learning to compare

using operator-valued large-margin

classifiers

andreas maurer

•

•

.

 $\mathcal{X} =$ input space, embedded in a Hilbertspace H by a suitable kernel: $\mathcal{X} \subset H$ and $diam(\mathcal{X}) \leq 1$.

 $\mathcal{X} =$ input space, embedded in a Hilbertspace H by a suitable kernel: $\mathcal{X} \subset H$ and $diam(\mathcal{X}) \leq 1$.

ho= a probability measure on $\mathcal{X}^2 imes\{-1,1\}$, the *pair oracle*

 $\rho\left(x,x',r\right)$ is the probability to encounter the two inputs $x,x'\in\mathcal{X}$ being

- homonymous (same label) for r = 1 and
- heteronymous (different labels) for r = -1.

A pair classifier is a function on \mathcal{X}^2 to predict the third argument of ρ .

 $\mathcal{X} =$ input space, embedded in a Hilbertspace H by a suitable kernel: $\mathcal{X} \subset H$ and $diam(\mathcal{X}) \leq 1$.

ho= a probability measure on $\mathcal{X}^2 imes\{-1,1\}$, the *pair oracle*

 $\rho\left(x,x',r\right)$ is the probability to encounter the two inputs $x,x'\in\mathcal{X}$ being

- homonymous (same label) for r = 1 and
- heteronymous (different labels) for r = -1.
- A pair classifier is a function on \mathcal{X}^2 to predict the third argument of ρ .

 $S = \left(\left(x_1, x_1', r_1 \right), \dots, \left(x_m, x_m', r_m \right) \right) \in \left(\mathcal{X}^2 \times \{-1, 1\} \right)^m$ training sample, generated in *m* independent, identical trials of ρ , i.e. $S \sim \rho^m$.

 $\mathcal{X} = \text{input space, embedded in a Hilbertspace } H \text{ by a suitable kernel:}$ $\mathcal{X} \subset H \text{ and } diam(\mathcal{X}) \leq 1.$

ho= a probability measure on $\mathcal{X}^2 imes\{-1,1\}$, the *pair oracle*

 $ho\left(x,x',r
ight)$ is the probability to encounter the two inputs $x,x'\in\mathcal{X}$ being

- homonymous (same label) for r = 1 and
- heteronymous (different labels) for r = -1.
- A pair classifier is a function on \mathcal{X}^2 to predict the third argument of ρ .

 $S = \left(\left(x_1, x_1', r_1 \right), \dots, \left(x_m, x_m', r_m \right) \right) \in \left(\mathcal{X}^2 \times \{-1, 1\} \right)^m$ training sample, generated in *m* independent, identical trials of ρ , i.e. $S \sim \rho^m$.

Goal: Use S to find a pair classifier with low error probability.

pair classifiers induced by linear transformations

We will select our classifiers from the hypothesis space

.

.

$$\left\{ f_T : \left(x, x'\right) \mapsto sgn\left(1 - \left\|Tx - Tx'\right\|\right) : T \in \mathcal{L}(H) \right\}$$

pair classifiers induced by linear transformations

We will select our classifiers from the hypothesis space

$$\left\{ f_{T}: \left(x, x'\right) \mapsto sgn\left(1 - \left\|Tx - Tx'\right\|\right): T \in \mathcal{L}(H) \right\}$$

A choice of $T \in \mathcal{L}(H)$ then implies a choice of

- ullet the pair classifier f_T ,
- the pseudo-metric d(x, x') = ||Tx Tx'||
- the Mahalanobis distance $d^{2}\left(x,x'
 ight)=\langle T^{*}T\left(x-x'
 ight),x-x'
 angle$ and
- \bullet the positive semidefinite kernel $\kappa\left(x,x'\right)=\langle T^{*}Tx,x'\rangle$

pair classifiers induced by linear transformations

We will select our classifiers from the hypothesis space

$$\left\{ f_T : \left(x, x'\right) \mapsto sgn\left(1 - \left\|Tx - Tx'\right\|\right) : T \in \mathcal{L}(H) \right\}$$

A choice of $T \in \mathcal{L}(H)$ then implies a choice of

- the pair classifier f_T ,
- the pseudo-metric d(x, x') = ||Tx Tx'||
- the Mahalanobis distance $d^{2}\left(x,x'
 ight)=\langle T^{*}T\left(x-x'
 ight),x-x'
 angle$ and
- \bullet the positive semidefinite kernel $\kappa\left(x,x'\right)=\langle T^{*}Tx,x'\rangle$

