Learning Similarity Metrics with Invariances

Yann LeCun, Raia Hadsell, Sumit Chopra
Computational and Biological Learning Lab
The Courant Institute of Mathematical Sciences
New York University

http://yann.lecun.com

http://www.cs.nyu.edu/~yann

Learning an Invariant Dissimilarity Metric

- Training a parameterized, invariant dissimilarity metric may be a solution to the many-category problem.
- Find a parameterized mapping Gw(X) such that the L1 distance ||Gw(X1) Gw(X2)|| reflects the "semantic" distance between X1 and X2.
- Once trained, a trainable dissimilarity metric can be used to classify **new categories using a very small number of training samples** (used as prototypes).
- Siamese Architecture [Bromley et al. NIPS1992 (signature verification)]

[Chopra, Hadsell, LeCun, CVPR 2005]

Dissimilarity Metric for Face Recognition

- X and Y are images
- Y is a discrete variable with many possible values
 - ► All the people in our gallery
- Example of architecture:
 - ► A function G(X) maps input images into a low-dimensional space in which the Euclidean distance measures dissemblance.
- Inference:
 - ► Find the Y in the gallery that minimizes the energy (find the Y that is most similar to X)
 - Minimization through exhaustive search.

Siamese Architecture

- **Siamese Architecture**
- **Application:** face verification/recognition

Genuine Pair

Dissimilarity Metric vs Traditional Classification

- Traditional approaches to classification using discriminative methods:
 - Require that all categories be known in advance.
 - Require that a large number of training samples be available.
 - Practical for a relatively small number of classes (<100).</p>

Trainable Metric vs Other Dimensionality Reduction Methods

- PCA-based dimensionality reduction methods
 - Linear projection trained non-discriminatively to maximize variance.
 - Disadvantages: linear; no discrimination.
- LDA-based dimensionality reduction methods
 - Linear projection trained discriminatively to maximize inter-class variance and minimize intra-class variance.
 - Disadvantage: linear
- Kernel PCA and Kernel LDA
 - Non-linear extensions of the above.
 - Disadvantage: no invariance unless it's built into the kernel.
- LLE and MDS
 - Maps each training sample into low-dim Euclidean space that preserve distances or angles.
 - Disadvantages: no direct mapping, no parameterized invariance, no simple way to use the "semantic" distance between training samples.
- Advantages of trainable metrics:
 - The non-linear parameterization of the mapping allows to learn dissimilarity metrics that are invariant to irrelevant transformations of the inputs.

Trainable Metrics vs hand-crafted invariances

- Dissimilarity metrics with hand-crafted invariances
 - Tangent distance methods.
 - Elastic matching.
 - Warping-based normalization algorithms.
- Disadvantages
 - Cannot learn invariance to transformations that are hidden in the data (e.g. Glasses or no glasses for face recognition).

Siamese Architecture for Comparing Time-Series Data

1D Convolutional Net (TDNN)

Examples

REJECTED **ACCEPTED №** of forgeries detected for 97% genuine signatures accepted The "code" for a signature only has 80 dimensions.

Siamese Architecture

- **Siamese Architecture**
- **Application:** face verification/recognition

Genuine Pair

Probabilistic Training: Maximum Likelihood

- Y: identity of X2
- Computing the conditional P(Y|X) and the joint P(Y,X)
- **Training set: (X1,Y1), (X2,Y2).....**
- **Training Criterion: maximize the** likelihood of the training data under $P(Y^{1}, Y^{2}, \dots | X^{1}, X^{2}, \dots) = \prod \frac{\exp(-E(W, Y^{i}, X^{i}))}{\int_{V} \exp(-E(W, Y, X^{i}))}$ the model:
- Loss function: negative log likelihood

$$\mathcal{L}(W, Y^1, Y^2, \dots, X^1, X^2, \dots) = \sum_{i} E(W, Y^i, X^i) + \log \left[\int_{Y} \exp(-E(W, Y, X^i)) \right]$$

Energy term:

