Statistical Machine Learning from Data

Ensembles

Samy Bengio

IDIAP Research Institute, Martigny, Switzerland, and
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
bengio@idiap.ch
http://www.idiap.ch/~bengio

January 27, 2006
1 Introduction

2 Bagging

3 AdaBoost
1 Introduction

2 Bagging

3 AdaBoost
Basics of Ensembles

- When trying to solve a problem, we generally make some choices:
 - family of functions, range of the hyper-parameters
 - input representation and preprocessing
 - precise dataset
 - etc

- Idea: instead of making these choices, let us provide not one but many solutions to the same problem, and let us combine them

- Why should this be a good idea?
 - These choices imply a variance in the expected performance (implicit capacity).
 - In general, combining estimates → reduces the variance → enhances expected performance.
Ensemble - Why Does it Work?

- It has been shown that the expected risk of the average of a set of models is better than the average of the expected risk of these models.

- Let us consider the simplest ensemble g over models f_i:

$$
g(x) = \sum_i \alpha_i f_i(x) \text{ with } \sum_i \alpha_i = 1
$$

- The MSE risk of f_i at x is $e_i(x) = E_y[(y - f_i(x))^2]$

- The average risk of a model is $\bar{e}(x) = \sum_i \alpha_i e_i(x)$

- The average risk of the ensemble is $e(x) = E_y[(y - g(x))^2]$

- Let us define diversity $d_i(x) = (f_i(x) - g(x))^2$

- The average diversity is $\bar{d}(x) = \sum_i \alpha_i d_i(x)$

- It can then be shown that $e(x) = \bar{e}(x) - \bar{d}(x)$
1 Introduction

2 Bagging

3 AdaBoost
Bagging: bootstrap aggregating

Underlying idea: part of the variance is due to the specific choice of the training data set

Let us create many similar training data sets,

For each of them, let us train a new function

The final function will be the average of each function outputs.

How similar? using bootstrap.
Given a data set D_n with n examples drawn from $p(Z)$

A bootstrap B_i of D_n also contains n examples:

For $j = 1 \rightarrow n$, the jth example of B_i is drawn independently with replacement from D_n

Hence,

- some examples from D_n are in multiple copies in B_i
- and some examples from D_n are not in B_i

Hypothesis: the examples were iid drawn from $p(Z)$

Hence, the datasets B_i are as plausible as D_n, but drawn from D_n instead of $p(Z)$.
Bagging - Algorithm

- **Training:**
 1. Given a training set D_n, create T bootstraps B_i of D_n
 2. For each bootstrap B_i, select $f^*(B_i) = \arg \min_{f \in \mathcal{F}} \hat{R}(f, B_i)$

- **Testing:**
 - Given an input x, the corresponding output \hat{y} is:

 $$\hat{y} = \frac{1}{T} \sum_{i=1}^{T} f^*(B_i)(x)$$

- **Analysis:** if generalization error is decomposed into bias and variance terms then bagging reduces variance.
Bias + Variance for Bagging

Error

Bias

Variance

Normal

Error

Bagging

Variance

Capacity
Random Forests

- A **random forest** is an ensemble of decision trees.
- Each decision tree is trained as follows:
 - Create a **bootstrap** of the training set
 - Select a subset $m \ll d$ input variables as potential split nodes (\(m\) is constant over all trees)
 - No pruning of the trees
- A decision is taken by voting amongst the trees
- Somehow, m controls the capacity.
1 Introduction

2 Bagging

3 AdaBoost
AdaBoost

- Most popular algorithm in the family of boosting algorithms
- Boosting: the performance of simple (weak) classifiers is boosted by combining them iteratively.
- General combination classifier:

 \[g(x) = \sum_{t=1}^{T} \alpha_t f_t(x) \]

- Simplest framework: binary classification, targets = \{-1, +1\}
- What can we do with the following simplest requirement: each weak classifier \(f_t \) should perform better than chance
AdaBoost - Concepts

- AdaBoost is an iterative algorithm: select f_t given the performance obtained by previous weak classifiers $f_1 \rightarrow f_{t-1}$.
- At each time step t,
 - Modify training sample distribution in order to favor difficult examples (according to previous weak classifiers).
 - Train a new weak classifier
 - Select the new weight α_t by optimizing a global criterion
- Stop when impossible to find a weak classifier satisfying the simplest condition (being better than chance)
- Final solution is the weighted sum of all weak classifiers
AdaBoost - Algorithm

1. **inputs:** \(D_n = \{(x_1, y_1), \cdots, (x_n, y_n)\} \)

2. **initialize:** \(w_i^{(1)} = \frac{1}{n} \) for all \(i = 1, \cdots, n \)

3. **for** \(t = 1, \cdots, T \)
 1. \(D^{(t)}: \) sample \(n \) examples from \(D_n \) according to weights \(w^{(t)} \)
 2. train classifier \(f_t \) using \(D^{(t)} \)
 3. calculate weighted training error \(\epsilon_t = \sum_{i=1}^n w_i^{(t)} I(y_i \neq f_t(x_i)) \)
 where \(I(z) = 1 \) if \(z \) is true, 0 otherwise
 4. calculate weight \(\alpha_t \) of weak classifier \(f_t \): \(\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t} \)
 5. update weights of examples for next iteration:
 \(w_i^{(t+1)} = w_i^{(t)} \frac{\exp(-\alpha_t y_i f_t(x_i))}{Z_t} \)
 where \(Z_t \) is a normalization factor such that \(\sum_i w_i^{(t+1)} = 1. \)
 6. if \(\epsilon_t = 0 \) or \(\epsilon_t \geq \frac{1}{2} \), break: \(T = t - 1. \)

4. **Final output:** \(g(x) = \sum_t \frac{\alpha_t}{\sum_r \alpha_r} f_t(x) \)
AdaBoost - Analysis

- Selection of α_t comes from minimizing

$$
\alpha^*_t = \arg \min_{\alpha_t} \sum_{i=1}^{n} \exp \left(-y_i \left(\alpha_t f_t(x_i) + \sum_{s=1}^{t-1} \alpha_s f_s(x_i) \right) \right)
$$

- Other cost functions have been proposed (such as logitboost or arcing)

- Sampling can often be replaced by weighting

- If each weak classifier is always better than chance, then AdaBoost can be proven to converge to 0 training error

- Even after training error is 0, generalization error continues to improve: the margin continues to grow

- Early claims: AdaBoost does not overfit! This is false of course...
Comparison of various cost functions related to AdaBoost

- \(\exp(-m) \) [AdaBoost]
- \(\log(1+\exp(-m)) \) [LogitBoost]
- \(1 - \tanh(m) \) [Doom II]
- \((1 - m)^+ \) [SVM]
The AdaBoost margin is defined as the distribution of $y \cdot g(x)$

Cumulative distribution of the test margin for several iterations
AdaBoost - Extensions

- **Multi-class classification**
- **Single-class classification**: estimating quantiles
- **Regression**: transform the problem into a binary classification task
- **Localized Boosting**: similar to *mixtures of experts*

\[g(x) = \sum_{t=1}^{T} \alpha_t(x) \cdot f_t(x) \]

- **Examples of weak classifiers**:
 - Decision trees and **stumps**
 - neural networks