

P(qt = i |qt−1 = j , qt−2
1 , x t−1

1 ) = P(qt = i |qt−1 = j)

Moreover, this probability does not depend on time t:

P(qt = i |qt−1 = j) is the same for all t

we say that such Markov models are homogeneous.
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Derivation of the Forward Variable α

the probability of having generated the sequence x t
1 and being in

state i at time t:

α(i , t)
def
= p(x t

1, qt = i)

= p(xt |x t−1
1 , qt = i)p(x t−1

1 , qt = i)

= p(xt |qt = i)
∑

j

p(x t−1
1 , qt = i , qt−1 = j)

= p(xt |qt = i)
∑

j

P(qt = i |x t−1
1 , qt−1 = j)p(x t−1

1 , qt−1 = j)

= p(xt |qt = i)
∑

j

P(qt = i |qt−1 = j)p(x t−1
1 , qt−1 = j)

= p(xt |qt = i)
∑

j

P(qt = i |qt−1 = j)α(j , t − 1)
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From α to the Likelihood

Reminder: α(i , t)
def
=p(x t

1, qt = i)

Initial condition:

α(i , 0) = P(q0 = i) → prior probabilities of each state i

Then let us compute α(i , t) for each state i and each time t
of a given sequence xT

1

Afterward, we can compute the likelihood as follows:

p(xT
1 ) =

∑
i

p(xT
1 , qT = i)

=
∑

i

α(i ,T )

Hence, to compute the likelihood p(xT
1 ), we need O(N2 · T )

operations, where N is the number of states
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EM Training for HMM

For HMM, the hidden variable Q will describe in which state
the HMM was for each observation xt of a sequence X .

The joint likelihood of all sequences X (l) and the hidden
variable Q is then:

p(X ,Q|θ) =
n∏

l=1

p(X (l),Q|θ)

Let us introduce the following indicator variable:

qi ,t =

{
1 if qt = i
0 otherwise
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Joint Likelihood

p(X ,Q|θ) =
n∏

l=1

p(X (l),Q|θ)

=
n∏

l=1

(
N∏

i=1

P(q0 = i)qi,0

)
·

Tl∏
t=1

N∏
i=1

p(xt(l)|qt = i)qi,t

N∏
j=1

P(qt = i |qt−1 = j)qi,t ·qj,t−1
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Joint Log Likelihood

log p(X ,Q|θ) =
n∑

l=1

N∑
i=1

qi ,0 log P(q0 = i) +

n∑
l=1

Tl∑
t=1

N∑
i=1

qi ,t log p(xt(l)|qt = i) +

n∑
l=1

Tl∑
t=1

N∑
i=1

N∑
j=1

qi ,t · qj ,t−1 log P(qt = i |qt−1 = j)
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Auxiliary Function

Let us now write the corresponding auxiliary function:

A(θ, θs) = EQ [log p(X ,Q|θ)|X , θs ]

=
n∑

l=1

N∑
i=1

EQ [qi ,0|X , θs ] log P(q0 = i) +

n∑
l=1

Tl∑
t=1

N∑
i=1

EQ [qi ,t |X , θs ] log p(xt(l)|qt = i) +

n∑
l=1

Tl∑
t=1

N∑
i=1

N∑
j=1

EQ [qi ,t · qj ,t−1|X , θs ] log P(qt = i |qt−1 = j)

From now on, let us forget about index l for simplification.
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Derivation of the Backward Variable β

the probability to generate the rest of the sequence xT
t+1 given that

we are in state i at time t

β(i , t)
def
= p(xT

t+1|qt=i)

=
∑

j

p(xT
t+1, qt+1=j |qt=i)

=
∑

j

p(xt+1|xT
t+2, qt+1=j , qt=i)p(xT

t+2, qt+1=j |qt=i)

=
∑

j

p(xt+1|qt+1=j)p(xT
t+2|qt+1=j , qt=i)P(qt+1=j |qt=i)

=
∑

j

p(xt+1|qt+1=j)p(xT
t+2|qt+1=j)P(qt+1=j |qt=i)

=
∑

j

p(xt+1|qt+1=j)β(j , t + 1)P(qt+1=j |qt=i)
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Final Details About β