Push down on the energy of the correct answers

$$P(Y|X) = \frac{\exp(-E(W, Y, X))}{\int_{Y} \exp(-E(W, Y, X))}$$

$$P(Y,X) = \frac{\exp(-E(W,Y,X))}{\int_{Y,X} \exp(-E(W,Y,X))}$$

Contrastive term:

Pull up on the energies of all possible answers

VERY EXPENSIVE

Solution?

$$\mathcal{L}(W, Y^1, Y^2, \dots, X^1, X^2, \dots) = \sum_{i} E(W, Y^i, X^i) + \log \left[\int_{Y} \exp(-E(W, Y, X^i)) \right]$$

- The Toronto Solution: Sampling
- Neighborhood Component Analysis [Golberger, Roweis, Hinton, Salakhutdinov, NIPS-04]
- Stochastic Neighbor Embedding [Hinton and Roweis NIPS-02]
- Then again, sampling is the solution to everything in Toronto.
- The New York Solution: go after the worst offenders
- Use a different loss function

Another Loss Function

- Idea: don't pull up on the energies of all the answer, simply pull up on the energy of the most offending incorrect answer (incorrect answer with lowest energy)
 - ► This will cause the desired answer to have lower energy than the worst offending incorrect answer (WOIA).

MOIA:
$$\bar{Y}^i = \operatorname{argmin}_{y \neq Y^i} E(W, y, X^i)$$

$$\mathcal{L}(W, Y^1, Y^2, \dots, X^1, X^2, \dots) = \sum_{i} L^+ \left(E(W, Y^i, X^i) \right) + L^- \left(\min_{Y \neq Y^i} E(W, Y, X^i) \right)$$

Increasing function:

Pushes down on the energy of the correct answers

Decreasing function:

Pulls up on the energies of the most offending

incorrect answer

Loss Function

- Siamese models: distance between the outputs of two identical copies of a model.
- Energy function: E(W,X1,X2) = ||Gw(X1)-Gw(X2)||
- If X1 and X2 are from the same category (genuine pair), train the two copies of the model to produce similar outputs (low energy)
- If X1 and X2 are from different categories (impostor pair), train the two copies of the model to produce different outputs (high energy)
- Loss function: increasing function of genuine pair energy, decreasing function of impostor pair energy.

Examples of Loss Functions

Worst Offending Incorrect Answer:

$$\bar{Y}^i = \operatorname{argmin}_{y \neq Y^i} E(W, y, X^i)$$

Square-Square Loss

$$\mathcal{L}(W) = \sum_{i} E(W, Y^{i}, X^{i})^{2} + \left(\max(0, m - \min_{Y \neq Y^{i}} E(W, Y, X^{i}))\right)^{2}$$

Square-Exponential Loss

$$\mathcal{L}(W) = \sum_{i} E(W, Y^{i}, X^{i})^{2} + K \exp\left(\min_{Y \neq Y^{i}} E(W, Y, X^{i})\right)$$

Loss Function: Square-Exponential

Our Loss function for a single training pair (X1,X2):

$$\begin{split} L(W, X_{1,} X_{2}) &= (1 - Y) L_{G}(E_{W}(X_{1,} X_{2})) + Y L_{I}(E_{W}(X_{1,} X_{2})) \\ &= (1 - Y) \frac{2}{R} (E_{W}(X_{1,} X_{2})^{2}) + (Y) 2 R e^{-2.77 \frac{E_{W}(X_{1,} X_{2})}{R}} \end{split}$$

$$E_{W}(X_{1}, X_{2}) = ||G_{W}(X_{1}) - G_{W}(X_{2})||_{LI}$$

And R is the largest possible value of

$$E_{W}(X_{1}, X_{2})$$

Y=0 for a genuine pair, and Y=1 for an impostor pair.

