Lab 3 - Artificial Neural Network

{bengio,mkeller}@idiap.ch
http://www.idiap.ch/~{bengio,mkeller}

December 7, 2005

1. Download data.py and mlp.py. Choose a UCI database (eg. pima-diabetes), split it in train, validation and test sets and train a Multi-Layers Perceptron, with and without normalizing the data. Try also different cost functions.

2. Show that to maximize the likelihood under the hypothesis that the observations \(y_l \) (\(l \in \{1, \ldots, L\} \)) are generated from a smooth function with added noise \(\xi \) following a Gaussian distribution \(\mathcal{N}(0,1) \), \(y_l = f_\theta(x_l) + \xi \), is equivalent to minimize the empirical risk with Mean Square Error function. (Hint: Consider \(P_\theta(y_l|x_l) \)).

The log-likelihood over the training set:

\[
\log \mathcal{L}(\theta) = \log(\prod_{l=1}^{L} P_\theta(y_l|x_l)) = \sum_{l=1}^{L} \log P_\theta(y_l|x_l).
\]

Given the hypothesis on the generation of the observation \(y_l \), we have:

\[
P_\theta(y_l|x_l) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} \|y_l - f_\theta(x_l)\|^2),
\]

and thus:

\[
\log \mathcal{L}(\theta) = -\frac{1}{2} \log(2\pi) - \frac{1}{2} \sum_{l=1}^{L} \|y_l - f_\theta(x_l)\|^2.
\]

3. Let \(f(x) = \frac{2}{1+\exp(-(x^Tw_1+x^Tw_2+w_3))} - 1 \) and \(L(y, f(x)) = \log(1+\exp(-yf(x))) \), with \(y \in \{-1,1\} \). Provide the gradient descent solution \(\frac{\partial L}{\partial w_i} \), for \(i = \{1,2,3\} \).
The solution can be expressed in various ways. Here is a simple derivation in the spirit of artificial neural networks. Let

\[h(x) = \frac{2}{1 + \exp(-x)} - 1 \]

(1)

and

\[g(x) = x^2w_1 + xw_2 + w_3 \]

(2)

we have

\[f(x) = \frac{2}{1 + \exp(-(x^2w_1 + xw_2 + w_3))} - 1 \]

(3)

\[\frac{2}{1 + \exp(-g(x))} - 1 \]

(4)

\[h(g(x)) \]

(5)

and then

\[\frac{\partial h(x)}{\partial x} = -\frac{h(x)^2 - 1}{2} \]

(7)

and

\[\frac{\partial g(x)}{\partial w_1} = x^2 \]

(8)

\[\frac{\partial g(x)}{\partial w_2} = x \]

(9)

\[\frac{\partial g(x)}{\partial w_3} = 1 \]

(10)

furthermore,

\[L(y, f(x)) = \log(1 + \exp(-yf(x))) \]

(12)

\[\frac{\partial L}{\partial f(x)} = -\frac{y}{1 + \exp(yf(x))} \]

(13)

so

\[\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial f(x)} \frac{\partial f(x)}{\partial h(x)} \frac{\partial h(x)}{\partial g(x)} \frac{\partial g(x)}{\partial w_1} \]

(14)

\[= -\frac{y}{1 + \exp(yf(x))} \cdot \frac{h(g(x))^2 - 1}{2} \cdot x^2 \]

(15)

\[\frac{\partial L}{\partial w_2} = -\frac{y}{1 + \exp(yf(x))} \cdot \frac{h(g(x))^2 - 1}{2} \cdot x \]

(16)

\[\frac{\partial L}{\partial w_3} = -\frac{y}{1 + \exp(yf(x))} \cdot \frac{h(g(x))^2 - 1}{2} \cdot 1 \]

(17)

(18)
4. (a) Provide the gradient descent solution for an MLP f with 2 layers, and a cost function $C(y, f(x))$.
(b) Copying mlp.py implement an MLP with 2 layers.
(c) Compare on a 2-dimensions dataset, the decision functions of an MLP with 1 layer and 2 layers. Take a look at the decision functions.

