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Learning an Invariant Dissimilarity Metric
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@ Training a parameterized, invariant dissimilarity metric may

be a solution to the many-category problem.

¥ Find a parameterized mapping Gw(X) such that the L1 distance
HGw(X1)- Gw(X2)Il reflects the “semantic” distance between X1
and X2.

¥ Once trained, a trainable dissimilarity metric can be used to
classify new categories using a very small number of training

samples (used as prototypes).

¥ Siamese Architecture [Bromley et al. NIPS1992 (signature

verification)]

[Chopra, Hadsell, LeCun, CVPR 20035]



similarity Metric for Face Recognitio
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& X and Y are images
E(W.,X,Y)

& Y is a discrete variable with many

Il Gw(X)-Gw(Y)ll possible values
» All the people in our gallery

& Example of architecture:
Gw(X) Gw(Y)

» A function G(X) maps input images
into a low-dimensional space in
which the Euclidean distance
measures dissemblance.

@ Inference:

» Find the Y in the gallery that
minimizes the energy (find the Y
that is most similar to X)

» Minimization through exhaustive
search.

Yann LeCun * New York University
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Slamese Archltecture

& Siamese Architecture

il Application: face verification/recognition

Make this small Make this large
E(W,X1,X2) E(W.X1,X2)

|l§}w(X1)-Gw(>1<% u'S}w(Xl) GW(X )

‘ Gw(X1) ‘ ‘ Gw(X2) \ ‘ Gw(X1) ‘ ‘ Gw(X2) \

Genuine Pair Impostor Pair
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Dissimilarity Metric vs Traditional Classification
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@ Traditional approaches to classification using discriminative methods:
@ Require that all categories be known in advance.
@ Require that a large number of training samples be available.

& Practical for a relatively small number of classes (<100).

f

| switch | f

switch
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.A rainable Metric vs Other Dimensionality Reduction Methods

& PCA-based dimensionality reduction methods
@ Linear projection trained non-discriminatively to maximize variance.

@ Disadvantages: linear; no discrimination.

i@ LDA-based dimensionality reduction methods
@ Linear projection trained discriminatively to maximize inter-class variance and minimize
intra-class variance.

@ Disadvantage: linear

& Kernel — PCA and Kernel — LDA

@ Non-linear extensions of the above.
@ Disadvantage: no invariance unless it's built into the kernel.
& LLE and MDS
@ Maps each training sample into low-dim Euclidean space that preserve distances or angles.
@ Disadvantages: no direct mapping, no parameterized invariance, no simple way to use the
“semantic” distance between training samples.
& Advantages of trainable metrics:
@ The non-linear parameterization of the mapping allows to learn dissimilarity metrics that are
invariant to irrelevant transformations of the inputs.



Trainable Metrics vs hand-crafted invariances
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¥ Dissimilarity metrics with hand-crafted invariances
@ Tangent distance methods.
@ Elastic matching.
@ Warping-based normalization algorithms.

@ Disadvantages

@ Cannot learn invariance to transformations that are hidden in the data (e.g.
Glasses or no glasses for face recognition).
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: iamese Architecture for Comparing Time-Series Data
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TARGET
DISTANCE
MEASURE Signature
12230 Featurs Vector
one feature vector 16
e i@ Signature Verification
2 (Bromley, Guyon, LeCun,
i Sackinger, Shah NIPS
features  § ; J 8 input } 1994)
field of tme = B -
view uhrgtmam 200 units ‘& The signatures are
along the time axis
| } represented by the XY
trajectory of the pen
PREPROCESSING PREPROCESSING

K Bromn KA Brwn



ZID_Qonvolutional Net (TDNN)
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TARGET

DISTANCE
MEASURE

2nd avera- 4
ging layer
2nd convolu-
tional layer 4 EH1
57 units
1st averaging 6
layer
: .
64 units
6 IM 1st convolutional layer ]
3
\ 192 units
8 ' Input
g

200 units



’Examples

ACCEPTED REJECTED

033

0 84 005 &80 % of forgeries detected
for 97 % genuine
3 W 8 023 signatures accepted
i The ““code” for a signature
W W only has 80 dimensions.

