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Abstract

High dimensional structured data such as text and imagefeis poorly under-

stood and misrepresented in statistical modeling. Thedatahhistogram repre-
sentation suffers from high variance and performs pooriyaneral. We explore
novel connections between statistical translation, heateds on manifolds and
graphs, and expected distances. These connections peowiele framework for

unsupervised metric learning for text documents. Expenimandicate that the
resulting distances are generally superior to their ma@medsird counterparts.

1 Introduction

Modeling text documents is an essential part in a wide wagéapplications such as classification,
segmentation, visualization and retrieval of text. Mogiraaches start by representing a document
by its word count or histogram. They then proceed to fit diatismodels or compute distances
based on that word histogram content. Representing a dadumets word frequency may be
motivated by the assumption that the appearance of wordednrdents follows a multinomial
distribution. The word histogram is then the maximum likeld estimator of the multinomial
parameter and may be used in lieu of the word sequence.

A statistical analysis of word frequency representatiodafuments requires the assumption of a
geometry on the simplex - the closure of the space of all decuimstogram representations (below,
and elsewhere we assume that the vocabfaey {1,...,m + 1})
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The geometric assumption may be explicit, as is the casedreseneighbor classifiers. In other
cases, such as logistic regression and boosting, it is maglécitly.

Many geometries have been suggested for the simplex fonusedeling word histogram document
representation. Two canonical examples are the Euclidistande and the Fisher geodesic distance
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which is based on the Fisher information Riemannian melr&; [L]. Both distance functions, as
well as other similarity measures (such as tfidf cosine sintyl), suffer from the slow convergence
rate of high dimensional histograms to their expectatidn@ther words, the word histogram of a
document containing several dozen words serves as a paoagstfor the multinomial parameter
whose dimensionality is much higher (corresponding to theabulary size). As a result, standard
distances are not well suited for use in the analysis of wargfency representation of documents.

Following a discussion of related work in Section 2 we présies translation model and its related
expected geometry. We conclude with some experimentatsesmud a discussion.

2 Reated Work

Distributional clustering [18] was first introduced to dierswords (such as nouns) according to their
distributions in syntactic contexts (such as verbs). Theeh estimated by minimizing the free
energy, and is used to address the data sparseness probérguage modeling. It also serves as
an aggressive feature selection method in [2] to improveid@mnt classification accuracy. Unlike
previous work, we use word contextual information for camsting a word translation model rather
than clustering words.

Our method of using word translation to compute documenitaiity is also closely related to query
expansion in information retrieval. Early work [20] usedrd@lusters from a word similarity matrix
for query expansion. A random walk model on a bipartite grafpduery words and documents was
introduced in [15], and was later generalized to a more flexiamily of random walk models
[9]. Noisy channels were originally used in communicationdata transmission, but served as a
platform for considerable research in statistical machiaeslation. An interesting work by Berger
and Lafferty [4] formulated a probabilistic approach todrhation retrieval based upon the ideas
and methods of statistical machine translation.

The idea of diffusion or heat kernekp(—tL) based on the normalized graph LaplaciafB] has
been studied for discrete input space such as graphs [18]ajplied to classification problems
with kernel-based learning methods and semi-supervisegdileg [22, 3]. It has also been formally
connected to regularization operators on graphs [19], andcbe thought as a smoothing operator
over graphs. In our case the diffusion kernel is used to ga@@er stochastic matrix which is then
used to define a translation model between words. This haffibet of translating one word to its
semantic neighbor connected by similar contextual infdiona

Several methods have been proposed to learn a better nwetdassification. In [21] a new metric
is learned using side-information such as which pairs ofrgpdas are similar and dissimilar, and
the task is formulated as a convex optimization problem. 1 p quadratic Gaussian metric is
learned based on the idea that examples in the same cladd blearollapsed, and the solution can
be found by convex optimization techniques. In [16] a newrioés estimated in an unsupervised
manner based on the geometric notion of volume elementanfasiline of research develops new
similarity measures and word clustering [5, 10] based ordweoroccurrence information.

In most methods, a linear transformation of the originallEiean metric is learned using labeled
data with criteria such as better separability or predictiacuracy. Unlike those methods, our
approach is based on word translation and expected distanckis totally unsupervised.

3 Transation M odd

Given a word in the vocabulary € V = {1,...,m + 1}, we define its contextual distribution

¢ € P, to beg,(w) = p(w € djv € d), wherep is a generative model for the documetitsin
other words, assuming thatoccurs in the documeng,, (w) is the probability thatv also occurs
in the document. Note that in particular,(v) measures the probability of a worde-appearing a
second time after its first appearance.

