Learning a Distance Metric for Structured Network Prediction

Stuart Andrews and Tony Jebara Columbia University

Learning to Compare Examples Workshop, December 8, 2006

Outline

- Introduction
 - Context, motivation & problem definition
- Contributions
 - Structured network characterization
 - Network prediction model
 - Distance-based score function
 - Maximum-margin learning
- Experiments
 - 1-Matchings on toy data
 - Equivalence networks on face images
 - Preliminary results on social networks
- Future & related work, summary and conclusions

Context

- Pattern classification
 - Inputs & outputs
 - Independent and identically distributed
- Pattern classification for structured objects
 - Sets of inputs & outputs
 - Model dependencies amongst output variables
- Parameterize model using a Mahalanobis distance metric

Motivation for structured network prediction

• Man made and natural formed networks exhibit a high degree of structural regularity

Motivation

• Scale free networks

Protein-interaction network, Barabási & Oltvai, Nature Genetics, 2004

Jeffrey Heer, Berkeley

Motivation

• Equivalence networks

Equivalence network on Olivetti face images - union of vertex-disjoint complete subgraphs

Structured network prediction

- Given
 - n entities with attributes $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ $\mathbf{x}_k \in \mathbb{R}^d$
 - And a structural prior on networks
- Output
 - Network of similar entities with desired structure

$$\mathbf{y} = (y_{j,k})$$
$$y_{j,k} \in \{0,1\}$$

(4)

2

3

(1)

5

Applications

Tasks

- Initializing
- Augmenting
- Filtering of networks
- Domains
 - E-commerce
 - Social network analysis
 - Network biology

Challenges for SNP

- How can we take structural prior into account?
 - Complex dependencies amongst atomic edge predictions

- What similarity should we use?
 - Avoid engineering similarity metric for each domain

Structural network priors - 1 • Degree $\delta(v)$ of a node • Number of incident edges •

- Degree distribution
 - Probability of node having degree k, for all k

Degree distributions

Learning to Compare Examples Workshop, December 8, 2006

Structural network priors - 2

- Combinatorial families
 - Chains
 - Trees & forests
 - Cycles
 - Unions of disjoint complete subgraphs
 - Generalized matchings

• We consider B-matching networks $\,\mathcal{B}\,$ because they are flexible and efficient

Predictive Model

- Maximum weight b-matching as predictive model
 - 1. Receive nodes and attributes
 - 2. Compute edge weights $\mathbf{s} = (s_{j,k})$ $s_{j,k} \in \mathbb{R}$
 - 3. Select a b-matching with maximal weight

$$\max_{\mathbf{y}\in\mathcal{B}}\sum_{j,k}y_{j,k}s_{j,k}=\max_{\mathbf{y}\in\mathcal{B}}\mathbf{y}^T\mathbf{s}$$

• B-matchings requires $\mathcal{O}(n^3)$ time

Structured network prediction

• The question that remains is how do we compute the weights?

Learning the weights

 Weights are parameterized by a Mahalanobis distance metric

•
$$s_{j,k} = (x_j - x_k)^T Q(x_j - x_k) \qquad Q \succeq 0$$

 In other words, we want to find the best linear transformation (rotation & scaling) to facilitate b-matching

Learning the weights

- We propose to learn the weights from one or more partially observed networks
 - We observe the attributes of all nodes
 - But only a subset of the edges
 - •
- Transductive approach
 - Learn weights to "fit" training edges
 - While structured network prediction is performed over training and test edges

Example

• Given the following nodes & edges

• 1-matching

• 1-matching

Taskar et al. 2005

• We use the dual-extragradient algorithm to learn Q

• Define the margin to be the minimum gap between the predictive values of the true structure $y \in \mathcal{B}$ and each possible alternative structure $y_1, y_2, \ldots \in \mathcal{B}$

$$\mathbf{s}_Q(\mathbf{x})^T \mathbf{y}$$

 \mathbb{R}

$$\mathbf{s}_Q(\mathbf{x}) = \operatorname{vec} egin{bmatrix} d_{1,1} & d_{1,2} \ d_{1,2} \ d_{1,2} \ \end{pmatrix}$$