11 030
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Slamese Archltecture

& Siamese Architecture

il Application: face verification/recognition

Make this small Make this large
E(W, Xl ,X2) E(W,X1,X2)

UFW(XI) Gwo,(ﬂ u'S}w(Xl) GW(X )

‘ Gw(X1) ‘ ‘ Gw(X2) \

Genuine Pair Impostor Pair
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Probabilistic Tralnlng Maximum leellhood
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& Y: identity of X2 exp(—E(W,Y, X))

& Computing the conditional P(Y[X) and P(Y]X) = fY exp(—E(W,Y, X))
the joint P(Y,X)
@ Training set: (X1,Y1), (X2,Y2)...... P(Y,X) = exp(=EW, Y, X))

Jy,x exp(=E(WY, X))

¥ Training Criterion: maximize the

likelihood of the training data under exp E(W yi X?,))

: P(YLY? . . |X' X7,
the model: (Yo, 7=, .. ] X°, X7, H fY exp(—E(W. Y, X1))
i Loss function: negative log likelihood

LOV,YLY? L X X2 ) =) B(W,Y', X)+log U exp(—E(W,Y,X?:))]
Y

/ Contrastive term: \
Energy term: :

Pull up on the energies

Push down on the energy of all possible answers

VERY EXPENSIVE

Yann LeCun * New York University

of the correct answers
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LV, YL Y2 XN X)) =) E(W,Y', X")+log U exp(—E(W,Y, X%))
i Y

& The Toronto Solution: Sampling

¥ Neighborhood Component Analysis [Golberger, Roweis, Hinton,
Salakhutdinov, NIPS-04]

¥ Stochastic Neighbor Embedding [Hinton and Roweis NIPS-02]

i Then again, sampling is the solution to everything in Toronto.

& The New York Solution: go after the worst offenders

¥ Use a different loss function

Yann LeCun

t New York University
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Another Loss Function
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@ Idea: don't pull up on the energies of all the answer, simply pull up on the
energy of the most offending incorrect answer (incorrect answer with

lowest energy)

» This will cause the desired answer to have lower energy than the worst
offending incorrect answer (WOIA).

MOIA: }_/?' — at‘gmiﬂy#yi E(I/Va Y, Xz)

LV, Y Y XX L) =) LY (EW, Y, XY)+L™ (miny 2y E(W, Y, X))

\

Decreasing function:

Increasing function: Pulls up on the energies
Pushes down on the energy of the most offending
of the correct answers incorrect answer

Yann LeCun * New York University



Loss Function
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Siames=a Cost Funcliaon

E(W.X1,X2)

A
\l;}w(XD-Gw(Xz')n_I

Gw(X1) Gw(X2)

X1 X

a 1Q 20 a3a
sudidean dietfanocs

& Siamese models: distance between the outputs of two identical copies of a model.
@@ Energy function: E(W,X1,X2) = IGw(X1)-Gw(X2)Il

@ If X1 and X2 are from the same category (genuine pair), train the two copies of the model

to produce similar outputs (low energy)

@ If X1 and X2 are from different categories (impostor pair), train the two copies of the
model to produce different outputs (high energy)

i@ Loss function: increasing function of genuine pair energy, decreasing function of

impostor pair energy.
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Examples of Loss Functions

@ Worst Offending Incorrect Answer:
& - i
Y' = argmin, v E(W,y, X")
Square-Square Loss

W) =3 EW,Y" X%+ (max(0,m — miny zys E(W, Y, X))’

Square-Exponential Loss

L(W) = Z EW,Y", X")? + K exp (miny4y: E(W,Y, X))

Emiriia

m Ephus

Yann LeCun

t New York University
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Loss Function: Square-Exponential
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i@ Our Loss function for a single training pair (X1,X2):
L(W, XI’X2)=( 1— Y)LG <EW(X1,X2>)+YL1(EW(X1,X2>)

) —2.77 Ey X, X))
:(1_y)E(EW(XLX2)2)+(Y)2Re g
E (X X)=IG, (X )=-G (X,

And R is the largest possible value of

EW<X1,X2)

Y=0 for a genuine pair, and Y=1 for

an impostor pair.




