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Abstract

High dimensional structured data such as text and images is often poorly under-
stood and misrepresented in statistical modeling. The standard histogram repre-
sentation suffers from high variance and performs poorly ingeneral. We explore
novel connections between statistical translation, heat kernels on manifolds and
graphs, and expected distances. These connections providea new framework for
unsupervised metric learning for text documents. Experiments indicate that the
resulting distances are generally superior to their more standard counterparts.

1 Introduction

Modeling text documents is an essential part in a wide variety of applications such as classification,
segmentation, visualization and retrieval of text. Most approaches start by representing a document
by its word count or histogram. They then proceed to fit statistical models or compute distances
based on that word histogram content. Representing a document by its word frequency may be
motivated by the assumption that the appearance of words in documents follows a multinomial
distribution. The word histogram is then the maximum likelihood estimator of the multinomial
parameter and may be used in lieu of the word sequence.

A statistical analysis of word frequency representation ofdocuments requires the assumption of a
geometry on the simplex - the closure of the space of all document histogram representations (below,
and elsewhere we assume that the vocabularyV = {1, . . . , m + 1})

Pm =







θ ∈ R
m+1 : ∀i θi ≥ 0,

∑

j

θj = 1







.

The geometric assumption may be explicit, as is the case in nearest neighbor classifiers. In other
cases, such as logistic regression and boosting, it is made implicitly.

Many geometries have been suggested for the simplex for use in modeling word histogram document
representation. Two canonical examples are the Euclidean distance and the Fisher geodesic distance

d(θ, η) = arccos

(

m+1
∑

i=1

√

θiηi

)

θ, η ∈ Pm (1)



which is based on the Fisher information Riemannian metric [12, 1]. Both distance functions, as
well as other similarity measures (such as tfidf cosine similarity), suffer from the slow convergence
rate of high dimensional histograms to their expectations.In other words, the word histogram of a
document containing several dozen words serves as a poor estimate for the multinomial parameter
whose dimensionality is much higher (corresponding to the vocabulary size). As a result, standard
distances are not well suited for use in the analysis of word frequency representation of documents.

Following a discussion of related work in Section 2 we present the translation model and its related
expected geometry. We conclude with some experimental results and a discussion.

2 Related Work

Distributional clustering [18] was first introduced to cluster words (such as nouns) according to their
distributions in syntactic contexts (such as verbs). The model is estimated by minimizing the free
energy, and is used to address the data sparseness problem inlanguage modeling. It also serves as
an aggressive feature selection method in [2] to improve document classification accuracy. Unlike
previous work, we use word contextual information for constructing a word translation model rather
than clustering words.

Our method of using word translation to compute document similarity is also closely related to query
expansion in information retrieval. Early work [20] used word clusters from a word similarity matrix
for query expansion. A random walk model on a bipartite graphof query words and documents was
introduced in [15], and was later generalized to a more flexible family of random walk models
[9]. Noisy channels were originally used in communication for data transmission, but served as a
platform for considerable research in statistical machinetranslation. An interesting work by Berger
and Lafferty [4] formulated a probabilistic approach to information retrieval based upon the ideas
and methods of statistical machine translation.

The idea of diffusion or heat kernelexp(−tL) based on the normalized graph LaplacianL [8] has
been studied for discrete input space such as graphs [13], and applied to classification problems
with kernel-based learning methods and semi-supervised learning [22, 3]. It has also been formally
connected to regularization operators on graphs [19], and can be thought as a smoothing operator
over graphs. In our case the diffusion kernel is used to generate a stochastic matrix which is then
used to define a translation model between words. This has theeffect of translating one word to its
semantic neighbor connected by similar contextual information.

Several methods have been proposed to learn a better metric for classification. In [21] a new metric
is learned using side-information such as which pairs of examples are similar and dissimilar, and
the task is formulated as a convex optimization problem. In [11] a quadratic Gaussian metric is
learned based on the idea that examples in the same class should be collapsed, and the solution can
be found by convex optimization techniques. In [16] a new metric is estimated in an unsupervised
manner based on the geometric notion of volume elements. A similar line of research develops new
similarity measures and word clustering [5, 10] based on word co-occurrence information.