In general, we do not know the precise generative model aveltoaresort to an estimate such as
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where t{w, d) is the relative (or normalized) frequency of occurrencewofd w in document.
Note that the above estimate requires only unlabeled dataamleverage large archival databases
to produce accurate estimates.

As pointed out by several researchers, the contextuaillisibnsq.,, ¢, convey important infor-
mation concerning the words, v. For example, similar distributions indicate a semanticilsir-
ity between the words. In this paper, we explore the geomstructure of the simplicial points
{qw : w € V} in order to define a statistical translation model that poedua better estimate of
the document multinomial parameter. We describe belowrtrestation model and conclude this
section with a more formal motivation in terms of a translatbased generative model.

3.1 Diffusion Kernel on {q, : w € V}

The key idea behind the translation model is that replacouyioing words with non-occurring but
similar words in the document is likely to improve the origiihistogram estimate of the document’s
multinomial parameter. For example, we may stochastitallyslate the worgol i cerman appear-
ing in a certain document to the woedbp. Despite the fact that the woabp was not generated
initially, it is probably relevant to the document and theltimomial parameteé.,, corresponding
to it should be non-negligible. As a result of the above olestiezn we wish to stochastically trans-
late a documeny into a new document and represent the document as a histogram r&ther
than ofy. However, since the translation gfto z is probabilistic, we need to consider the stan-
dard geometric quantities such as distance as random lewikading to the notion of expected
geometry.

We approximate the probability of translating wardnto word v by the similarity between their
contextual distributiong,, andgq,. A natural way to measure the similarity is through the heat
or diffusion kernel onP,,. The particular choice of the Fisher geometryl®y is axiomatically
motivated [7, 6] and the heat kernel has several unique ptiepecharacterizing it in a favorable
way [14]. However, the Riemannian heat kernel is definedferentire simple®,,, which includes
distributions that are irrelevant for modeling translaoThe contextual distributiodg,, : w € V'}
which corresponds to the vocabulary words are our main tbjfinterest can be viewed as a
graph embedded in the simplex. The natural restriction @Rlemannian heat kernel to the graph
G = (V, E) is the heat kernel on the graph whose edge weidlt, ¢,) € F is defined by the
Riemannian heat kerné{;(q,,, ¢,) onP,,. We elaborate on this below.

We construct an undirected weighted graph whose verticgesmond to word contextual distribu-
tions{q, : w € V'}. Since the graph nodes are embeddel,jn we define the graph edge weight

connecting the two nodesandv as the corresponding approximated Riemannian heat floi,on
[14]:

e(u,v) = exp <—i2 arccos? (Z \/qu(w)qv(w)>> .
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The graph heat kernel can then be computed via the matrixnexpial of the normalized graph
Laplacian [8]

L=D"Y*D-E)D/?

where D is a diagonal matrix withD;; = Zj e;j. Specifically the matrix exponentidl =
exp(—tL) wheret describes the time of heat flow is viewed as the graph analtdgedRiemannian
heat kernel, and models the flow of heat across the graph. ditneatized matrix corresponding to
T is thus a stochastic matrix whose rows represent translatiobabilitiesp(w; — w;) that corre-
spond to flow of heat fromy,,, to ¢,,;, based on the geometry of the grapf, : w € V'} and the

Fisher geometry of the simplé,, .

The time parameterin T' = exp(—tL) controls the amount of translation. Smalvould yield
T =~ I while larget would yield an approximately unifori. It is well known that the diffusion
kernel s closely related to lazy random walks. In particutee matrixI” correspondsto lazy random
walk aftern steps withn — oo [19]. As a result, the translation matriX combines information
from multiple paths of various lengths between any pair eftertual distributions.



3.2 A Generative Model

The above motivation may be expressed more formally in twgswarlhe first interpretation is

to assume a multinomial modgp, that generates each document. The representation problem
becomes that of obtaining a good estimateffarThe word histogram, while being unbiasedgf
results in poor estimation performance in high dimensioa @uhigh variance. A biased estimator
such as the translation model can improve performance tstida#ly reducing variance using an
external data source such as an unlabeled corpus. This igeitt dnalogy with methods such as
lasso and ridge in linear regression and in general the mofiosegularization. One key difference
between our approach and standard regularization techsiquhat in our case the regularization is
data dependent.

A second way to interpret the framework is to assume theviatig generative model. The observed
documents are actually noisy versions of some original ot where the noise is modeled via
the heat flow on the grapfy, : v € V} embedded irP,,. The task is to recover the original

representation before the translation procedure “coedipthe initial form. Here, the translation

corresponds to denoising or filtering under complex nomdise.