® The AT&T/ORL dataset

* Total subjects: 40. Images per subject: 10. Total images: 400.

* Images had a moderate degree of variation in pose, lighting, expression and head position.

* Images from 35 subjects were used for training. Images from 5 remaining subjects for testing.
®* Training set was taken from: 3500 genuine and 119000 impostor pairs.

* Test set was taken from: 500 genuine and 2000 impostor pairs.

* http://www.uk.research.att.com/facedatabase.html

AT&T/ORL
Dataset
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Face Verification datasets: AT&T, FERET, and A

R/Purdue__

®* The FERET dataset. part of the dataset was used only for training.
* Total subjects: 96. Images per subject: 6. Total images: 1122.

* Images had high degree of variation in pose, lighting, expression and head position.
* The images were used for training only.

* http://www.itl.nist.gov/iad/humanid/feret/

FERET Dataset




Face Verification datasets: AT&T, FERET, and AR/Purdue |
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®* The AR/Purdue dataset
* Total subjects: 136. Images per subject: 26. Total images: 3536.

* Each subject has 2 sets of 13 images taken 14 days apart.

* Images had very high degree of variation in pose, lighting, expression and position. Within each set
of 13, there are 4 images with expression variation, 3 with lighting variation, 3 with dark sun glasses
and lighting variation, and 3 with face obscuring scarfs and lighting variation.

* Images from 96 subjects were used for training. The remaining 40 subjects were used for testing.
® Training set drawn from: 64896 genuine and 6165120 impostor pairs.
* Test set drawn from: 27040 genuine and 1054560 impostor pairs.

® http://rv11.ecn.purdue.edu/aleix/aleix_face_DB.html
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Preprocessing

The 3 datasets each required a small amount of preprocessing.
FERET: Cropping, subsampling, and centering (see below)
AR/PURDUE: Cropping and subsampling

AT&T: Subsampling only
subsample ‘
center l

Crop




Centering with a Gaussian-blurred face template

wi_{jé

¥ Coarse centering was done on the FERET database images
1. Construct a template by blurring a well-centered face.
2. Convolve the template with an uncentered image.

3. Choose the peak’ of the convolution as the center of the image.

Convolve mask with :
peak is center

image

of image
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'Alternated Convolutions

and Subsampling

i@ Local features are extracted
everywhere.

@ averaging/subsampling layer
builds robustness to variations in

feature locations.

i@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'(2,....

Yann LeCun

HNE 0 CIRRY

“Simple cells”
“Complex cells”

Averaging
Multiple

convolutions

subsampling

[}

= N.E LWty
= .
w0 B, O i, o

t New York University
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:Architecture for the Mapping Function Gw(X)

Convolutional net

Layer 6
Input Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Fully connected
i 45@20x15
maee 15@50x40  15@25x20 h @55 250

2@56x46
Low-dimensional

invariant representation

-

—
I
7x7 4x3 5x5
convolution subsampling convolution subsampling convolution

(15 kernels) (198 kernels) (11250 kernels)



Internal state for genuine and impostor pairs
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aussian Face Model in the output space

&

el e e

2006860
066 A 8EAQ

A gaussian model
constructed from 5

images of the
above subject.