In most methods, a linear transformation of the original Euclidean metric is learned using labeled
data with criteria such as better separability or prediction accuracy. Unlike those methods, our
approach is based on word translation and expected distances and is totally unsupervised.

3 Translation Model

Given a word in the vocabularyv ∈ V = {1, . . . , m + 1}, we define its contextual distribution
qv ∈ Pm to beqv(w) = p(w ∈ d|v ∈ d), wherep is a generative model for the documentsd. In
other words, assuming thatv occurs in the document,qv(w) is the probability thatw also occurs
in the document. Note that in particular,qv(v) measures the probability of a wordv re-appearing a
second time after its first appearance.

In general, we do not know the precise generative model and have to resort to an estimate such as

q̂v(w) ∝
∑

d:v∈d

tf(w, d)



where tf(w, d) is the relative (or normalized) frequency of occurrences ofword w in documentd.
Note that the above estimate requires only unlabeled data and can leverage large archival databases
to produce accurate estimates.

As pointed out by several researchers, the contextual distributionsqw, qv convey important infor-
mation concerning the wordsw, v. For example, similar distributions indicate a semantic similar-
ity between the words. In this paper, we explore the geometric structure of the simplicial points
{qw : w ∈ V } in order to define a statistical translation model that produces a better estimate of
the document multinomial parameter. We describe below the translation model and conclude this
section with a more formal motivation in terms of a translation based generative model.

3.1 Diffusion Kernel on {qw : w ∈ V }

The key idea behind the translation model is that replacing occurring words with non-occurring but
similar words in the document is likely to improve the original histogram estimate of the document’s
multinomial parameter. For example, we may stochasticallytranslate the wordpoliceman appear-
ing in a certain document to the wordcop. Despite the fact that the wordcop was not generated
initially, it is probably relevant to the document and the multinomial parameterθcop corresponding
to it should be non-negligible. As a result of the above observation we wish to stochastically trans-
late a documenty into a new documentz and represent the document as a histogram ofz rather
than ofy. However, since the translation ofy to z is probabilistic, we need to consider the stan-
dard geometric quantities such as distance as random variables leading to the notion of expected
geometry.

We approximate the probability of translating wordu into word v by the similarity between their
contextual distributionsqu and qv. A natural way to measure the similarity is through the heat
or diffusion kernel onPm. The particular choice of the Fisher geometry onPm is axiomatically
motivated [7, 6] and the heat kernel has several unique properties characterizing it in a favorable
way [14]. However, the Riemannian heat kernel is defined for the entire simplexPm which includes
distributions that are irrelevant for modeling translations. The contextual distributions{qw : w ∈ V }
which corresponds to the vocabulary words are our main objects of interest can be viewed as a
graph embedded in the simplex. The natural restriction of the Riemannian heat kernel to the graph
G = (V, E) is the heat kernel on the graph whose edge weighte(qu, qv) ∈ E is defined by the
Riemannian heat kernelKt(qu, qv) onPm. We elaborate on this below.

We construct an undirected weighted graph whose vertices correspond to word contextual distribu-
tions{qw : w ∈ V }. Since the graph nodes are embedded inPm, we define the graph edge weight
connecting the two nodesu andv as the corresponding approximated Riemannian heat flow onPm

[14]:

e(u, v) = exp

(

−
1

σ2
arccos2

(

∑

w

√

qu(w)qv(w)

))

.

The graph heat kernel can then be computed via the matrix exponential of the normalized graph
Laplacian [8]

L = D−1/2(D − E)D−1/2

whereD is a diagonal matrix withDii =
∑

j eij . Specifically the matrix exponentialT =

exp(−tL) wheret describes the time of heat flow is viewed as the graph analog ofthe Riemannian
heat kernel, and models the flow of heat across the graph. The normalized matrix corresponding to
T is thus a stochastic matrix whose rows represent translation probabilitiesp(wi → wj) that corre-
spond to flow of heat fromqwi

to qwj
based on the geometry of the graph{qw : w ∈ V } and the

Fisher geometry of the simplexPm.

