Statistical Machine Learning from Data
Hidden Markov Models

Samy Bengio

IDIAP Research Institute, Martigny, Switzerland, and
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
bengio@idiap.ch
http://www.idiap.ch/~bengio

December 21, 2005
1 Markovian Models
2 Hidden Markov Models
3 HMMs for Speech Recognition
4 Practical Aspects
Markovian Models

Hidden Markov Models

HMMs for Speech Recognition

Practical Aspects
Markov Models

- **Stochastic process of a temporal sequence**: the probability distribution of the variable q at time t depends on the variable q at times $t - 1$ to 1.

$$P(q_1, q_2, \ldots, q_T) = P(q_1^T) = P(q_1) \prod_{t=2}^{T} P(q_t|q_{1}^{t-1})$$

- **First Order Markov Process**:

$$P(q_t|q_{1}^{t-1}) = P(q_t|q_{t-1})$$

- **Markov Model**: model of a Markovian process with discrete states.
Markov Models (Graphical View)

- A Markov model:

- A Markov model unfolded in time:
A Markov model is represented by all its transition probabilities:

\[P(q_t = i | q_{t-1} = j) \quad \forall i, j \]

Given a training set of sequences \(X \), training means re-estimating these probabilities.

Simply count them to obtain the maximum likelihood solution:

\[P(q_t = i | q_{t-1} = j) = \frac{\#(q_t = i \text{ and } q_{t-1} = j | X)}{\#(q_{t-1} = j | X)} \]

Example: observe the weather today assuming it depends on the previous day.
1 Markovian Models

2 Hidden Markov Models

3 HMMs for Speech Recognition

4 Practical Aspects
A hidden Markov model:

A hidden Markov model unfolded in time:
Hidden Markov Model: Markov Model whose state is not observed, but of which one can observe a manifestation (a variable x_t which depends only on q_t).

- A finite number of states N.
- Transition probabilities between states, which depend only on previous state: $P(q_t = i | q_{t-1} = j, \theta)$.
- Emission probabilities, which depend only on the current state: $p(x_t | q_t = i, \theta)$ (where x_t is observed).
- Initial state probabilities: $P(q_0 = i | \theta)$.

Each of these 3 sets of probabilities have parameters θ to estimate.
The 3 Problems of HMMs

- The HMM model gives rise to 3 different problems:
 - Given an HMM parameterized by \(\theta \), can we compute the likelihood of a sequence \(X = x_1^T = \{x_1, x_2, \ldots, x_T\} \):
 \[
p(x_1^T | \theta)
 \]
 - Given an HMM parameterized by \(\theta \) and a set of sequences \(D_n \), can we select the parameters \(\theta^* \) such that:
 \[
 \theta^* = \arg \max_{\theta} \prod_{p=1}^{n} p(X(p) | \theta)
 \]
 - Given an HMM parameterized by \(\theta \), can we compute the optimal path \(Q \) through the state space given a sequence \(X \):
 \[
 Q^* = \arg \max_{Q} p(X, Q | \theta)
 \]
HMMs as Generative Processes

HMMs can be used to generate sequences:

- Let us define a set of starting states with initial probabilities $P(q_0 = i)$.
- Let us also define a set of final states.
- Then for each sequence to generate:
 1. Select an initial state j according to $P(q_0)$.
 2. Select the next state i according to $P(q_t = i|q_{t-1} = j)$.
 3. Emit an output according to the emission distribution $P(x_t|q_t = i)$.
 4. If i is a final state, then stop, otherwise loop to step 2.
Markovian Assumptions

- **Emissions**: the probability to emit x_t at time t in state $q_t = i$ does not depend on anything else:

 $$p(x_t | q_t = i, q_{t-1}^{t-1}, x_{t-1}^{t-1}) = p(x_t | q_t = i)$$

- **Transitions**: the probability to go from state j to state i at time t does not depend on anything else:

 $$P(q_t = i | q_{t-1} = j, q_{t-2}^{t-1}, x_{t-1}^{t-1}) = P(q_t = i | q_{t-1} = j)$$

