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• Introduction

• Context, motivation & problem definition

• Contributions

• Structured network characterization

• Network prediction model

• Distance-based score function

• Maximum-margin learning

• Experiments

• 1-Matchings on toy data

• Equivalence networks on face images

• Preliminary results on social networks

• Future & related work, summary and conclusions

Outline
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• Pattern classification

• Inputs & outputs

• Independent and identically distributed

• Pattern classification for structured objects

• Sets of inputs & outputs

• Model dependencies amongst output variables

• Parameterize model using a Mahalanobis distance 

metric

Context
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• Man made and natural formed networks exhibit a high 

degree of structural regularity

Motivation for structured 

network prediction



Learning to Compare Examples Workshop, December 8, 2006

• Scale free networks

Motivation

Protein-interaction network, 
Barabási & Oltvai, Nature 

Genetics, 2004

Jeffrey Heer, Berkeley
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• Equivalence networks

Motivation

Equivalence network on 
Olivetti face images - union 
of vertex-disjoint complete 

subgraphs
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• Given

•       entities with attributes      

• And a structural prior on networks

• Output

• Network of similar entities with desired structure 

Structured network prediction

n {x1, . . . ,xn}
xk ∈ Rd

y = (yj,k)

yj,k ∈ {0, 1}
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•
• Tasks

• Initializing

• Augmenting

• Filtering of networks

• Domains

• E-commerce

• Social network analysis

• Network biology

Applications



Learning to Compare Examples Workshop, December 8, 2006

• How can we take structural prior into account?

• Complex dependencies amongst atomic edge predictions

• What similarity should we use?

• Avoid engineering similarity metric for each domain

Challenges for SNP

y1,2

y2,1
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• Degree          of a node

• Number of incident edges

•

•
• Degree distribution

• Probability of node having degree k, for all k

Structural network priors - 1

δ(v)
δ(v) = 5v



Learning to Compare Examples Workshop, December 8, 2006

Degree distributions
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 protein interaction 
network 4233 nodes

social network 6848 
nodes

“rich get richer” 4000 
nodes

equivalence network 
300 nodes
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• Combinatorial families

• Chains

• Trees & forests

• Cycles

• Unions of disjoint complete subgraphs

• Generalized matchings

Structural network priors - 2
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• A b-matching has                 for (almost) all 

• We consider B-matching networks      because they 

are flexible and efficient

B-matchings
δ(v) = b v
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y ∈ B ⇔
∑

k

yj,k = b ∀j
∑

j

yj,k = b ∀k

B

k

p(k)

b

yj,k ∈ {0, 1}
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• Maximum weight b-matching as predictive model

1. Receive nodes and attributes

2. Compute edge weights

3. Select a b-matching with maximal weight

• B-matchings requires              time

Predictive Model

O(n3)

s = (sj,k) sj,k ∈ R

max
y∈B

∑
j,k

yj,ksj,k = max
y∈B

yTs
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• The question that remains is how do we compute the 

weights?

Structured network prediction
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•
• Weights are parameterized by a Mahalanobis distance 

metric

•
•
• In other words, we want to find the best linear 

transformation (rotation & scaling) to facilitate 

b-matching

Learning the weights

sj,k = (xj − xk)
TQ(xj − xk) Q ! 0
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train 
edges

test 
edges

•
• We propose to learn the weights from one or more  

partially observed networks

• We observe the attributes of all nodes

• But only a subset of the edges

•

• Transductive approach

• Learn weights to “fit” training edges

• While structured network prediction 

is performed over training and test edges

Learning the weights
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Example
• Given the following nodes & edges
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Example

Q =

• 1-matching
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Example
• 1-matching
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Example
• 1-matching
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• We use the dual-extragradient algorithm to learn

• Define the margin to be the minimum gap between the predictive 

values of the true structure               and each possible alternative 

structure

Maximum-margin
Q

sQ(x)Ty

sQ(x)Ty1

sQ(x)Ty2

sQ(x)Ty3

[ ]
d1,1 d1,2

d1,2sQ(x) = vec

Taskar et al. 2005

R

y ∈ B
y1, y2, . . . ∈ B



Learning to Compare Examples Workshop, December 8, 2006

• We use the dual-extragradient algorithm to learn

• Define the margin to be the minimum gap between the predictive 

values of the true structure               and each possible alternative 

structure

Maximum-margin
Q

sQ(x)Ty

sQ(x)Ty1

sQ(x)Ty2

sQ(x)Ty3

sQ(x)T (y − y1) ≥ 1
[ ]

d1,1 d1,2

d1,2sQ(x) = vec

Taskar et al. 2005

R

y ∈ B
y1, y2, . . . ∈ B
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• We use the dual-extragradient algorithm to learn

• Define the margin to be the minimum gap between the predictive 

values of the true structure               and each possible alternative 

structure

Maximum-margin
Q

y1, y2, . . . ∈ B

sQ(x)Ty

sQ(x)Ty1

sQ(x)Ty2

sQ(x)Ty3

y ∈ B

sQ(x)T (y − y1) ≥ 1

sQ(x)T (y − y2) ≥ 1

[ ]
d1,1 d1,2

d1,2sQ(x) = vec

Taskar et al. 2005

R
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• You can think of the dual extragradient algorithm as 

successively minimizing the violation of the gap 

constraints

• Each iteration focusses on “worst offending network”

1.