In both cases, since the statistical translation stoatedisticonverts a documentinto a document,

we should consider quantities of interg$t ) to be random objects motivating the use of expectation
Epz1y) f(2) OF By ly)p(w|z)f(2,w). This leads us to the notion of expected distances on word
histogram where the expectation is taken with respect tdréreslation model. Alternatively, we
can consider the expected distances as the solution of acrfestrning problem. The expected
distances based on the heat kernel form a new metric whicttad fio the data based on a large
unsupervised corpus.

4 Expected Distances

As mentioned in the previous section, we are interestednmpeing expected distances instead of
distances based on the observed word histogram. Below, n@el¢he histogram of a document

y=(u1,...,yn) asy(y) where[y(y)ls = N"1 N iy,
As we show below the expected distance

d(v(2), 7 (w)) = Epylayp(zoyd (1), 7(2))

has a closed form expression f(p, q) = ||p — ¢||3. In this case

d(v(x),7(w)) = Ep(ypaypztu) 17 (y) = 7(2))I13

The closed form expression for the expected distance cambtaed by substituting the expecta-
tions (below,I" represents the heat kernel-based stochastic word to varslation matrix)
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in (2) to obtain
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It is worth mentioning several facts concerning the aboy@ession. Ifl' = I the above expected
distance reduces to the standard Euclidean distance betivedistogram representations. While
the above equation is expressed using the sequential dotwmatents, the expected distance re-
mains the same under permutation of the words within a dontisiece it is a pure bag of words
construct. Finally, it is possible to pre-compat& " in order to speed up the distance computation.
The next section contains some experimental results denating the use of the expected distances
in text classification.

5 Experimental Results

We experimented with the effect of using the expediediistance vs. thé, distance in the context
of nearest neighbor text classification using the Reuter§ Rérpus. RCV1 has a considerable
label hierarchy which generates many possible binary ifiestion tasks. The effect of replacing
L, with its expected version was positive in general, but noewery single labeling task. The
top 1500 words (words that appear in most documents) weredea from participating in the
translation. This exclusion follows from the motivation @ftaining a more accurate estimate of
low frequency terms. The most common terms already apptar ahd there is no need to translate
from them to other words and vice versa. It is important tdizeahat this exclusion does not
eliminate or downweight the frequent words like the tfidfnegentation in any way. It merely limits
the translations between these words and other words.

Figure 1 (right) shows the test set error rate as a functiaraofing set size for one specific labeling
task,C18 vs. C31. Figure 1 (left) shows the difference in error rate betwdenttvo methods as
a function of which labeling task is being examined. In thase the labeling tasks on theaxis
are ordered so the curve indicates that 70% of the labelsigtgained improvement by using the
expected distance. Note also how the amount of improverasigmificantly higher than the amount
of potential damage.

Figure 2 demonstrates the binary classification mean eateraf all-pairs of sub-categories. The
sub-categories were taken directly from the RCV1 topicdrehy, with the exception 01, C0O1,
C02, 01, and@)2. These sub-categories were newly created parents forazitdenot currently
members of any sub-category. The assignment of leav€816C02 and@1/G02 was arbitrary.
All binary classification experiments were averaged overrd8s validations.

6 Discussion

The experimental results demonstrate how overall expeatistdnces prove useful for text classifi-
cation. It is likely that expected distances may be usedhermareas of text analysis such as query
expansion in information retrieval. Another interestimpbcation that is worth exploring is using
the expected distances in sequential visualization of eheeus, for example based on the lowbow
framework [17].

The theoretic motivation behind the translation model asodgbilistic biased estimate of the doc-
ument multinomial parameter should be further explored.oidsconnection, if found, between

translation based expected distances and variance redwatiuld be an interesting theoretical re-
sult. It would link theoretical results in estimation in higimensions to practical information re-
trieval methods such as query expansion.
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Figure 1: Left: Improvement using expectéd distance over , distance for nearest neighbor
classifier on RCV1 all pairs task as a function of the rank pad¢he labeling task. Right: Test set
error rate as a function of train set size for one specific R@We&ling taskC18 vs. C31
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Figure 2: Line plots depicting the averade test set error rate and the expeciedtest set error
rate for a nearest neighbor classifier. The figures corresmoRCV1 labeling tasks within a certain
hierarchy class. Top figures demonstrate all pair classicavithin {1701, M 13, M 14} (left) and
{FE12,FE13, F14, E21, E31, E41, E51, E01} (right). Bottom figures correspond to labeling popu-
lation of all pairs within{ C15, C17,C'18,C31, C33,C41,C01, C02} (left) and{G01, G02, G15}

(right).
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