1
Threshold —4



Dataset for Verification Verlflcatlon Results
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il tested on AT&T and AR/Purdue Il The ARPurduie dataset

@ AT&T dataset “alse Accept-alglsAReept False Reject
Number of subjects: 5 10.00% 100000% 11.00%
7.50% 7.3004¢ 14.60%

Images/subject: 10 5 00% 50004 19.00%

Images/Model: 5

Total test size: 5000

Number of Genuine: 500

Number of Impostors: 4500 z
il Purdue/AR dataset ”

Number of subjects: 40 Eu

Images/subject: 26 3

Images/Model: 13 "

Total test size: 5000 5

Number of Genuine: 500 :

10% 510 1520 2530 3540 ﬁmpsfeoesvo 7580 85 9 95100

Number of Impostors: 4500
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Classification Examples
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& Example: Correctly classified genuine pairs

KP8R

energy: 0.3159 energy: 0.0043 energy: 0.0046
i@ Example: Correctly classified impostor pairs

£28ALR

energy: 20.1259 energy: 32.7897 energy: 5.7186

e= 29

energy: 10.3209 energy: 2.8243

& Example: Mis-classified

pairs
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"DrLim: Dimensionality

Reduction by Learning

van Invariant Mapping

[Hadsell, Chopra, LeCun, CVPR 2006]

Yann LeCun




‘Traditional’” Manifold Learning
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Nim
.

& LLE, Laplacian Eigenmaps, and Hessian LLE: map a given set of high

dimensional points to a corresponding set low-dimensional points.
i All the points must be known in advance.

il New points whose relationship to the original training points is not known cannot be
mapped to the low-dimensional space.

i There is no real “function” that maps input objects to low-dimensional output vectors.

i With LLE: a “meaningful” and computable distance metric between input objects must

be devised.

Yann LeCun * New York University



Learning a FUNCTION from input to output
ANew X New Y
_ A
- Gw(X) |- ;
/

@ With a function, new points can be mapped easily

» We do not need to come up with a similarity metric in input space

» We do not need to know the relationship of new points to training
points

& Questions:

» How do we do it? What loss function?
» How to we determine that two samples are “similar™?

Yann LeCun * New York University



Learning an INVARIANT FUNCTION from input to output

Gw(X) |- "

/A2
& We want the mapping to be invariant to

irrelevant variations of the input

» Example 1: the low-dim image of an airplane _..."1-\
should be independent of its illumination.

» Examples 2: the low-dim image of a
handwritten character should be independent
of its position in the frame

Yann LeCun * New York University
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Previous Work
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@ Some methods generate a mapping, but rely on computable distance metrics in
input space.
@ Principal Component Analysis (PCA)
@ [SOMAP
@ Local Linear Embedding (LLE)
@ Multidimensional Scaling (MDS) — in Classical Sense
@ Others don't rely on distance metrics, but they do not generate a function.
@ Laplacian EigenMaps
@ Hessian LLE
@ Kernel PCA

Yann LeCun * New York University



hat do we want?
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¥ Learning low-dimensional manifolds with invariance to irrelevant
transformation of the inputs

i Taking advantage of prior knowledge about which sample is “semantically”
similar to which other sample.

¥ Learning a MAPPING (an actual function) that maps inputs to the low-
dimensional space, so we can apply it to new patterns whose relationship to the
training samples is unknown

& Allowing complicated non-linear mapping from input to low-dimensional
representations

W Relying solely on neighborhood relationships, and not requiring the existence
of a computable distance metric between input patterns. So that the method can
be used to any object.

¥ Finding a manifold in which the samples are uniformly distributed

Yann LeCun * New York University
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Learning Invariant Manifolds with EBMs
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RECIPE

¥ Build a neighborhood graph of the training samples, possibly using prior
knowledge. Two samples are neighbors if they are semantically similar.

i Pick a parameterized family of functions from inputs to low-dimensional

output vectors (neural nets, RBF, whatever)

& Optimize the parameters of the function so as to minimize a loss function
that make the distance between the output vector of neighbors small, and

the distance between output vectors of non-neighbors large.