 $\mathbf{s}_Q(\mathbf{x})^T \mathbf{y}_2$ $\mathbf{s}_Q(\mathbf{x})^T \mathbf{y}_3$

 $\mathbf{s}_Q(\mathbf{x})^T \mathbf{y}_1$

Taskar et al. 2005

• We use the dual-extragradient algorithm to learn Q

• Define the margin to be the minimum gap between the predictive values of the true structure $y \in \mathcal{B}$ and each possible alternative structure $y_1, y_2, \ldots \in \mathcal{B}$ $\mathbf{s}_Q(\mathbf{x})^T \mathbf{y}$ $\mathbf{s}_Q(\mathbf{x})^T \mathbf{y}$ $\mathbf{s}_Q(\mathbf{x})^T \mathbf{y}_1$ $\mathbf{s}_Q(\mathbf{x})^T \mathbf{y}_1$ $\mathbf{s}_Q(\mathbf{x})^T \mathbf{y}_1$

$$\mathbf{s}_Q(\mathbf{x})^T \mathbf{y}_2 \ \mathbf{s}_Q(\mathbf{x})^T \mathbf{y}_3$$

 \mathbb{R}

 \mathbb{R}

Taskar et al. 2005

• We use the dual-extragradient algorithm to learn Q

Define the margin to be the minimum gap between the predictive values of the true structure $y \in \mathcal{B}$ and each possible alternative structure $y_1, y_2, \ldots \in \mathcal{B}$ $\mathbf{s}_{Q}(\mathbf{x})^{T}\mathbf{y} \qquad \qquad \mathbf{s}_{Q}(\mathbf{x}) = \operatorname{vec} \begin{bmatrix} d_{1,1} \ d_{1,2} \\ d_{1,2} \\ \mathbf{s}_{Q}(\mathbf{x})^{T}\mathbf{y}_{1} \\ \mathbf{s}_{Q}(\mathbf{x})^{T}(\mathbf{y} - \mathbf{y}_{1}) \geq 1 \\ \mathbf{s}_{Q}(\mathbf{x})^{T}(\mathbf{y} - \mathbf{y}_{2}) \geq 1 \\ \mathbf{s}_{Q}(\mathbf{y} - \mathbf{y}_{2}) \geq 1 \\ \mathbf{s}_{Q}(\mathbf{y} - \mathbf{y}_{2}) \leq 1$ $\mathbf{s}_Q(\mathbf{x})^T \mathbf{y}_2 \ \mathbf{s}_Q(\mathbf{x})^T \mathbf{y}_3$

- You can think of the dual extragradient algorithm as successively minimizing the violation of the gap constraints
- Each iteration focusses on "worst offending network"

1.
$$\mathbf{y}_{\text{bad}} = \operatorname*{argmin}_{\tilde{\mathbf{y}} \in \mathcal{B}} \mathbf{s}_Q(\mathbf{x})^T \tilde{\mathbf{y}}$$

- You can think of the dual extragradient algorithm as successively minimizing the violation of the gap constraints
- Each iteration focusses on "worst offending network"

1.
$$\mathbf{y}_{\text{bad}} = \operatorname*{argmin}_{\tilde{\mathbf{y}} \in \mathcal{B}} \mathbf{s}_Q(\mathbf{x})^T \tilde{\mathbf{y}}$$

2.
$$Q = Q - \epsilon \frac{\partial \text{gap}(\mathbf{y}, \mathbf{y}_{\text{bad}})}{\partial Q}$$

- You can think of the dual extragradient algorithm as successively minimizing the violation of the gap constraints
- Each iteration focusses on "worst offending network"

