An Introduction to Statistical Machine Learning
- Ensembles -

Samy Bengio
bengio@idiap.ch

Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP)
CP 592, rue du Simplon 4
1920 Martigny, Switzerland
http://www.idiap.ch/~bengio

IDIAP - February 4, 2003
Ensemble Models

1. Basics of Ensembles
2. Bagging
3. AdaBoost
4. Mixture of Experts (already seen!)
Basics of Ensembles

- When trying to solve a problem, we generally make some choices:
 - family of functions, range of the hyper-parameters
 - input representation and preprocessing
 - precise dataset
 - etc

- Idea: instead of making these choices, let us provide not one but many solutions to the same problem, and let us combine them

- Why should this be a good idea?
 - These choices imply a variance in the expected performance (implicit capacity).
 - In general, combining estimates → reduces the variance → enhances expected performance.
Ensemble - Why Does it Work?

- It has been shown that the expected risk of the average of a set of models is better than the average of the expected risk of these models

- Let us consider the simplest ensemble g over models f_i:

$$g(x) = \sum_i \alpha_i f_i(x) \text{ with } \sum_i \alpha_i = 1$$

- The MSE risk of f_i at x is $e_i(x) = E_y[(y - f_i(x))^2]$

- The average risk of a model is $\bar{e}(x) = \sum_i \alpha_i e_i(x)$

- The average risk of the ensemble is $e(x) = E_y[(y - g(x))^2]$

- Let us define diversity $d_i(x) = (f_i(x) - g(x))^2$

- The average diversity is $\bar{d}(x) = \sum_i \alpha_i d_i(x)$

- It can then be shown that $e(x) = \bar{e}(x) - \bar{d}(x)$
Bagging: bootstrap aggregating

Underlying idea: part of the variance is due to the specific choice of the training data set

Let us create many similar training data sets,

For each of them, let us train a new function

The final function will be the average of each function outputs.

How similar? using bootstrap.
Given a data set D_n with n examples drawn from $p(Z)$

- A bootstrap B_i of D_n also contains n examples:

 - For $j = 1 \rightarrow n$, the j^{th} example of B_i is drawn independently with replacement from D_n

- Hence,

 - some examples from D_n are in multiple copies in B_i
 - and some examples from D_n are not in B_i

- Hypothesis: the examples were iid drawn from $p(Z)$

Hence, the datasets B_i are as plausible as D_n, but drawn from D_n instead of $p(Z)$.
Bagging - Algorithm

• **Training:**
 1. Given a training set D_n, create T bootstraps B_i of D_n
 2. For each bootstrap B_i, select $f^*(B_i) = \arg \min_{f \in \mathcal{F}} \hat{R}(f, B_i)$

• **Testing:**
 ○ Given an input x, the corresponding output \hat{y} is:

$$\hat{y} = \frac{1}{T} \sum_{i=1}^{T} f^*(B_i)(x)$$

• **Analysis:** if generalization error is decomposed into bias and variance terms then bagging reduces variance.
Bias + Variance for Bagging

Error

Capacity

Normal Variance

Bagging Variance

Bias

Ensembles
AdaBoost

- Most popular algorithm in the family of boosting algorithms
- Boosting: the performance of simple (weak) classifiers is boosted by combining them iteratively.
- General combination classifier:
 \[g(x) = \sum_{t=1}^{T} \alpha_t f_t(x) \]
- Simplest framework: binary classification, targets = \{-1, +1\}
- What can we do with the following simplest requirement: each weak classifier \(f_t \) should perform better than chance
AdaBoost is an \textit{iterative algorithm}: select f_t given the performance obtained by previous weak classifiers $f_1 \rightarrow f_{t-1}$.

At each time step t,
\begin{itemize}
 \item Modify training sample distribution in order to favor \textbf{difficult examples} (according to previous weak classifiers).
 \item \textbf{Train} a new weak classifier
 \item \textbf{Select} the new weight α_t by optimizing a global criterion
\end{itemize}

\textbf{Stop} when impossible to find a weak classifier satisfying the simplest condition (being better than chance)

Final solution is the weighted sum of all weak classifiers
AdaBoost - Algorithm

1. inputs: \(D_n = \{(x_1, y_1), \cdots, (x_n, y_n)\} \)

2. initialize: \(w_i^{(1)} = \frac{1}{n} \) for all \(i = 1, \cdots, n \)

3. for \(t = 1, \cdots, T \)
 (a) \(D^{(t)} \): sample \(n \) examples from \(D_n \) according to weights \(w^{(t)} \)
 (b) train classifier \(f_t \) using \(D^{(t)} \)
 (c) calculate weighted training error \(\epsilon_t \) of \(f_t \):
 \[
 \epsilon_t = \sum_{i=1}^{n} w_i^{(t)} I(y_i \neq f_t(x_i))
 \]
 where \(I(z) = 1 \) if \(z \) is true, 0 otherwise
 (d) calculate weight \(\alpha_t \) of weak classifier \(f_t \):
 \[
 \alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}
 \]
AdaBoost - Algorithm

(e) **update weights of examples** for next iteration:

\[w_{i}^{(t+1)} = w_{i}^{(t)} \frac{\exp(-\alpha_{t} y_{i} f_{t}(x_{i}))}{Z_{t}} \]

where \(Z_{t} \) is a normalization factor such that \(\sum_{i} w_{i}^{(t+1)} = 1 \).

(f) if \(\epsilon_{t} = 0 \) or \(\epsilon_{t} \geq \frac{1}{2} \), break: \(T = t - 1 \).

4. **Final output:**

\[g(x) = \sum_{t} \frac{\alpha_{t}}{\sum_{r} \alpha_{r}} f_{t}(x) \]
AdaBoost - Analysis

- Selection of α_t comes from minimizing

$$\alpha_t^* = \arg \min_{\alpha_t} \sum_{i=1}^{n} \exp \left(-y_i \left(\alpha_t f_t(x_i) + \sum_{s=1}^{t-1} \alpha_s f_s(x_i) \right) \right)$$

- Other cost functions have been proposed (such as logitboost or arcing)

- Sampling can often be replaced by weighting

- If each weak classifier is always better than chance, then AdaBoost can be proven to converge to 0 training error

- Even after training error is 0, generalization error continues to improve: the margin continues to grow

- Early claims: AdaBoost does not overfit! This is false of course...
Comparison of various cost functions related to AdaBoost:

- $\exp(-m)$ [AdaBoost]
- $\log(1+\exp(-m))$ [LogitBoost]
- $1 - \tanh(m)$ [Doom II]
- $(1 - m)^+$ [SVM]
The AdaBoost **margin** is defined as the distribution of $y \cdot g(x)$:

![Cumulative distribution of the test margin for several iterations](image)

- Ensembles
AdaBoost - Extensions

- **Multi-class classification**
- **Single-class classification**: estimating quantiles
- **Regression**: transform the problem into a binary classification task
- **Localized Boosting**: similar to mixtures of experts

\[g(x) = \sum_{t=1}^{T} \alpha_t(x) \cdot f_t(x) \]

- Examples of weak classifiers:
 - Decision trees and **stumps**
 - Neural networks