& Apply the trained function to new (test) samples

Yann LeCun * New York University
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Step 1: Building a Neighborhood Graph

| ——— EENN————— |

& Build a graph between training samples such that:
» Semantically “similar” patterns have an edge between them.
» Semantically “different” pattens don't.

@ Prior knowledge can be used to build the graph

Similar viewpoints

t New York University

Yann LeCun
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Step 2: Pick a Parameterized Family of Function
S — —

@ The function can be anything:
» Neural net, RBF, other non-linear families

@ There is no restriction on the form of the function family

» But it's better if it's smooth.
» W: parameters vector

/

Yann LeCun

t New York University



Step 3: Pick a Loss function and Minimize it w.r.t. W
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& L oss function:
» Outputs corresponding to input samples that are neighbors in the
neigborhood graph should be nearby

» Outputs for input samples that are not neighbors should be far away
from each other

/

Yann LeCun * New York University
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_Architecture

Ey
|
‘ Gw (X)) = Gw(X)|
A A
fi = Gw(X)) fa = Gw(Xy)
Gyl X - W - Gl X
A +
| |
A Xo

& Siamese Architecture [Bromley, Sackinger, Shah, LeCun 1994]

Yann LeCun * New York University



rchitecture and loss function
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@ Loss function: Make this small Make this large

» Outputs D, A D, A
corresponding to = =
input samples IG,, (x,)=G, (x)ll G, (x)=G  (x,)l
that are neighbors A A i i
in the
neigborhood G, (x) G, (x,) G, (x,)
graph should be
nearby xlf x# B ?

» Qutputs for input -
samples that are |
not neighbors - ;
should be far -'T ""'5-:::"
away from each
other

Similar images (neighbors Dissimilar images
in the neighborhood graph) (non-neighbors in the

neighborhood graph)

Yann LeCun * New York University
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° 1 _ 2
_ Loss‘fpncf{on L= D Lyjssimiar="o; | max(0, m—Dy))
@ Loss function: Margin

» Pay quadratically m

for making outputs

of neighbors far

apart : :
» Pay quadratically

for making outputs D, A D, A

of non-neigbors 1G,, (x) =G, (x,)] 1G,, (x)=G ()

smaller than a

margin m A A A A

G, (x)) G, (x,) G, (x,) G, (x,)

S ST S

Sl

Yann LeCun

t New York University



Mechanical Analogy
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& The output vectors for graphs neighbors (black points) are pulled
together by a spring

@ The output vectors of non-neighbors (white points) are repelled by a

spring whose rest length is equal to the margin
» The value of the margin sets an arbitrary scale for the output space

Yann LeCun * New York University
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@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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@ Objective: Sanity check
using undistorted images. No

use of any prior knowledge.

& Neighbors: 5 nearest
neighbors in euclidean space.

& Training: 3000 samples each
of handwritten 4's and 9's.

& Testing: 1000 samples each
of 4's and 9's.

& Architecture: Input
dimension: 32x32. Output

dimension: 2. A 4 layer

Convolutional Network. /

test samples

Yann LeCun * New York University



Architecture of the Gw(X) Function:

ms;;;

A small convolutional net

Input Layer 1 Layer 2 Layer 3 Cutgd
2x1%1
—
Convolitions Subsamping  Comwolutions Fuly
cannechad

Yann LeCun

t New York University



=s————————————=

'Alternated Convolutions

and Subsampling

i@ Local features are extracted
everywhere.

@ averaging/subsampling layer
builds robustness to variations in

feature locations.

i@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'(2,....