 Moreover, this probability does not depend on time t:

 $$P(q_t = i | q_{t-1} = j)$$ is the same for all t

 we say that such Markov models are homogeneous.
Derivation of the Forward Variable α

the probability of having generated the sequence x_1^t and being in state i at time t:

\[
\alpha(i, t) \overset{\text{def}}{=} p(x_1^t, q_t = i) = p(x_t | x_1^{t-1}, q_t = i)p(x_1^{t-1}, q_t = i) = p(x_t | q_t = i) \sum_j p(x_1^{t-1}, q_t = i, q_{t-1} = j) = p(x_t | q_t = i) \sum_j P(q_t = i | x_1^{t-1}, q_{t-1} = j)p(x_1^{t-1}, q_{t-1} = j) = p(x_t | q_t = i) \sum_j P(q_t = i | q_{t-1} = j)p(x_1^{t-1}, q_{t-1} = j) = p(x_t | q_t = i) \sum_j P(q_t = i | q_{t-1} = j)\alpha(j, t - 1)
\]
From α to the Likelihood

- Reminder: $\alpha(i, t) \overset{\text{def}}{=} p(x_1^t, q_t = i)$
- Initial condition:
 \[\alpha(i, 0) = P(q_0 = i) \rightarrow \text{prior probabilities of each state } i \]
- Then let us compute $\alpha(i, t)$ for each state i and each time t of a given sequence x_1^T
- Afterward, we can compute the likelihood as follows:
 \[
p(x_1^T) = \sum_i p(x_1^T, q_T = i) = \sum_i \alpha(i, T)
 \]
- Hence, to compute the likelihood $p(x_1^T)$, we need $O(N^2 \cdot T)$ operations, where N is the number of states
For HMM, the hidden variable Q will describe in which state the HMM was for each observation x_t of a sequence X.

The joint likelihood of all sequences $X(l)$ and the hidden variable Q is then:

$$ p(X, Q|\theta) = \prod_{l=1}^{n} p(X(l), Q|\theta) $$

Let us introduce the following indicator variable:

$$ q_{i,t} = \begin{cases}
1 & \text{if } q_t = i \\
0 & \text{otherwise}
\end{cases} $$
Let us now use our indicator variables q to instanciate Q:

$$p(X, Q|\theta) = \prod_{l=1}^{n} p(X(l), Q|\theta) = \prod_{l=1}^{n} \left(\prod_{i=1}^{N} P(q_0 = i)^{q_{i,0}} \right) \cdot \prod_{t=1}^{T_l} \prod_{i=1}^{N} p(x_t(l)|q_t = i)^{q_{i,t}} \prod_{j=1}^{N} P(q_t = i|q_{t-1} = j)^{q_{i,t-j}^{t-1}}$$
Joint Log Likelihood

\[
\log p(X, Q|\theta) = \sum_{l=1}^{n} \sum_{i=1}^{N} q_{i,0} \log P(q_0 = i) + \\
\sum_{l=1}^{n} \sum_{t=1}^{T_l} \sum_{i=1}^{N} q_{i,t} \log p(x_t(l)|q_t = i) + \\
\sum_{l=1}^{n} \sum_{t=1}^{T_l} \sum_{i=1}^{N} \sum_{j=1}^{N} q_{i,t} \cdot q_{j,t-1} \log P(q_t = i|q_{t-1} = j)
\]
Let us now write the corresponding **auxiliary function**:

\[
A(\theta, \theta^s) = E_Q[\log p(X, Q|\theta)|X, \theta^s] \\
= \sum_{l=1}^{n} \sum_{i=1}^{N} E_Q[q_{i,0}|X, \theta^s] \log P(q_0 = i) + \\
\sum_{l=1}^{n} \sum_{t=1}^{T_l} \sum_{i=1}^{N} E_Q[q_{i,t}|X, \theta^s] \log p(x_t(l)|q_t = i) + \\
\sum_{l=1}^{n} \sum_{t=1}^{T_l} \sum_{i=1}^{N} \sum_{j=1}^{N} E_Q[q_{i,t} \cdot q_{j,t-1}|X, \theta^s] \log P(q_t = i|q_{t-1} = j)
\]

From now on, let us forget about index \(l \) for simplification.
Derivation of the Backward Variable β

the probability to generate the rest of the sequence x_{t+1}^T given that we are in state i at time t

$$\beta(i, t) \overset{\text{def}}{=} p(x_{t+1}^T | q_t = i)$$

$$= \sum_j p(x_{t+1}, q_{t+1} = j | q_t = i)$$

$$= \sum_j p(x_{t+1} | x_t^T, q_{t+1} = j, q_t = i) p(x_t^T, q_{t+1} = j | q_t = i)$$

$$= \sum_j p(x_{t+1} | q_{t+1} = j) p(x_{t+2}^T | q_{t+1} = j, q_t = i) P(q_{t+1} = j | q_t = i)$$

$$= \sum_j p(x_{t+1} | q_{t+1} = j) \beta(j, t + 1) P(q_{t+1} = j | q_t = i)$$
Reminder: \(\beta(i, t) = p(x_{t+1}^T|q_t=i) \)