Maximum-margin
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• You can think of the dual extragradient algorithm as 

successively minimizing the violation of the gap 

constraints

• Each iteration focusses on “worst offending network”

1.

2.

Maximum-margin
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ybad = argmin
ỹ∈B

sQ(x)T ỹ

Q = Q− ε
∂gap(y,ybad)

∂Q
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 ∑
jk∈FP

(xj − xk)(xj − xk)
T −

∑
jk∈FN

(xj − xk)(xj − xk)
T



• You can think of the dual extragradient algorithm as 

successively minimizing the violation of the gap 

constraints

• Each iteration focusses on “worst offending network”

1.

2.

Maximum-margin
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ybad = argmin
ỹ∈B

sQ(x)T ỹ

Q = Q− ε
∂gap(y,ybad)

∂Q

dj,k = (xj − xk)
TQ(xj − xk)

= 〈Q, (xj − xk)(xj − xk)
T〉

linear in Q
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jk∈FP

(xj − xk)(xj − xk)
T −

∑
jk∈FN

(xj − xk)(xj − xk)
T



• You can think of the dual extragradient algorithm as 

successively minimizing the violation of the gap 

constraints

• Each iteration focusses on “worst offending network”

1.

2.

Maximum-margin
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sQ(x)T ỹ

Q = Q− ε
∂gap(y,ybad)

∂Q

dj,k = (xj − xk)
TQ(xj − xk)

= 〈Q, (xj − xk)(xj − xk)
T〉

Caveat: this is not the whole 
story!

Thanks to Simon Lacoste-Julien 
for help debugging
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Experiments

• How does it work in practice?
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Error metrics for SNP
• Recall & hamming loss (#FP + #FN)

• Reward the correct structure, but not the distance metric

• We construct a structure-sensitive ROC curve

• Structure predictions are blended with distances

• We can now measure

• Area under the ROC curve (AUC)

• Recall

ỹj,k = yj,k + ε exp(−dj,k)
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Example

300 nodes in 2D
1-matching structure
X,Y features
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Example
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• Olivetti face images

Equivalence networks

300 images
10 per person
30 PCA features
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Olivetti face images

Q =
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Olivetti face images
Reconstructions of
rows of sqrt(Q) 
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Olivetti face images
Reconstructions of
rows of sqrt(Q) -
using scaled rows (x8)
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Olivetti face images
Reconstructions of
rows of sqrt(Q) -
using scaled rows  (x11)
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Olivetti face images
Reconstructions of
rows of sqrt(Q) -
using scaled rows (x14)
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Social network ... and future 

work
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6848 users
“assume” b-matching structure
bag-of-words features 
   (favorite music, books, etc.)

Jeffrey Heer, Berkeley
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Social network ... and future 

work

Q =
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300 nodes in 2D
1-matching structure
X,Y features
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Future work

• Selecting the parameter b

• Learning and matching to the true degree distribution

• Learning over alternate combinatorial structures such 

as trees, forests, cliques
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• A

• Structured output models

• B. Taskar, S. Lacoste-Julien, and M. I. Jordan “Structured prediction, 

dual extragradient and bregman projections” NIPS 2005

• I. Tsochantaridis and T. Joachims and T. Hofmann and Y. Altun “Large 

Margin Methods for Structured and Interdependent Output Variables” 

JMLR 

• F. Sha, L. Saul “Large Margin Gaussian Mixture Models for Automatic 

Speech Recognition” NIPS 2006

• Network reconstruction

• A. Culotta, R. Bekkerman, and A. McCallum “Extracting social 

networks and contact information from email and the web” AAAI 2004

• M. Rabbat, M. Figueiredo, and R. Nowak. “Network inference from co-

occurrences” University of Wisconsin 2006

• Network simulation

• R. Albert and A. L. Barabasi “Statistical mechanics of complex 

networks”, Reviews of Modern Physics, and many others ...

• B

Related Work
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• Distance metric learning

• J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov 

“Neighbourhood components analysis”, NIPS 2004

• E. Xing, A. Ng, M. Jordan, and S. Russell “Distance metric learning, 

with application to clustering with side-information” NIPS 2003

• S. Shalev-Shwartz, Y. Singer, and A. Ng “Online and batch learning of 

pseudometrics” ICML 2004, and many others ...

Related Work



Learning to Compare Examples Workshop, December 8, 2006

• We address a novel structured network prediction 

problem

• We developed a structured output model that uses a 

structural network priors to make predictions

• We parameterized the model using a Mahalanobis 

distance metric

• We demonstrated that it is possible to learn a distance 

suitable for structured network prediction

• The advantage of using a structured output model to 

predict edges is that we obtain a higher recall for 

comparable precision / FP rates

Conclusions



Learning to Compare Examples Workshop, December 8, 2006

Thank you for your attention
Question & comments?