The time parametert in T = exp(−tL) controls the amount of translation. Smallt would yield
T ≈ I while larget would yield an approximately uniformT . It is well known that the diffusion
kernel is closely related to lazy random walks. In particular, the matrixT corresponds to lazy random
walk aftern steps withn → ∞ [19]. As a result, the translation matrixT combines information
from multiple paths of various lengths between any pair of contextual distributions.



3.2 A Generative Model

The above motivation may be expressed more formally in two ways. The first interpretation is
to assume a multinomial modelpθd

that generates each document. The representation problem
becomes that of obtaining a good estimate forθd. The word histogram, while being unbiased ofθd

results in poor estimation performance in high dimension due to high variance. A biased estimator
such as the translation model can improve performance by drastically reducing variance using an
external data source such as an unlabeled corpus. This is in direct analogy with methods such as
lasso and ridge in linear regression and in general the notion of regularization. One key difference
between our approach and standard regularization techniques is that in our case the regularization is
data dependent.

A second way to interpret the framework is to assume the following generative model. The observed
documents are actually noisy versions of some original document where the noise is modeled via
the heat flow on the graph{qv : v ∈ V } embedded inPm. The task is to recover the original
representation before the translation procedure “corrupted” the initial form. Here, the translation
corresponds to denoising or filtering under complex non-iidnoise.

In both cases, since the statistical translation stochastically converts a documenty into a documentz,
we should consider quantities of interestf(z) to be random objects motivating the use of expectation
Ep(z|y)f(z) or Ep(z|y)p(w|x)f(z, w). This leads us to the notion of expected distances on word
histogram where the expectation is taken with respect to thetranslation model. Alternatively, we
can consider the expected distances as the solution of a metric learning problem. The expected
distances based on the heat kernel form a new metric which is fitted to the data based on a large
unsupervised corpus.

4 Expected Distances

As mentioned in the previous section, we are interested in computing expected distances instead of
distances based on the observed word histogram. Below, we denote the histogram of a document
y = 〈y1, . . . , yN 〉 asγ(y) where[γ(y)]k = N−1

∑N
i=1 δk,yi

.

As we show below the expected distance

d(γ(x), γ(w))
def
= Ep(y|x)p(z|w)d

′(γ(y), γ(z))

has a closed form expression ford′(p, q) = ‖p− q‖2
2. In this case

d(γ(x), γ(w)) = Ep(y|x)p(z|w)‖γ(y) − γ(z))‖2
2

= Ep(y|x)

〈

γ(y), γ(y)
〉

+ Ep(z|w)

〈

γ(z), γ(z)
〉

− 2 Ep(y|x)p(z|w)

〈

γ(y), γ(z)
〉

. (2)

The closed form expression for the expected distance can be obtained by substituting the expecta-
tions (below,T represents the heat kernel-based stochastic word to word translation matrix)

Ep(y|x)p(z|w)

〈

γ(y), γ(z)
〉

= N−1
1 N−1

2

N1
∑

i=1

N2
∑

j=1

m+1
∑

k=1

Ep(y|x)p(z|w)δk,yi
δk,zj

= N−1
1 N−1

2

N1
∑

i=1

N2
∑

j=1

m+1
∑

k=1

Txi,kTwj,k = N−1
1 N−2

2

N1
∑

i=1

N2
∑

j=1

(TT⊤)xi,wj

Ep(y|x)

〈

γ(y), γ(y)
〉
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1
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∑
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N1
∑

i=1

N1
∑

j=1

Ep(y|x)δk,yi
δk,yj
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1

N1
∑

i=1

∑

j∈{1,...,N1}\{i}

(TT⊤)xi,xj
+ N−2

1

N1
∑

i=1

m+1
∑

k=1

Txi,k

= N−2
1

N1
∑

i=1

∑

j∈{1,...,N1}\{i}

(TT⊤)xi,xj
+ N−1

1 ,



in (2) to obtain

d(γ(x), γ(w)) = N−2
1

N1
∑

i=1

∑

j∈{1,...,N1}\{i}

(TT⊤)xi,xj
+ N−2

2

N2
∑

i=1

∑

j∈{1,...,N2}\{i}

(TT⊤)wi,wj

− 2N−1
1 N−2

2

N1
∑

i=1

N2
∑

j=1

(TT⊤)xi,wj
+ N−1

1 + N−1
2 .

