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Introduction

I Problem: Learn a Mahalanobis distance function subject to
linear constraints

I Information-theoretic viewpoint
I Bijection between Gaussian distributions and Mahalanobis

distances
I Natural entropy-based objective

I Connections with kernel learning
I Fast and simple methods

I Based on Bregman’s method for convex optimization
I No eigenvalue computations are needed!
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Learning a Mahalanobis Distance

I Given n points {x1, ..., xn} in <d

I Given inequality constraints relating pairs of points
I Similarity constraints: dA(xi, xj) ≤ u
I Dissimilarity constraints: dA(xi, xj) ≥ `

I Problem: Learn a Mahalanobis distance that satisfies these
constraints:

dA(xi, xj) = (xi − xj)
TA(xi − xj)

I Applications
I k-means clustering
I Nearest neighbor searches
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Mahalanobis Distance and the Multivariate Gaussian

I Problem: How to choose the ‘best’ Mahalanobis distance
from the feasible set?

I Solution: Regularize by choosing that which is ‘closest’ to
Euclidean distance

I Bijection between the multivariate Gaussian and the
Mahalanobis Distance

p(x;m,A) =
1

Z
exp (−1

2
(x−m)TA(x−m))

I Allows for comparison of two Mahalanobis distances
I Differential relative entropy between the associated Gaussians:

KL(p(x;m1,A1)‖p(x;m2,A2)) =

∫
p(x;m1,A1) log

p(x;m1,A1)

p(x;m2,A2)
dx.
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Problem Formulation

Goal: Minimize differential relative entropy subject to pairwise
inequality constraints

min KL(p(x;m,A)‖p(x;m, I ))

subject to dA(xi , xj) ≤ u (i , j) ∈ S ,

dA(xi , xj) ≥ ` (i , j) ∈ D

A � 0
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Equivalence to Kernel Learning
Optimization via Bregman’s Method
Extensions

Overview: Optimizing the Model

I Show an equivalence between our problem and a low-rank
kernel learning problem [Kulis, 2006]

I Yields closed-form solutions to compute the problem objective
I Shows that the problem is convex

I Use this equivalence to solve our problem efficiently
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Equivalence to Kernel Learning
Optimization via Bregman’s Method
Extensions

Low-Rank Kernel Learning

I Given X = [x1 x2 ... xn], xi ∈ <d , define K0 = XTX

I Constraints: similarity (S) or dissimilarity (D) between pairs
of points

I Objective: Learn K that minimizes the divergence to K0

min DBurg(K ,K0)

subject to Kii + Kjj − 2Kij ≤ u (i , j) ∈ S ,

Kii + Kjj − 2Kij ≥ ` (i , j) ∈ D,

K � 0

I DBurg is the Burg divergence

DBurg(K ,K0) = Tr(KK−1
0 )− log det(KK−1

0 )− n
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Equivalence to Kernel Learning
Optimization via Bregman’s Method
Extensions

Equivalence to Kernel Learning

[Kulis, 2006] Let K be the optimal solution to the low-rank kernel
learning problem.

I Then K has the same range space as K0

I K = XTW TWX

Theorem: Let K = XTW TWX be an optimal solution to the
low-rank kernel learning problem.

I Then A = W TW is an optimal solution to the corresponding
metric learning problem
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Equivalence to Kernel Learning
Optimization via Bregman’s Method
Extensions

Proof Sketch

Lemma 1: DBurg(K ,K0) = 2KL(p(x;m,A)‖p(x;m, I )) + c

I Establishes that the objectives for the problem are the same

I Builds on a recent connection relating the relative entropy
between Gaussians and the Burg divergence [Davis, 2006]

Lemma 2: Given K = XTAX , A is feasible if and only if K is
feasible
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Equivalence to Kernel Learning
Optimization via Bregman’s Method
Extensions

Optimization via Bregman’s Method

I Solve the associated kernel learning problem via Bregman’s
method

I Dual ascent method
I Iteratively projects onto one constraint at a time
I Closed-form updates are known for this projection

I Running time per iteration: O(cd2)
I Works on the kernel in factored form
I Uses closed-form Bregman projections

I Requires no eigenvalue decomposition
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Extensions

I Minimizing KL-divergence to a different Mahalanobis matrix
I inverse of the sample covariance matrix

I Slack variables
I General linear inequality constraints

I e.g. Relative distance comparisons [Schutz, 2003]
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Experimental Methodology

I Goal: learn a Mahalanobis function for kNN classification

I Approach:
I Constrain points in the same class to be similar
I Constrain points in different class to be dissimilar
I Upper and lower bounds determined empirically
I Sample 100 such constraints
I No parameter tuning

I Evaluate via cross-validation
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Experimental Results

I ITML: Information-Theroetic Metric Learning

I Sample Cov: parametrize Mahalanobis distance by the inverse
of the sample covariance of the data

I LDA: Linear Discriminant Analysis

I MCML: Maximally Collapsing Metric Learning [Globerson,
2005]

Dataset ITML Sample Cov Euclidean LDA MCML

Balance-scale 0.9312 0.9072 0.9120 0.9312 .9536

Wine 0.8315 0.8258 0.8427 0.7303 .8034

Iris 1.0000 0.9733 0.9667 1.0000 .9600

Ionosphere 0.9915 0.9858 0.9829 0.5128 .9915

Soybean 0.9283 0.9429 0.9283 0.9385 .9590
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Conclusion

I Presented an information-theoretic formulation for metric
learning

I Given an equivalence between this problem and low-rank
kernel learning

I Provided efficient algorithms

I Experiments are promising, but much more work is needed!
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