Face Verification datasets: AT&T, FERET, and AR/Purdue

- The AT&T/ORL dataset
- Total subjects: 40. Images per subject: 10. Total images: 400.
- Images had a moderate degree of variation in pose, lighting, expression and head position.
- Images from 35 subjects were used for training. Images from 5 remaining subjects for testing.
- Training set was taken from: 3500 genuine and 119000 impostor pairs.
- Test set was taken from: 500 genuine and 2000 impostor pairs.
- http://www.uk.research.att.com/facedatabase.html

AT&T/ORL Dataset

Face Verification datasets: AT&T, FERET, and AR/Purdue

- The FERET dataset. part of the dataset was used only for training.
- Total subjects: **96**. Images per subject: **6**. Total images: **1122**.
- Images had high degree of variation in pose, lighting, expression and head position.
- The images were used for training only.
- http://www.itl.nist.gov/iad/humanid/feret/

FERET Dataset

Face Verification datasets: AT&T, FERET, and AR/Purdue

- The AR/Purdue dataset
- Total subjects: 136. Images per subject: 26. Total images: 3536.
- Each subject has 2 sets of 13 images taken 14 days apart.
- Images had very high degree of variation in pose, lighting, expression and position. Within each set of 13, there are 4 images with expression variation, 3 with lighting variation, 3 with dark sun glasses and lighting variation, and 3 with face obscuring scarfs and lighting variation.
- Images from 96 subjects were used for training. The remaining 40 subjects were used for testing.
- Training set drawn from: 64896 genuine and 6165120 impostor pairs.
- Test set drawn from: 27040 genuine and 1054560 impostor pairs.
- http://rv11.ecn.purdue.edu/aleix/aleix_face_DB.html

Face Verification dataset: AR/Purdue

Preprocessing

The 3 datasets each required a small amount of preprocessing.

FERET: Cropping, subsampling, and centering (see below)

AR/PURDUE: Cropping and subsampling

AT&T: Subsampling only

Centering with a Gaussian-blurred face template

- Coarse centering was done on the FERET database images
 - 1. Construct a template by blurring a well-centered face.
 - 2. Convolve the template with an uncentered image.
 - 3. Choose the 'peak' of the convolution as the center of the image.

Alternated Convolutions and Subsampling

- Local features are extracted everywhere.
- averaging/subsampling layer builds robustness to variations in feature locations.
- Hubel/Wiesel'62, Fukushima'71, LeCun'89, Riesenhuber & Poggio'02, Ullman'02,....

Architecture for the Mapping Function Gw(X)

Convolutional net

Internal state for genuine and impostor pairs

Gaussian Face Model in the output space

Dataset for Verification

Verification Results

tested on AT&T and AR/Purdue

The AR Purdue dataset

AT&T dataset

5 Number of subjects:

Images/subject: 10

5 Images/Model:

Total test size: 5000

Number of Genuine: 500

Number of Impostors: 4500

Purdue/AR dataset

Number of subjects: 40

26 Images/subject:

Images/Model: 13

Total test size: 5000

Number of Genuine: 500

Number of Impostors: 4500

False Accept = a Isals A Reject False Reject 100000% 11.00% 10.00% 14.60% 7.500% 7.50%

19.00% **5.0.06**% 5.00%

Classification Examples

Example: Correctly classified genuine pairs

energy: 0.3159 energy: 0.0043

energy: 32.7897

energy: 5.7186

energy: 0.0046

energy: 10.3209

energy: 2.8243

Internal State

MACCOLL PROPERTY

DrLim: Dimensionality Reduction by Learning an Invariant Mapping

[Hadsell, Chopra, LeCun, CVPR 2006]

"Traditional" Manifold Learning

- LLE, Laplacian Eigenmaps, and Hessian LLE: map a given set of high dimensional points to a corresponding set low-dimensional points.
 - All the points must be known in advance.
 - New points whose relationship to the original training points is not known cannot be mapped to the low-dimensional space.
 - There is no real "function" that maps input objects to low-dimensional output vectors.
 - With LLE: a "meaningful" and computable distance metric between input objects must be devised.

Learning a FUNCTION from input to output

- With a function, new points can be mapped easily
 - We do not need to come up with a similarity metric in input space
 - We do not need to know the relationship of new points to training points
- Questions:
 - How do we do it? What loss function?
 - How to we determine that two samples are "similar"?