It is worth mentioning several facts concerning the above expression. IfT = I the above expected
distance reduces to the standard Euclidean distance between the histogram representations. While
the above equation is expressed using the sequential document contents, the expected distance re-
mains the same under permutation of the words within a document since it is a pure bag of words
construct. Finally, it is possible to pre-computeTT⊤ in order to speed up the distance computation.
The next section contains some experimental results demonstrating the use of the expected distances
in text classification.

5 Experimental Results

We experimented with the effect of using the expectedL2 distance vs. theL2 distance in the context
of nearest neighbor text classification using the Reuters RCV1 corpus. RCV1 has a considerable
label hierarchy which generates many possible binary classification tasks. The effect of replacing
L2 with its expected version was positive in general, but not onevery single labeling task. The
top 1500 words (words that appear in most documents) were excluded from participating in the
translation. This exclusion follows from the motivation ofobtaining a more accurate estimate of
low frequency terms. The most common terms already appear often and there is no need to translate
from them to other words and vice versa. It is important to realize that this exclusion does not
eliminate or downweight the frequent words like the tfidf representation in any way. It merely limits
the translations between these words and other words.

Figure 1 (right) shows the test set error rate as a function oftraining set size for one specific labeling
task,C18 vs. C31. Figure 1 (left) shows the difference in error rate between the two methods as
a function of which labeling task is being examined. In this case the labeling tasks on thex axis
are ordered so the curve indicates that 70% of the labeling tasks gained improvement by using the
expected distance. Note also how the amount of improvement is significantly higher than the amount
of potential damage.

Figure 2 demonstrates the binary classification mean error rate of all-pairs of sub-categories. The
sub-categories were taken directly from the RCV1 topic hierarchy, with the exception ofE01, C01,
C02, G01, andG02. These sub-categories were newly created parents for all leaves not currently
members of any sub-category. The assignment of leaves toC01/C02 andG01/G02 was arbitrary.
All binary classification experiments were averaged over 40cross validations.

6 Discussion

The experimental results demonstrate how overall expecteddistances prove useful for text classifi-
cation. It is likely that expected distances may be used in other areas of text analysis such as query
expansion in information retrieval. Another interesting application that is worth exploring is using
the expected distances in sequential visualization of documents, for example based on the lowbow
framework [17].

The theoretic motivation behind the translation model as a probabilistic biased estimate of the doc-
ument multinomial parameter should be further explored. A solid connection, if found, between
translation based expected distances and variance reduction would be an interesting theoretical re-
sult. It would link theoretical results in estimation in high dimensions to practical information re-
trieval methods such as query expansion.
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Figure 1: Left: Improvement using expectedL2 distance overL2 distance for nearest neighbor
classifier on RCV1 all pairs task as a function of the rank order of the labeling task. Right: Test set
error rate as a function of train set size for one specific RCV1labeling taskC18 vs.C31
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Figure 2: Line plots depicting the averageL2 test set error rate and the expectedL2 test set error
rate for a nearest neighbor classifier. The figures correspond to RCV1 labeling tasks within a certain
hierarchy class. Top figures demonstrate all pair classification within {M01, M13, M14} (left) and
{E12, E13, E14, E21, E31, E41, E51, E01} (right). Bottom figures correspond to labeling popu-
lation of all pairs within{C15, C17, C18, C31, C33, C41, C01, C02} (left) and{G01, G02, G15}
(right).
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