Reminder: β(i , t) = p(xT
t+1|qt=i)

Final condition:

β(i ,T ) =

{
1 if i is a final state
0 otherwise

Hence, to compute all the β variables, we need O(N2 · T )
operations, where N is the number of states
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E-Step for HMMs

Posterior on emission distributions:

EQ [qi ,t |X , θs ] = P(qt = i |xT
1 , θs) = P(qt = i |xT

1 )

=
p(xT

1 , qt = i)

p(xT
1 )

=
p(xT

t+1|qt = i , x t
1)p(x t

1, qt = i)

p(xT
1 )

=
p(xT

t+1|qt = i)p(x t
1, qt = i)

p(xT
1 )

=
β(i , t) · α(i , t)∑

j

α(j ,T )
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E-Step for HMMs

Posterior on transition distributions:

EQ [qi ,t · qj ,t−1|X , θs ] = P(qt = i , qt−1 = j |xT
1 , θs)

=
p(xT

1 , qt = i , qt−1 = j)

p(xT
1 )

=
p(xT

t+1|qt=i)P(qt=i |qt−1=j)p(xt |qt=i)p(x t−1
1 , qt−1=j)

p(xT
1 )

=
β(i , t)P(qt = i |qt−1 = j)p(xt |qt = i)α(j , t − 1)∑

j

α(j ,T )
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E-Step for HMMs

Posterior on initial state distribution:

EQ [qi ,0|X , θp] = P(q0 = i |xT
1 , θs) = P(q0 = i |xT

1 )

=
p(xT

1 , q0 = i)

p(xT
1 )

=
p(xT

1 |q0 = i)P(q0 = i)

p(xT
1 )

=
β(i , 0) · P(q0 = i)∑

j

α(j ,T )
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M-Step for HMMs

Find the parameters θ that maximizes A, hence search for

∂A

∂θ
= 0

When transition distributions are represented as tables, using
a Lagrange multiplier, we obtain:

P(qt = i |qt−1 = j) =

T∑
t=1

P(qt = i , qt−1 = j |xT
1 , θs)

T∑
t=1

P(qt = i |xT
1 , θs)

When emission distributions are implemented as GMMs, use
already given equations, weighted by the posterior on
emissions P(qt = i |xT

1 , θs).
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The Most Likely Path (Graphical View)

The Viterbi algorithm finds the best state sequence.

States q2

q3

q1

States q2

q3

q1

Time

Backtrack in time

Time

Compute the patial paths
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The Viterbi Algorithm for HMMs

The Viterbi algorithm finds the best state sequence.

V (i , t)
def
= max

qt−1
1

p(x t
1, q

t−1
1 , qt=i)

= max
qt−1

1

p(xt |x t−1
1 , qt−1

1 , qt=i)p(x t−1
1 , qt−1

1 , qt=i)

= p(xt |qt=i) max
qt−2

1

max
j

p(x t−1
1 , qt−2

1 , qt=i , qt−1=j)

= p(xt |qt=i) max
qt−2

1

max
j

p(qt=i |qt−1=j)p(x t−1
1 , qt−2

1 , qt−1=j)

= p(xt |qt=i) max
j

p(qt=i |qt−1=j) max
qt−2

1

p(x t−1
1 , qt−2

1 , qt−1=j)

= p(xt |qt=i) max
j

p(qt=i |qt−1=j)V (j , t − 1)
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From Viterbi to the State Sequence

Reminder: V (i , t) = max
qt−1

1

p(x t
1, q

t−1
1 , qt=i)

Let us compute V (i , t) for each state i and each time t of a
given sequence xT

1

Moreover, let us also keep for each V (i , t) the associated
argmax previous state j

Then, starting from the state i = arg max
j

V (j ,T ) backtrack

to decode the most probable state sequence.

Hence, to compute all the V (i , t) variables, we need
O(N2 · T ) operations, where N is the number of states
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HMMs for Speech Recognition

Application: continuous speech recognition:

Find a sequence of phonemes (or words) given an
acoustic sequence

Idea: use a phoneme model
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Embeded Training of HMMs

For each acoustic sequence in the training set, create a new
HMM as the concatenation of the HMMs representing the
underlying sequence of phonemes.

Maximize the likelihood of the training sentences.