Yann LeCun

HNE 0 CIRRY

“Simple cells”
“Complex cells”

Averaging
Multiple

convolutions

subsampling

[}

= N.E LWty
= .
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t New York University



@ The position of a digit in the image frame is irrelevant

@ Can we learn a mapping that is invariant to shifts?
& Dataset: Each digit is horizontally shifted by -6, -3, 0, 3, 6 pixels

@ Neighborhood Graph: 5 (unshifted) nearest neighbors in Euclidean

distance
Original Translations of original Nearest Neighbors of original

Yann LeCun * New York University



Simple Experiment with Shifted MNIST

m‘é‘f{j’rl

@ Training set: 3000 “4”
and 3000 “9” from
MNIST. Each digit is
shifted horizontally by
-6, -3, 3, and 6 pixels

il Test set (shown) 1000
“4” and 1000 “9”

il Neighborhood graph: 5
nearest neighbors in
Euclidean distance.

i Output Dimension: 2

Yann LeCun

t New York University



Shlfted MNIST LLE Result

@ Training set: 3000 “4” and
3000 “9” from MNIST.
Each digit is shifted
horizontally by -6, -3, 3,
and 6 pixels

il Neighborhood graph: 5
nearest neighbors in

Euclidean distance,
i Output Dimension: 2

il Test set (shown) 1000 “4”
and 1000 “9”

@/ﬁ\q¢944¢4w4

Yann LeCun * New York University




Ohift-Invariant mapping: using prior knowledge

@ The position of a digit in the image frame is irrelevant
@ Can we learn a mapping that is invariant to shifts?
& Dataset: Each digit is horizontally shifted by -6, -3, 0, 3, 6 pixels

@ Neighborhood Graph: an edge is placed between each sample and

» Shifted versions of itself
» Its 5 (unshifted) nearest neighbors in Euclidean distance
» The shifted versions of its 5 Euclidean nearest neighbors

Original Translations of original Nearest Neighbors of original

Yann LeCun * New York University



@ Training set: 3000 “4” and
3000 “9” from MNIST.
Each digit is shifted
horizontally by -6, -3, 3,
and 6 pixels

i Neighborhood graph: 5
nearest neighbors in
Euclidean distance, and
shifted versions of self and

nearest neighbors
i@ Output Dimension: 2

i Test set (shown) 1000 “4”
and 1000 “9”

599990991999 7

Yann LeCun * New York University
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Discovering the Viewpoint Manifold
| S ——

¥ Data set: 927 images of airplanes under 6

1lluminations, 18 azimuth and 9 elevations
¥ Resolution: 48x48 pixels
¥ Training set :660 image

i Test set: 312 images

¥ Architecture: fully-connected neural net with

20 hidden units and 3 outputs
& Neighborhood graph: 1*and 2" nearest

neighbors in azimuth, 1* nearest neighbor in

elevation, all illuminations

Yann LeCun * New York University



Generic Object Detection and Recognition

with Invarlance to Pose and Illumlnatlon

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
y ging g g p
i 10 instance per category: 5 instances used for training, 5 instances for testing

i Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

'a For each instance:

- ek e g oF e D oae R

Ia 18 azimuths
i 0 to 350 degrees every 20 . ¥ ;‘3%/ 3 @ . 'H
degrees ﬁw— & 1 & /ﬁ g g /‘E
il 9 elevations W % 1% _‘A # F & & %
i 30 to 70 degrees from
horizontal every 5 degrees 2 . S Ly fiel ¥ ._
I; 6 illuminations % M w ‘ ~ M
i on/off combinations of 4 . r“ | & & X o e ﬁ_:,
lights \a ¥ \a \4 ) \# \/ \# %
2 t o o . .
W2 cameras (stereo) Training instances Test instances
I; 7.5 cm apart
i 40 cm from the object

Yann LeCun * New York University
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Data Collection, Sample Generation
| SR

Image capture setup ,, Objects are painted green so that:

- all features other than shape are removed

- objects can be segmented, transformed,

and composited onto various backgrounds
Original image Object mask

Shadow factor Composite image
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ORB Dataset: LLE
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Automatlc Discovery of the Viewpoint Manifold

WlthInvarlant to Illumination
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NORB Dataset: LLearned Hidden Units
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