Lab 4 - GMMs and HMMs

{bengio,mkeller}@idiap.ch
http://www.idiap.ch/~{bengio,mkeller}

January 12, 2006

GMMs

. Let 0 = {wy,...,wk,l1,...,iK,21,..., 5k} define a gaussian mix-
ture model, where Vi, ¥ = 0 -1, with o a fixed parameter. Com-
pare the EM fitting of the parameters to the K-means batch
algorithm.

e The gaussian mixture model:

)

k=1

:l]Zw oxp (L2l

e GMM E-step - Vr € Dypqin, estimate the posterior probability,
sometimes called responsibility of each j:

P(jl6) - p(alj,0) _ w;é;(.6)
p(z0) S wiok(, 0)
e (_ Hz—Q;;jHZ)

¢ K-means 1st step - “For each prototype px, put in the emptied set
Sy the examples of Dy.qin that are closer to uy than to any other

1i#k:

(@) = P(jle, 0) =

o GMM M-step - find parameters § maximizing the auxiliary func-
tion (also called expected complete loglikelihood):

iy = 2 iy k(i)
2 ima (@)

= % ;%(%)

e K-means 2nd step - “Re-compute the value of each i as the av-
erage of the examples in Sg.”

HMDMs

. Maximum Likelihood € Decoding - Imagine that from the other
side of a curtain I tell you that I have 2 biased coins C; and
C5, that following a Markov assumption I flip one or the other
coin and that I give you the resulting sequence of heads and tails
without telling you from which coin each component comes.

(a) Design a hidden markov model for this sequence.

(b) Using 2coinsgenerator.py generate a list of sequences coming from
a common distribution.

(c) Using the functions implemented in hmm.py, select the parameters
which maximize the likelihood of the list of sequences.

(d) Generate a new sequence with the same distribution, implement the
Viterbi algorithm and decode the new sequence. (Hint: Note that
the recursive equation of V(4,¢) is very similar to the one of «(3,t)
and do not forget to keep track of the path).

P(H)=p1 A A P(H)=p2
P(T)=1- p1: | P(T)=1-p2
1 - p(clicl) I
P(clicD) .@ @. p(c2|c2)

1- p(02|02)

(b) > data = [gen(100) [0] for i in range(10)]

(¢) > [logEmission,logTransition,hmm_err] = em_hmm(data,2,30,2)
InitialLogEmission [[-1.77648189,-0.18540528,], [-0.70620657,-0.68025614,]]
InitialLogTransition [[-0.5030033 ,-0.92814015,], [-0.56799312,-0.83623614,]]
iteration O hmm_err 79.0057543691
iteration 1 hmm_err 69.1872515038

iteration 29 hmm_err 59.7914928982
(d) see hmm_solution.py.

> test = gen(10)

> viterbi(logEmission,logTransition,test[0])
(o, 1,1, 0, 1, 0, 1, 1, 0, 1]

> test[1]

(1, 1, 0, 1, 0, 1, 1, 0, 1, 0]

3. Classification - Let us be in the same setting as the previous
question, but this time I can give you a sequence originating
from the flipping of the previous 2 coins or originating from a
3rd coin C5 with P(H) = 0.56. What will you do to decide whether
a new sequence comes from the 2 coins process or from C5?

Use a Bayes Classifier.

