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Introduction

» Problem: Learn a Mahalanobis distance function subject to
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Introduction

>

Problem: Learn a Mahalanobis distance function subject to
linear constraints

v

Information-theoretic viewpoint
> Bijection between Gaussian distributions and Mahalanobis
distances
» Natural entropy-based objective

v

Connections with kernel learning

v

Fast and simple methods

» Based on Bregman's method for convex optimization
> No eigenvalue computations are needed!
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Formulation

Learning a Mahalanobis Distance

» Given n points {x1,...,x,} in %9

» Given inequality constraints relating pairs of points
» Similarity constraints: da(xi,%;) < u
» Dissimilarity constraints: da(xi,xj) > £
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Formulation

Learning a Mahalanobis Distance

» Given n points {x1,...,x,} in %9
» Given inequality constraints relating pairs of points
» Similarity constraints: da(xi,%;) < u
» Dissimilarity constraints: da(xi,xj) > £
» Problem: Learn a Mahalanobis distance that satisfies these
constraints:

da(xi, %)) = (xi — %) T A(xi — xj)

» Applications

» k-means clustering
> Nearest neighbor searches
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Formulation

Mahalanobis Distance and the Multivariate Gaussian

» Problem: How to choose the ‘best’ Mahalanobis distance
from the feasible set?
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Mahalanobis Distance and the Multivariate Gaussian

» Problem: How to choose the ‘best’ Mahalanobis distance
from the feasible set?

» Solution: Regularize by choosing that which is ‘closest’ to
Euclidean distance

» Bijection between the multivariate Gaussian and the
Mahalanobis Distance

P m, A) = — exp(—5(x — m) T Alx — m))
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Formulation

Mahalanobis Distance and the Multivariate Gaussian

» Problem: How to choose the ‘best’ Mahalanobis distance
from the feasible set?

» Solution: Regularize by choosing that which is ‘closest’ to
Euclidean distance

» Bijection between the multivariate Gaussian and the
Mahalanobis Distance

P m. A) = — exp(—5(x — m)T A(x — m))

» Allows for comparison of two Mahalanobis distances
» Differential relative entropy between the associated Gaussians:

p(x;my, Ap)
KL . A . A pr— N A | T AN
(p(x; m1, A1)[|p(x; mz, Az)) /p(x, m1, A1) log p(x; ma, Az)
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Formulation

Problem Formulation

Goal: Minimize differential relative entropy subject to pairwise
inequality constraints

min KL(p(x m A)Hp(x m, /))

subject to  da(xj,x;) < (i,j) €S,
da(xj, x ) ¢ (ivj) eb
A>0
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lence to Kernel g
Algorithm Optimization via Bregman’s Method
Extensions

Overview: Optimizing the Model

» Show an equivalence between our problem and a low-rank
kernel learning problem [Kulis, 2006]

» Yields closed-form solutions to compute the problem objective
» Shows that the problem is convex
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ce to Kernel Learning
Algorithm i tion via Bregman’s Method
Extensions

Overview: Optimizing the Model

» Show an equivalence between our problem and a low-rank
kernel learning problem [Kulis, 2006]

» Yields closed-form solutions to compute the problem objective
» Shows that the problem is convex

» Use this equivalence to solve our problem efficiently
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Equivalence to Kernel Learning
Algorithm Optimization via Bregman’s Method
Extensions

Low-Rank Kernel Learning

> Given X = [x1 X2 ... Xp], x; € R9, define Ky = XX

» Constraints: similarity (S) or dissimilarity (D) between pairs
of points

» Objective: Learn K that minimizes the divergence to Ky
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Low-Rank Kernel Learning

> Given X = [x1 X2 ... Xp], x; € R9, define Ky = XX

» Constraints: similarity (S) or dissimilarity (D) between pairs
of points

» Objective: Learn K that minimizes the divergence to Ky
min DBurg(Ka Ko)
subject to  Kij + Kjj —2Kjj < u (i,j) €S,
K,','—I—KJ'J'—QK,-J-ZK (i,j)ED,
K>=0

» Dgyrg is the Burg divergence

Deurg(K, Ko) = Tr(KKy ') — log det(KKy ') — n
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Equivalence to Kernel Learning
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Extensions

Equivalence to Kernel Learning

[Kulis, 2006] Let K be the optimal solution to the low-rank kernel
learning problem.

» Then K has the same range space as Kp
» K=XTwWTwx
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Equivalence to Kernel Learning

[Kulis, 2006] Let K be the optimal solution to the low-rank kernel
learning problem.