1.
$$\mathbf{y}_{\text{bad}} = \operatorname*{argmin}_{\tilde{\mathbf{y}} \in \mathcal{B}} \mathbf{s}_Q(\mathbf{x})^T \tilde{\mathbf{y}}$$

2. $Q = Q - \epsilon \frac{\partial \operatorname{gap}(\mathbf{y}, \mathbf{y}_{\text{bad}})}{\partial Q}$

$$d_{j,k} = (x_j - x_k)^T Q(x_j - x_k) = \langle Q, (x_j - x_k)(x_j - x_k)^T \rangle$$
linear in Q
$$\left(\sum_{jk \in \mathrm{FP}} (x_j - x_k)(x_j - x_k)^T - \sum_{jk \in \mathrm{FN}} (x_j - x_k)(x_j - x_k)^T\right)$$

- You can think of the dual extragradient algorithm as successively minimizing the violation of the gap constraints
- Each iteration focusses on "worst offending network"

• How does it work in practice?

Error metrics for SNP

- Recall & hamming loss (#FP + #FN)
 - Reward the correct structure, but not the distance metric
- We construct a structure-sensitive ROC curve
 - Structure predictions are blended with distances

$$\tilde{y}_{j,k} = y_{j,k} + \epsilon \exp(-d_{j,k})$$

Learning to Compare Examples Workshop, December 8, 2006

300 nodes in 20 1-matching structure X,Y features

Example

Learning to Compare Examples Workshop, December 8, 2006

Equivalence networks

• Olivetti face images

300 images 10 per person 30 PCA features

Learning to Compare Examples Workshop, December 8, 2006

Reconstructions of rows of sqrt(Q)

Reconstructions of rows of sqrt(Q) using scaled rows (x8)

Learning to Compare Examples Workshop, December 8, 2006

Reconstructions of rows of sqrt(Q) using scaled rows (x1 1)

Reconstructions of rows of sqrt(Q) using scaled rows (x14)

Social network ... and future work

6848 users "assume" b-matching structure bag-of-words features (favorite music, books, etc.)

Jeffrey Heer, Berkeley

Social network ... and future work

Future work

- Selecting the parameter b
- Learning and matching to the true degree distribution
- Learning over alternate combinatorial structures such as trees, forests, cliques

Related Work

• Structured output models

- B. Taskar, S. Lacoste-Julien, and M. I. Jordan "Structured prediction, dual extragradient and bregman projections" NIPS 2005
- I. Tsochantaridis and T. Joachims and T. Hofmann and Y. Altun "Large Margin Methods for Structured and Interdependent Output Variables" JMLR
- F. Sha, L. Saul "Large Margin Gaussian Mixture Models for Automatic Speech Recognition" NIPS 2006
- Network reconstruction
 - A. Culotta, R. Bekkerman, and A. McCallum "Extracting social networks and contact information from email and the web" AAAI 2004
 - M. Rabbat, M. Figueiredo, and R. Nowak. "Network inference from cooccurrences" University of Wisconsin 2006
- Network simulation
 - R. Albert and A. L. Barabasi "Statistical mechanics of complex networks", Reviews of Modern Physics, and many others ...

Related Work

- Distance metric learning
 - J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov "Neighbourhood components analysis", NIPS 2004
 - E. Xing, A. Ng, M. Jordan, and S. Russell "Distance metric learning, with application to clustering with side-information" NIPS 2003
 - S. Shalev-Shwartz, Y. Singer, and A. Ng "Online and batch learning of pseudometrics" ICML 2004, and many others ...

Conclusions

- We address a novel structured network prediction problem
- We developed a structured output model that uses a structural network priors to make predictions
- We parameterized the model using a Mahalanobis distance metric
- We demonstrated that it is possible to learn a distance suitable for structured network prediction
- The advantage of using a structured output model to predict edges is that we obtain a higher recall for comparable precision / FP rates

Thank you for your attention Question & comments?