The equation for an MLP f with 2 layers:

$$\text{out} = f(\text{input}) = v \cdot z_2 \{ y_2 [z_1 (y_1(\text{input}))]) + c$$

where,

- $\text{input} \in \mathbb{R}^n$, $\text{out} \in \mathbb{R}$,
- $y_1(\text{input}) = w_1 \cdot \text{input} + b_1 = (\sum_{i=1}^n w_1^i \text{input}^i + b_1^i)_{j=1...nhu_1}$,
- $z_1 = (h(y_1^1), \ldots, h(y_1^{nhu_1}))$,
- $y_2(z_1) = w_2 \cdot z_1 + b_2 = (\sum_{j=1}^{nhu_1} w_2^{ij} z_1^i + b_2^i)_{i=1...nhu_2}$,
- $z_2 = (h(y_2^1), \ldots, h(y_2^{nhu_2}))^t$,
- h is a transfer function (eg tanh),
- w_1 is the $nhu_1 \times n$ 1st layer weight matrix (nhu_1: number of hidden units for the 1st layer),
- b_1 is the nhu_1 1st layer bias vector,
- w_2 is the $nhu_2 \times nhu_1$ 2nd layer weight matrix (nhu_2: number of hidden units for the 2nd layer),
- b_2 is a nhu_2 2nd layer bias vector,
- v is the $1 \times nhu_2$ output layer weight matrix and
- b is the output layer bias.

The gradients:

$$\frac{\partial f}{\partial v} = z_2^i, \quad \frac{\partial f}{\partial c} = 1, \quad \frac{\partial f}{\partial z_2} = v^i$$

$$\frac{\partial z_2}{\partial y_2} = \left(\frac{\partial h(y_2^1)}{\partial y_2^1}, \ldots, \frac{\partial h(y_2^{nhu_2})}{\partial y_2^{nhu_2}} \right)^t_{nhu_2 \times 1}$$

$$\frac{\partial y_2^i}{\partial w_2^{ij}} = z_1^j, \quad \frac{\partial y_2^i}{\partial b_2^i} = 1, \quad \frac{\partial y_2^i}{\partial z_1^i} = w_2^{ij}$$

$$\frac{\partial z_1}{\partial y_1} = \left(\frac{\partial h(y_1^1)}{\partial y_1^1}, \ldots, \frac{\partial h(y_1^{nhu_1})}{\partial y_1^{nhu_1}} \right)^t_{nhu_1 \times 1}$$
\[\frac{\partial y_1^i}{\partial w_1^l} = \text{input}^i, \quad \frac{\partial y_1^i}{\partial b_1^i} = 1, \quad \frac{\partial y_1^i}{\partial \text{input}^l} = w_1^l\]

\[\frac{\partial C}{\partial v_i} = \frac{\partial C}{\partial f} \cdot \frac{\partial f}{\partial v_i}, \quad \frac{\partial C}{\partial c} = \frac{\partial C}{\partial f} \cdot \frac{\partial f}{\partial c}\]

\[\frac{\partial C}{\partial y_2^l} = \frac{\partial C}{\partial y_2^l} \cdot \frac{\partial y_2^l}{\partial w_2^l}, \quad \frac{\partial C}{\partial b_2^l} = \frac{\partial C}{\partial y_2^l} \cdot \frac{\partial y_2^l}{\partial b_2^l}\]

\[\frac{\partial C}{\partial y_1^i} = \sum_{i=1}^{n_{\text{hub}}} \frac{\partial C}{\partial y_2^l} \cdot \frac{\partial y_2^l}{\partial z_1^i} \cdot \frac{\partial z_1^i}{\partial y_1^i}\]

\[\frac{\partial C}{\partial w_1^l} = \frac{\partial C}{\partial y_1^i} \cdot \frac{\partial y_1^i}{\partial w_1^l}, \quad \frac{\partial C}{\partial b_1^i} = \frac{\partial C}{\partial y_1^i} \cdot \frac{\partial y_1^i}{\partial b_1^i}\]