A TC
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HMMs: Decoding a Sentence

Decide what is the accepted vocabulary.
Optionally add a language model: P(word sequence)
Efficient algorithm to find the optimal path in the decoding
HMM:

GD O

TC A
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Measuring Error

How do we measure the quality of a speech recognizer?

Problem: the target solution is a sentence, the obtained
solution is also a sentence, but they might have different size!

Proposed solution: the Edit Distance:
assume you have access to the operators insert, delete, and
substitute,
what is the smallest number of such operators we need to go
from the obtained to the desired sentence?
An efficient algorithm exists to compute this.

At the end, we measure the error as follows:

WER =
#ins + #del + #subst

#words

Note that the word error rate (WER) can be greater than 1...
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Advanced Models for Multimodal Processing
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Graphical Models

A tool to efficiently model complex joint distributions:

p(X1,X2, · · · ,Xn) =
n∏

i=1

p(Xi |parents(Xi ))

Introduces and makes use of known conditional
independences.

p(X1,X2, · · · ,Xn) =
∏


p(X1|X2,X5)
p(X2)
p(X3)
p(X4|X2,X3)
p(X5|X4)

X2

X1

X3

X4

X5
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Graphical Models

Can handle an arbitrary number of random variables

Junction Tree Algorithm (JTA): used to estimate joint
probability (inference)

Expectation-Maximization (EM): used to train

Depending on the graph, EM and JTA are tractable or not

Dynamic Bayes Nets: temporal extension of graphical models
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Early-Integration HMMs
Multi-Stream HMMs
Coupled HMMs
Asynchronous HMMs
Layered HMMs

A Zoo of Graphical Models for Multi-Channel Processing
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Notation for Multimodal Data

Notation for One Stream

Let us have a training set of L observations sequences.

The observation sequence l : Ol =
(
ol

1, o
l
2, . . . , o

l
Tl

)
with ol

t

the vector of multimodal features at time t for sequence l , of
length Tl .

Notation for Several Streams

Let us consider N streams for each observation sequence.

The stream n of observation sequence l :

Ol :n =
(
ol :n

1 , ol :n
2 , . . . , ol :n

Tl

)
with ol :n

t the vector of features of

stream n at time t for sequence l , of length Tl .
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Goals for Multimodal Data

Inference

Likelihood:
L∏

l=1

p

({
Ol :n

}N

n=1
; θ

)

Training

θ∗ = arg max
θ

L∏
l=1

p

({
Ol :n

}N

n=1
; θ

)
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Early-Integration HMMs

Sample all streams at the same frame rate

Emission distributions

p

({
ol :n

t

}N

n=1
|qt = i

)
Transition distributions

p(qt = i |qt−1 = j)
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Multi-Stream HMMs

Train a separate model for each stream n

θ∗n = arg max
θ

L∏
l=1

p
(
Ol :n; θn

)

Inference, for each state qt = i

p

({
ol :n

t

}N

n=1
|qt = i

)
=

N∏
n=1

p
(
ol :n

t |qt = i ; θn

)
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Multi-Stream HMMs

Training and Inference Complexity

Per iteration, per observation sequence l :

O(N · S2 · Tl)

with S the number of states of each HMM stream, N the
number of streams, Tl the length of the observation sequence

Additional Notes

All stream HMMs need to be of the same topology.

One can add stream weights ωn as follows:

p

({
ol :n

t

}N

n=1
|qt = i

)
=

N∏
n=1

p
(
ol :n

t |qt = i ; θn

)ωn
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Multi-Stream HMMs

Pros

Efficient training (linear in the number of streams)

Robust to stream-dependent noise

Easy to implement

Cons

Does not maximize the joint probability of the data

Each stream needs to use the same HMM topology

Assumes complete stream independence during training, and
stream independence given the state during decoding.
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Coupled HMMs

Let qn
t = i be the state at time t for

stream n

Stream emission distributions:

p
(
ol :n

t |qn
t = i ; θn

)
Coupled transition distributions:

p
(
qn
t |
{
qm
t−1

}N

m=1
; θn

)
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Coupled HMMs

Complexity

Per iteration, per observation sequence l :

O(S2·N · Tl)

with S the number of states of each HMM stream, N the
number of streams, Tl the length of the observation sequence

N-Heads approximation:

O(N2 · S2 · Tl)
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Coupled HMMs

Pros

Considers correlations between streams during training and
decoding.