Final condition:

\[
\beta(i, T) = \begin{cases}
1 & \text{if } i \text{ is a final state} \\
0 & \text{otherwise}
\end{cases}
\]

Hence, to compute all the \(\beta \) variables, we need \(O(N^2 \cdot T) \) operations, where \(N \) is the number of states.
E-Step for HMMs

- Posterior on emission distributions:

\[
E_Q[q_{i,t}|X, \theta^s] = P(q_t = i|x_1^T, \theta^s) = P(q_t = i|x_1^T)
\]

\[
= \frac{p(x_1^T, q_t = i)}{p(x_1^T)}
\]

\[
= \frac{p(x_{t+1}^T|q_t = i, x_1^t)p(x_1^t, q_t = i)}{p(x_1^T)}
\]

\[
= \frac{p(x_{t+1}^T|q_t = i)p(x_1^t, q_t = i)}{p(x_1^T)}
\]

\[
= \frac{\beta(i, t) \cdot \alpha(i, t)}{\sum_j \alpha(j, T)}
\]
E-Step for HMMs

- **Posterior on transition distributions:**

\[
E_Q[q_{i,t} \cdot q_{j,t-1}|X, \theta^s] = P(q_t = i, q_{t-1} = j|x^T_1, \theta^s)
\]

\[
= \frac{p(x^T, q_t = i, q_{t-1} = j)}{p(x^T)}
\]

\[
= \frac{p(x^T_{t+1}|q_t = i)P(q_t = i|q_{t-1} = j)p(x_t|q_t = i)p(x^{t-1}_1, q_{t-1} = j)}{p(x^T)}
\]

\[
= \frac{\beta(i, t)P(q_t = i|q_{t-1} = j)p(x_t|q_t = i)\alpha(j, t - 1)}{\sum_j \alpha(j, T)}
\]
E-Step for HMMs

Posterior on initial state distribution:

\[
E_Q[q_{i,0} | X, \theta^p] = P(q_0 = i | x_1^T, \theta^s) = P(q_0 = i | x_1^T)
\]

\[
= \frac{p(x_1^T, q_0 = i)}{p(x_1^T)}
\]

\[
= \frac{p(x_1^T | q_0 = i)P(q_0 = i)}{p(x_1^T)}
\]

\[
= \frac{\beta(i, 0) \cdot P(q_0 = i)}{\sum_j \alpha(j, T)}
\]
M-Step for HMMs

- Find the parameters θ that maximizes A, hence search for
 \[
 \frac{\partial A}{\partial \theta} = 0
 \]

- When transition distributions are represented as tables, using a Lagrange multiplier, we obtain:
 \[
 P(q_t = i | q_{t-1} = j) = \frac{\sum_{t=1}^{T} P(q_t = i, q_{t-1} = j | x_1^T, \theta^s)}{\sum_{t=1}^{T} P(q_{t-1} = j | x_1^T, \theta^s)}
 \]

- When emission distributions are implemented as GMMs, use already given equations, weighted by the posterior on emissions $P(q_t = i | x_1^T, \theta^s)$.
The Viterbi algorithm finds the best state sequence.

Compute the partial paths

Backtrack in time
The Viterbi algorithm finds the best state sequence.

$$V(i, t) \overset{\text{def}}{=} \max_{q_{t-1}^1} p(x_t^t, q_{t-1}^{t-1}, q_t=i)$$

$$= \max_{q_{t-1}^1} p(x_t | x_{t-1}^t, q_{t-1}^{t-1}, q_t=i) p(x_{t-1}^{t-1}, q_{t-1}^{t-1}, q_t=i)$$

$$= p(x_t | q_t=i) \max_{q_{t-2}^1} \max_j p(x_{t-1}^{t-1}, q_{t-2}^{t-2}, q_t=i, q_{t-1}=j)$$

$$= p(x_t | q_t=i) \max_{q_{t-2}^1} \max_j p(q_t=i | q_{t-1}=j) p(x_{t-1}^{t-1}, q_{t-2}^{t-2}, q_{t-1}=j)$$

$$= p(x_t | q_t=i) \max_j p(q_t=i | q_{t-1}=j) \max_{q_{t-2}^1} p(x_{t-1}^{t-1}, q_{t-2}^{t-2}, q_{t-1}=j)$$

$$= p(x_t | q_t=i) \max_j p(q_t=i | q_{t-1}=j) V(j, t-1)$$
Reminder: \(V(i, t) = \max_{q_{t-1}} p(x^t_1, q^{t-1}_1, q_t=i) \)