Learning an INVARIANT FUNCTION from input to output

- We want the mapping to be invariant to irrelevant variations of the input
 - **Example 1:** the low-dim image of an airplane should be independent of its illumination.
 - Examples 2: the low-dim image of a handwritten character should be independent of its position in the frame

Previous Work

- Some methods generate a mapping, but rely on computable distance metrics in input space.
 - Principal Component Analysis (PCA)
 - ISOMAP
 - Local Linear Embedding (LLE)
 - Multidimensional Scaling (MDS) in Classical Sense
- Others don't rely on distance metrics, but they do not generate a function.
 - Laplacian EigenMaps
 - Hessian LLE
 - Kernel PCA

What do we want?

- Learning low-dimensional manifolds with invariance to irrelevant transformation of the inputs
- Taking advantage of prior knowledge about which sample is "semantically" similar to which other sample.
- Learning a MAPPING (an actual function) that maps inputs to the low-dimensional space, so we can apply it to new patterns whose relationship to the training samples is unknown
- Allowing complicated non-linear mapping from input to low-dimensional representations
- Relying solely on neighborhood relationships, and not requiring the existence of a computable distance metric between input patterns. So that the method can be used to any object.
- Finding a manifold in which the samples are uniformly distributed

Learning Invariant Manifolds with EBMs

RECIPE

- **Build a neighborhood graph** of the training samples, possibly using prior knowledge. Two samples are neighbors if they are semantically similar.
- Pick a parameterized family of functions from inputs to low-dimensional output vectors (neural nets, RBF, whatever)
- Optimize the parameters of the function so as to minimize a loss function that make the distance between the output vector of neighbors small, and the distance between output vectors of non-neighbors large.
- Apply the trained function to new (test) samples

Step 1: Building a Neighborhood Graph

- Build a graph between training samples such that:
 - Semantically "similar" patterns have an edge between them.
 - Semantically "different" pattens don't.
- Prior knowledge can be used to build the graph

Step 2: Pick a Parameterized Family of Function

- The function can be anything:
 - ▶ Neural net, RBF, other non-linear families
- There is no restriction on the form of the function family
 - ▶ But it's better if it's smooth.
 - W: parameters vector

Step 3: Pick a Loss function and Minimize it w.r.t. W

Loss function:

- Outputs corresponding to input samples that are neighbors in the neigborhood graph should be nearby
- Outputs for input samples that are not neighbors should be far away from each other

Architecture

Siamese Architecture [Bromley, Sackinger, Shah, LeCun 1994]

Architecture and loss function

Loss function:

- Outputs corresponding to input samples that are neighbors in the neigborhood graph should be nearby
- Outputs for input samples that are not neighbors should be far away from each other

Make this small

Similar images (neighbors in the neighborhood graph)

Make this large

Dissimilar images
(non-neighbors in the neighborhood graph)

Loss function

- Loss function:
 - Pay quadratically for making outputs of neighbors far apart
 - Pay quadratically for making outputs of non-neigbors smaller than a margin m

Mechanical Analogy

- The output vectors for graphs neighbors (black points) are pulled together by a spring
- The output vectors of non-neighbors (white points) are repelled by a spring whose rest length is equal to the margin
 - The value of the margin sets an arbitrary scale for the output space

MNIST Dataset

3	4	8	1	7	9	b	6	4	١
6	7	5	7	8	6	3	4	8	5
2	ſ	7	9	7	1	a	4	4	5
4	g	į	9	0	1	8	8	9	4
7	6	t	8	b	4	/	5	b	Ò
7	5	9	2	6	5	\mathcal{E}	1	9	7
, 1	2	2	2	2	3	4	4	8	0
δ	4	3	g	0	7	3	8	5	7
0	1	4	6	4	6	0	2	¥	5
7	/	2	8	1	(O	9	8	6	/

0	0	0	0		0	O	O	0	0
))))	1	J)))	J
2	a	a	2	2	Z	a	2	a	a
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
2	S	S	S	2	2	٤	S	2	S
4	4	6	4	4	4	4	4	6	4
7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8
G	G	q	Ģ	q	q	q	9	q	9

Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples

MNIST Handwritten Digits. Sanity Check

- Objective: Sanity check using undistorted images. No use of any prior knowledge.
- Neighbors: 5 nearest neighbors in euclidean space.
- Training: 3000 samples each of handwritten 4's and 9's.
- Testing: 1000 samples each of 4's and 9's.
- Architecture: Input dimension: 32x32. Output dimension: 2. A 4 layer Convolutional Network.