Cons

The algorithm is intractable (unless using the approximation).

Assumes synchrony between the streams.
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Challenges in Multi Channel Integration: Asynchrony

Stream 1

Stream 2

Naive
Integration

A B C

A
A B

B
B

CB
C C

A

A B C
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Some Evidence of Stream Asynchrony

Audio-visual speech recognition with lip movements: lips do
not move at the same time as we hear the corresponding
sound.

Speaking and pointing: pointing to a map and saying “I want
to go there”.

Gesticulating, looking at, and talking to someone during a
conversation.

In a news video, the delay between the moment when the
newscaster says “Bush” and the moment when Bush’s picture
appears.

...
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Asynchrony Revisited

Stream 1

Stream 2

Asynchronous
Joint /

Naive
Integration

A B C

A

C

B C

B

A

A B

B

B

CB

C C

A

A

A B C

5 (d1+d2)−dim
states

3 (d1+d2)−dim
states

3 d1−dim states

3 d2−dim states
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Asynchronous HMMs

Enables re-synchronization of streams.

One HMM: maximizes the likelihood of all streams jointly.

O1
1:T1

O2
1:T2

qt+1qtqt−1

P(qt|qt−1)

p(emit o2
s |qt)

p(emit o1
r |qt)

p(o1
r , o

2
s |qt)p(o1

r |qt) p(o2
s |qt)
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Training and Complexity

Training

EM algorithm maximizes the joint probability p(xT1
1 , yT2

1 , · · · ).

Complexity grows with number of streams, can be controlled

Exact complexity: O(S2 ·
∏N

i=1 Ti )

Introduction of temporal constraints: O(S2 · d · T ) with d the
maximum delay allowed between streams.

Applications

Easily adaptable to complex tasks such as speech recognition.

Significant performance improvements in

audio-visual speech and speaker recognition
meeting analysis.
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Alignments with Asynchronous HMMs

 10

 20

 30

 40

 50

 60

 70

 80

10db5db0db

W
or

d 
E

rr
or

 R
at

e 
(W

E
R

)

Signal to Noise Ratio (SNR)

audio HMM
audio+video HMM

audio+video AHMM
video HMM

 0

 50

 100

 150

 200

 0  100 200 300 400 500 600 700 800

V
id

eo

Audio

zero
un

deux
trois

quatre
cinq

six
sept

huit
neuf

AHMM Alignment
HMM Alignment

Alignment Bounds
Segmentation

Samy Bengio Tutorial on Statistical Machine Learning 110



Introduction to Graphical Models
A Zoo of Graphical Models

Applications to Meetings

Early-Integration HMMs
Multi-Stream HMMs
Coupled HMMs
Asynchronous HMMs
Layered HMMs

Layered HMMs

Philosophy

Divide and Conquer for complex tasks

Idea: transform the data from a raw
representation into a higher level
abstraction

Then, transform again the result into yet
another and higher level of abstraction,
and continue as needed

For temporal sequences: go from a fine
time granularity to a coarser one.
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General Algorithm

Layered Algorithm

For i = 0 to M layers, do:

1 Let Oi
1:T be a sequence of observations of HMM model mi .

2 Train mi using EM in order to maximise p(Oi
1:T |mi ).

3 Compute, for each state s i
j for mi the data posterior:

p(s i
j |Oi

1:T ,mi )

4 Define Oi+1
1:T as the sequence of vectors of p(s i

j |Oi
1:T ,mi )
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Complexity and Additional Notes

Complexity

Training complexity: O(N · S2 ·M) for M layers.

A Speech Example

A phoneme layer (with phoneme constraints)

A word layer (with word constraints)

A sentence layer (with language constraints)
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Complexity of the Meeting Scenario

Modeling multimodal
group-level human
interactions in meetings.

Multimodal nature:
data collected from multiple
sensors (cameras,
microphones, projectors,
white-board, etc).