» Then K has the same range space as Kp

» K=XTWTwx
Theorem: Let K = XT W T WX be an optimal solution to the
low-rank kernel learning problem.

» Then A= WTW is an optimal solution to the corresponding
metric learning problem
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Equivalence to Kernel Learning
Algorithm Optimization via Bregman’s Method
Extensions

Proof Sketch

Lemma 1: Dg, (K, Ko) = 2KL(p(x; m, A)||p(x; m,/)) + ¢
» Establishes that the objectives for the problem are the same

» Builds on a recent connection relating the relative entropy
between Gaussians and the Burg divergence [Davis, 2006]
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Proof Sketch

Lemma 1: Dg, (K, Ko) = 2KL(p(x; m, A)||p(x; m,/)) + ¢
» Establishes that the objectives for the problem are the same

» Builds on a recent connection relating the relative entropy
between Gaussians and the Burg divergence [Davis, 2006]

Lemma 2: Given K = XTAX, A is feasible if and only if K is
feasible
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Equ ce to Kernel ning
Algorithm Optimization via Bregman’s Method
Extensions

Optimization via Bregman's Method

» Solve the associated kernel learning problem via Bregman's
method
» Dual ascent method
> lIteratively projects onto one constraint at a time
» Closed-form updates are known for this projection
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Optimization via Bregman's Method

» Solve the associated kernel learning problem via Bregman's
method
» Dual ascent method
> lteratively projects onto one constraint at a time
» Closed-form updates are known for this projection
» Running time per iteration: O(cd?)
» Works on the kernel in factored form
» Uses closed-form Bregman projections
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Optimization via Bregman's Method

» Solve the associated kernel learning problem via Bregman's
method

» Dual ascent method

> lteratively projects onto one constraint at a time

» Closed-form updates are known for this projection
» Running time per iteration: O(cd?)

» Works on the kernel in factored form

» Uses closed-form Bregman projections

» Requires no eigenvalue decomposition
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Equ e to Kernel Le
Algorithm Optin on via Bregman’s Method
Extensions

Extensions

» Minimizing KL-divergence to a different Mahalanobis matrix
» inverse of the sample covariance matrix
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Equivalence to Kernel g
Algorithm Opti tion via Bregman’s Method
Extensions

Extensions

» Minimizing KL-divergence to a different Mahalanobis matrix
» inverse of the sample covariance matrix

» Slack variables

» General linear inequality constraints
» e.g. Relative distance comparisons [Schutz, 2003]
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Experiments

Experimental Methodology

» Goal: learn a Mahalanobis function for kNN classification
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» Goal: learn a Mahalanobis function for kNN classification
» Approach:
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Experiments

Experimental Methodology

» Goal: learn a Mahalanobis function for kNN classification

» Approach:
» Constrain points in the same class to be similar
» Constrain points in different class to be dissimilar
» Upper and lower bounds determined empirically
» Sample 100 such constraints
» No parameter tuning
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Experiments

Experimental Methodology

» Goal: learn a Mahalanobis function for kNN classification

» Approach:
» Constrain points in the same class to be similar
» Constrain points in different class to be dissimilar
» Upper and lower bounds determined empirically
» Sample 100 such constraints
» No parameter tuning

» Evaluate via cross-validation
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Experiments

Experimental Results

» ITML: Information-Theroetic Metric Learning

» Sample Cov: parametrize Mahalanobis distance by the inverse
of the sample covariance of the data

» LDA: Linear Discriminant Analysis

» MCML: Maximally Collapsing Metric Learning [Globerson,
2005]
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Experiments

Experimental Results

» ITML: Information-Theroetic Metric Learning

» Sample Cov: parametrize Mahalanobis distance by the inverse
of the sample covariance of the data

» LDA: Linear Discriminant Analysis

» MCML: Maximally Collapsing Metric Learning [Globerson,

2005]

] Dataset H ITML \ Sample Cov \ Euclidean \ LDA \ MCML ‘
Balance-scale || 0.9312 0.9072 0.9120 0.9312 | .9536
Wine 0.8315 0.8258 0.8427 | 0.7303 | .8034
Iris 1.0000 0.9733 0.9667 | 1.0000 | .9600
lonosphere 0.9915 0.9858 0.9829 | 0.5128 | .9915
Soybean 0.9283 0.9429 0.9283 | 0.9385 | .9590
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Experiments

Conclusion

» Presented an information-theoretic formulation for metric
learning

» Given an equivalence between this problem and low-rank
kernel learning

» Provided efficient algorithms

» Experiments are promising, but much more work is needed!
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