Architecture of the Gw(X) Function:

A small convolutional net

Alternated Convolutions and Subsampling

- Local features are extracted everywhere.
- averaging/subsampling layer builds robustness to variations in feature locations.
- Hubel/Wiesel'62, Fukushima'71, LeCun'89, Riesenhuber & Poggio'02, Ullman'02,....

Learning a mapping that is invariant to shifts

- The position of a digit in the image frame is irrelevant
- Can we learn a mapping that is invariant to shifts?
- **Dataset:** Each digit is horizontally shifted by -6, -3, 0, 3, 6 pixels
- Neighborhood Graph: 5 (unshifted) nearest neighbors in Euclidean distance

Original

Translations of original

Nearest Neighbors of original

Simple Experiment with Shifted MNIST

- Training set: 3000 "4" and 3000 "9" from MNIST. Each digit is shifted horizontally by -6, -3, 3, and 6 pixels
- Test set (shown) 1000 "4" and 1000 "9"
- Neighborhood graph: 5 nearest neighbors in Euclidean distance.
- Output Dimension: 2

Shifted MNIST: LLE Result

- Training set: 3000 "4" and 3000 "9" from MNIST.

 Each digit is shifted horizontally by -6, -3, 3, and 6 pixels
- Neighborhood graph: 5 nearest neighbors in Euclidean distance,
- Output Dimension: 2
- Test set (shown) 1000 "4" and 1000 "9"

Shift-Invariant mapping: using prior knowledge

- The position of a digit in the image frame is irrelevant
- Can we learn a mapping that is invariant to shifts?
- **Dataset:** Each digit is horizontally shifted by -6, -3, 0, 3, 6 pixels
- Neighborhood Graph: an edge is placed between each sample and
 - Shifted versions of itself
 - ▶ Its 5 (unshifted) nearest neighbors in Euclidean distance
 - ▶ The shifted versions of its 5 Euclidean nearest neighbors

Original

Translations of original

Nearest Neighbors of original

Shifted MNIST: Injecting Prior Knowledge

- Training set: 3000 "4" and 3000 "9" from MNIST.

 Each digit is shifted horizontally by -6, -3, 3, and 6 pixels
- Neighborhood graph: 5
 nearest neighbors in
 Euclidean distance, and
 shifted versions of self and
 nearest neighbors
- Output Dimension: 2
- Test set (shown) 1000 "4" and 1000 "9"

Discovering the Viewpoint Manifold

- **Data set:** 927 images of airplanes under 6 illuminations, 18 azimuth and 9 elevations
- **Resolution**: 48x48 pixels
- Training set: 660 image
- Test set: 312 images
- Architecture: fully-connected neural net with 20 hidden units and 3 outputs
- Neighborhood graph: 1st and 2nd nearest neighbors in azimuth, 1st nearest neighbor in elevation, all illuminations

Generic Object Detection and Recognition with Invariance to Pose and Illumination

- 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
- 10 instance per category: 5 instances used for training, 5 instances for testing
- Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.
- For each instance:
- 18 azimuths
 - 0 to 350 degrees every 20 degrees
- 9 elevations
 - 30 to 70 degrees from horizontal every 5 degrees
- 6 illuminations
 - on/off combinations of 4 lights
- **2** cameras (stereo)
 - 7.5 cm apart
 - 40 cm from the object

Training instances

Test instances

Data Collection, Sample Generation

Image capture setup

Objects are painted green so that:

- all features other than shape are removed

objects can be segmented, transformed,
 and composited onto various backgrounds

Shadow factor

Composite image

NORB Dataset: LLE

Automatic Discovery of the Viewpoint Manifold with Invariant to Illumination

NORB Dataset: Learned Hidden Units