Group nature:
involves multiple interacting
persons at the same time.
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Meeting Analysis

Structure a meeting as a sequence of group actions taken
from an exhaustive set V of N possible actions:

V = {v1, v2, v3, · · · , vN}

V VVV1 2 23 V4
t

V1

Recorded and annotated 30 training a 30 test meetings.

Extract high level audio and visual features.

Try to recover the target action sequence of unseen meetings.

I. McCowan, D. Gatica-Perez, S. Bengio, G. Lathoud, M. Barnard, and
D. Zhang. Automatic Analysis of Multimodal Group Actions in Meetings.
IEEE Transactions on PAMI, 27(3), 2005.
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A One-Layer Approach

Microphones

Cameras

Person 1 AV Features

G-HMM

Person 2 AV Features

Person N AV Features

Group AV Features

Classical Approach

A large vector of audio-visual features from each participant
and group-level features are concatenated to define the
observation space.

A general HMM is trained using a set of labeled meetings.
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A Two-Layer Approach

Microphones

Cameras

Person 1 AV Features I-HMM 1

I-HMM 2

I-HMM N

G-HMM

Person 2 AV Features

Person N AV Features

Group AV Features

Advantages

Smaller observation space.

I-HMMs share parameters, person independent, trained on
simple task (write, talk, passive).

Last layer less sensitive to variations of low-level data.
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Experiments

Group Actions: Turn-Taking

Discussion
Monologue
Monologue/Note-Taking
Presentation
Presentation/Note-Taking
White-board
White-board/Note-Taking

Individual Actions

Speaking - Writing - Passive

Results

Method Features AER

Visual Only 48.20
One-Layer Audio Only 36.70

Audio Visual 23.74

Visual Only 42.45
Two-Layer Audio Only 32.37

Audio Visual 16.55
Async HMM 15.11

D. Zhang, D. Gatica-Perez, S. Bengio, I. McCowan, and G. Lathoud.
Modeling Individual and Group Actions in Meetings: a Two-Layer HMM
Framework. In CVPR, 2004.
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Statistical Learning Theory

1 V. Vapnik. Statistical Learning Theory. Wiley, 1998.
NOTE: The theory is explained here with all the equations.

2 V. N. Vapnik. The nature of statistical learning theory. Springer,
second edition, 1995.
NOTE: A good introduction to the theory, not much equations.
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Multi-Layer Perceptrons

1 Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In
G. Orr and Muller K., editors, Neural Networks: Tricks of the trade.
Springer, 1998.
NOTE: Very good paper proposing a series of tricks to make neural
networks really working.

2 B. D. Ripley. Pattern recognition and Neural networks. Cambridge
University Press, Cambridge, UK, 1996.
NOTE: A good general book on machine learning and neural
networks. Orientation: statistics.

3 C. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, London, UK, 1995.
NOTE: A good general book on machine learning and neural
networks. Orientation: physics.

4 S. Haykin. Neural Networks. A Comprehensive Foundation, 2nd
edition. Macmillan College Publishing, New York, 1994.
NOTE: A good general book on machine learning and neural
networks. Orientation: signal processing.
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Gaussian Mixture Models and Hidden Markov Models

1 A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood
from incomplete data via the EM algorithm. Journal of Royal
Statistical Society B, 39:1–38, 1977.
NOTE: A theoretical paper introducing the EM algorithm.

2 L. R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE,
77(2):257–286, 1989.
NOTE: A good introduction to HMMs and speech recognition.

3 L. R. Rabiner and B. H. Juang. An introduction to hidden markov
models. IEEE ASSP Magazine, 1986.
NOTE: A very good introduction to HMMs.
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Advanced Models for Multimodal Processing

1 M. Jordan. Learning in Graphical Models. MIT Press (1999)

2 H. Bourlard and S. Dupont. Subband-based speech recognition. In
Proc. IEEE ICASSP (1997)

3 M. Brand. Coupled hidden markov models for modeling interacting
processes. Technical Report 405, MIT Media Lab Vision and
Modeling (1996)

4 S. Bengio. Multimodal speech processing using asynchronous
hidden markov models. Information Fusion 5 (2004) 81–89

5 N. Oliver, E. Horvitz, and A. Garg. Layered representations for
learning and inferring office activity from multiple sensory channels.
In Proc. of the Int. Conf. on Multimodal Interfaces. (2002)
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