The risk of the operator T is the error probability of the classifier f_T

$$R(T) = \Pr_{(x,x',r)\sim\rho} \left\{ f_T(x,x') \neq r \right\} = \Pr_{(x,x',r)\sim\rho} \left\{ r\left(1 - \left\|Tx - Tx'\right\|^2\right) \le \mathbf{0} \right\}$$

estimation and generalization

Let $f : \mathbb{R} \to \mathbb{R}$, $f \ge \mathbf{1}_{(-\infty,0]}$ with Lipschitz constant L. For a training sample $S = ((x_1, x'_1, r_1), ..., (x_m, x'_m, r_m))$ define the empirical risk estimate

$$\hat{R}_f(T,S) = \frac{1}{m} \sum_{i=1}^m f\left(r_i\left(1 - \left\|T\left(x_i - x_i'\right)\right\|^2\right)\right).$$

estimation and generalization

Let $f : \mathbb{R} \to \mathbb{R}$, $f \ge \mathbf{1}_{(-\infty,0]}$ with Lipschitz constant L. For a training sample $S = ((x_1, x'_1, r_1), ..., (x_m, x'_m, r_m))$ define the empirical risk estimate

$$\hat{R}_f(T,S) = \frac{1}{m} \sum_{i=1}^m f\left(r_i\left(1 - \left\|T\left(x_i - x_i'\right)\right\|^2\right)\right).$$

Theorem: $\forall \delta > 0$, with probability greater $1 - \delta$ in a sample $S \sim \rho^m$ $\forall T \in \mathcal{L}(H)$ with $||T^*T||_2 \geq 1$

$$R(T) \le \hat{R}_f(T,S) + \frac{8L ||T^*T||_2 + \sqrt{\ln(2||T^*T||_2/\delta)}}{\sqrt{m}}$$

where $||A||_2 = Tr (A^*A)^{1/2}$ is the Hilbert-Schmidt- or Frobenius- norm of A.

regularized objectives

The theorem suggests to minimize the regularized objective

$$\Lambda_{f,\lambda}(T) := \frac{1}{m} \sum_{i=1}^{m} f\left(r_i \left(1 - \left\|T\left(x_i - x_i'\right)\right\|^2\right)\right) + \frac{\lambda \left\|T^*T\right\|_2}{\sqrt{m}}$$

Since $||T^*T||_2 \le ||T||_2^2$ we can also use $||T||_2^2$ as a stronger regularizer (computationally more efficient, but slightly inferior in experiments).

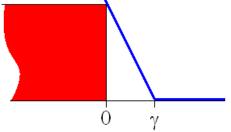
regularized objectives

The theorem suggests to minimize the regularized objective

$$\Lambda_{f,\lambda}(T) := \frac{1}{m} \sum_{i=1}^{m} f\left(r_i \left(1 - \left\|T\left(x_i - x_i'\right)\right\|^2\right)\right) + \frac{\lambda \left\|T^*T\right\|_2}{\sqrt{m}}$$

Since $||T^*T||_2 \le ||T||_2^2$ we can also use $||T||_2^2$ as a stronger regularizer (computationally more efficient, but slightly inferior in experiments).

For f we take the hinge loss f_{γ} with margin γ : f_{γ} has Lipschitz constant $1/\gamma$ and is convex.



Since $||T(x - x')||^2 = \langle T^*T(x - x'), x - x' \rangle$ is linear in T^*T , the objective $\Lambda_{f_{\gamma},\lambda}(T)$ is a convex function of T^*T .

optimization problem

Find $T \in \mathcal{L}(H)$ to minimize

•

$$\Lambda_{f_{\gamma},\lambda}(T) = \Omega(T^*T) = \frac{1}{m} \sum_{i=1}^m f_{\gamma}\left(r_i\left(1 - \left\|T\left(x_i - x_i'\right)\right\|^2\right)\right) + \frac{\lambda}{\sqrt{m}} \|T^*T\|_2.$$

 $\Lambda_{f_{\gamma},\lambda}$ is not convex in T, but Ω is convex in T^*T .

optimization problem

Find $T \in \mathcal{L}(H)$ to minimize

$$\Lambda_{f_{\gamma},\lambda}(T) = \Omega\left(T^*T\right) = \frac{1}{m} \sum_{i=1}^m f_{\gamma}\left(r_i\left(1 - \left\|T\left(x_i - x_i'\right)\right\|^2\right)\right) + \frac{\lambda}{\sqrt{m}} \left\|T^*T\right\|_2.$$

 $\Lambda_{f_{\gamma},\lambda}$ is not convex in T, but Ω is convex in T^*T .

First possibility: Solve convex optimization problem for Ω on set of positive semidefinite operators by alternating projections (as in Xing et al.) Then take square root operator to get T.

optimization problem

Find $T \in \mathcal{L}(H)$ to minimize

$$\Lambda_{f_{\gamma},\lambda}(T) = \Omega\left(T^*T\right) = \frac{1}{m} \sum_{i=1}^{m} f_{\gamma}\left(r_i\left(1 - \left\|T\left(x_i - x_i'\right)\right\|^2\right)\right) + \frac{\lambda}{\sqrt{m}} \left\|T^*T\right\|_2.$$

 $\Lambda_{f_{\gamma},\lambda}$ is not convex in T, but Ω is convex in T^*T .