Let us compute \(V(i, t) \) for each state \(i \) and each time \(t \) of a given sequence \(x^T_1 \)

Moreover, let us also keep for each \(V(i, t) \) the associated \(\text{argmax} \) previous state \(j \)

Then, starting from the state \(i = \arg\max_j V(j, T) \) backtrack to decode the most probable state sequence.

Hence, to compute all the \(V(i, t) \) variables, we need \(O(N^2 \cdot T) \) operations, where \(N \) is the number of states.
Applications of HMMs

- **Classifying sequences such as...**
 - DNA sequences (which family)
 - gesture sequences
 - video sequences
 - phoneme sequences
 - etc.

- **Decoding sequences such as...**
 - continuous speech recognition
 - handwriting recognition
 - sequence of events (meeting, surveillance, games, etc)
1 Markovian Models
2 Hidden Markov Models
3 HMMs for Speech Recognition
4 Practical Aspects
Application: **continuous speech recognition**:

Find a sequence of phonemes (or words) given an acoustic sequence

Idea: use a phoneme model
For each acoustic sequence in the training set, create a new HMM as the *concatenation* of the HMMs representing the underlying sequence of phonemes.

Maximize the likelihood of the training sentences.
HMMs: Decoding a Sentence

- Decide what is the accepted **vocabulary**.
- Optionally add a **language model**: $P(\text{word sequence})$.
- Efficient algorithm to find the **optimal path** in the decoding HMM:
How do we measure the quality of a speech recognizer?

Problem: the target solution is a sentence, the obtained solution is also a sentence, but they might have different size!

Proposed solution: the Edit Distance:
- assume you have access to the operators insert, delete, and substitute,
- what is the smallest number of such operators we need to go from the obtained to the desired sentence?
- An efficient algorithm exists to compute this.

At the end, we measure the error as follows:

\[
\text{WER} = \frac{\#\text{ins} + \#\text{del} + \#\text{subst}}{\#\text{words}}
\]

Note that the word error rate (WER) can be greater than 1...
Maximum Mutual Information

- Using the Maximum Likelihood criterion for a classification task might sometimes be worse than using a discriminative approach.
- What about changing the criterion to be more discriminative?
- **Maximum Mutual Information** (MMI) between word \(W\) and acoustic \(A\) sequences:

\[
I(A, W) = \log \frac{P(A, W)}{P(A)P(W)}
\]

\[
= \log P(A|W)P(W) - \log P(A) - \log P(W)
\]

\[
= \log P(A|W) - \log P(A)
\]

\[
= \log P(A|W) - \sum_w \log P(A|w)P(w)
\]

- Apply gradient ascent: \(\frac{\partial I(A, W)}{\partial \theta}\).
1. Markovian Models
2. Hidden Markov Models
3. HMMs for Speech Recognition
4. Practical Aspects
Practical Aspects

- Capacity tuned by the following hyper-parameters:
 - Number of states (or values the hidden variable can take)
 - Non-zero transitions (full-connect, left-to-right, etc)
 - Capacity of underlying emission models
 - Number of training iterations

- Initialization:
 - If the training set is aligned, use this information
 - Otherwise, uniform for transitions, K-Means for GMM-based emissions

- Computational constraint:
 - Work in the logarithmic domain!
Imbalance between Transitions and Emissions

- A problem often seen in speech recognition...
- Decoding with Viterbi:

\[V(i, t) = p(x_t | q_t = i) \max_j P(q_t = i | q_{t-1} = j) V(j, t - 1) \]

- Emissions represented by GMMs: densities depend on the number of dimensions of \(x_t \).
- Practical estimates on Numbers’95 database (39 dimensions):

<table>
<thead>
<tr>
<th></th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log P(q_t</td>
<td>q_{t-1}))</td>
</tr>
<tr>
<td>(\log p(x_t</td>
<td>q_t))</td>
</tr>
</tbody>
</table>

Comparison of variances of log distributions during decoding