First possibility: Solve convex optimization problem for Ω on set of positive semidefinite operators by alternating projections (as in Xing et al.) Then take square root operator to get T.

Second possibility (my choice): Do gradient-descent of $\Lambda_{f_{\gamma},\lambda}$ in TNo problems with local minima: If T is a stable local minimizer of $\Lambda_{f_{\gamma},\lambda}$, then T^*T is a stable local minimizer of Ω .

algorithm

Given sample S, regularization parameter λ , margin γ , learning rate θ initialize $\lambda' = \lambda / \sqrt{m}$ (where m = |S|) initialize $T = (v_1, ..., v_m)$ (where the v_i are row-vectors) repeat Compute $||T^*T||_2 = \left(\sum_{ij} \langle v_i, v_j \rangle^2\right)^{1/2}$ For i = 1, ..., d compute $w_i = 2 ||T^*T||_2^{-1} \sum_j \langle v_i, v_j \rangle v_i$ Fetch (x, x', r) from sample S For i = 1, ..., d compute $a_i \leftarrow \langle v_i, x - x' \rangle$ Compute $b \leftarrow \sum_{i=1}^{d} a_i^2$ If $r(1-b) < \gamma$ then for i := 1, ..., d do $v_i \leftarrow v_i - \theta\left(\frac{r}{\gamma}a_i\left(x - x'\right) + \lambda'w_i\right)$ else for i := 1, ..., d do $v_i \leftarrow v_i - \theta \lambda' w_i$ until convergence

experiments

with invariant character-recognition, spatial rotations (COIL100) and face recognition (ATT).

1. training T from one task/group of tasks

2. training nearest-neighbour test-classifiers with a *single* example/class on a test task, using both the input metric and the metric induced by T. 3. recording the error rates of the test classifiers

The pixel vectors x are embedded in the space H with the Gaussian rbf-kernel:

$$\kappa(x_1, x_2) = 2^{-1} \exp\left(-4 \left\|\frac{x_1}{\|x_1\|} - \frac{x_2}{\|x_2\|}\right\|^2\right).$$

The parameters $\gamma=1$ and $\lambda=0.05$ are used throughout.

rotation- and scale-invariant character recognition

Typical pattern used to train the preprocessor (4000 examples from 20 classes)

•

rotation- and scale-invariant character recognition

Typical pattern used to train the preprocessor (4000 examples from 20 classes)

Nine digits used to train a single-nearest-neighbour classifier $0 \vee 2 \otimes 8 \otimes 9 \otimes \sqrt{2}$

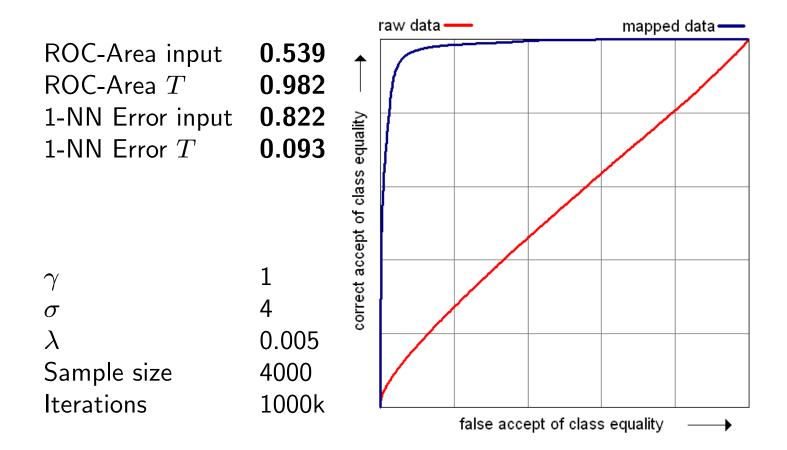
rotation- and scale-invariant character recognition

Typical pattern used to train the preprocessor (4000 examples from 20 classes)

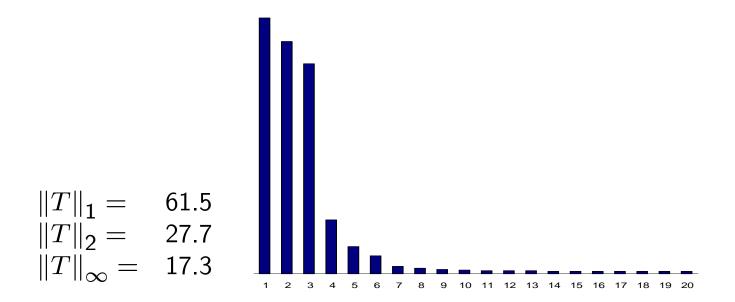
Nine digits used to train a single-nearest-neighbour classifier $0 \ 2 \ 0 \ 5 \ 0 \ \sqrt{2}$

Some digits used to test the classifier:

results for rotation/scale-invariant OCR



norms and singular-value-spectrum of T



Thank you!