An Introduction to Statistical Machine Learning

- Feature Selection -

Samy Bengio

bengio@idiap.ch

Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP) CP 592, rue du Simplon 4 1920 Martigny, Switzerland http://www.idiap.ch/~bengio

Feature Selection

- 1. Why Should We Select Features?
- 2. Classes of Feature Selection Methods
- 3. Filter Methods
- 4. Wrapper Methods
- 5. Weighting and Other Methods

Why Should We Select Features?

- Some problems are defined by 100 or even 1000 input features
- Most Machine Learning models have to attribute parameters to handle these features (often at least linearly as much)
- Hence, capacity is determined by the number of features
- If most features are noise, then most of the parameters will be useless → capacity is wasted
- Worse, the algorithm might find false regularities in the input features of the training data and use the wasted capacity to represent them!
- Other problem: curse of dimensionality.
- Finally: for more interpretability and efficiency.

Classes of Feature Selection Methods

Broad classes of feature selection methods:

- Filter Methods:
 - Select the best features according to a reasonable criterion
 - The criterion is **independent** of the real problem
- Wrapper Methods:
 - Select the best features according to the final criterion
 - For each subset of features, try to solve the problem

• In any case, there are
$$\sum_{p=1}^{n} C_n^p = \sum_{p=1}^{n} \frac{n!}{p!(1-p)!}$$
 combinations

• Alternative: weighting methods.

Filter Methods

- Basic idea: select the best features according to some prior knowledge
- Examples of prior knowledge:
 - features should be uncorrelated \longrightarrow perform a PCA and keep only the eigenvectors corresponding to x% of the variance.
 - similar ideas: linear discriminant analysis (LDA), independent component analysis (ICA)
 - features should have strong correlation with the target \longrightarrow select the k features most linearly correlated to the target
 - features should have strong correlation with the target \longrightarrow select the k features with highest mutual information with the target:

$$I(x,y) = \sum_{i} \sum_{j} p(x_i, y_j) \log \left[\frac{p(x_i, y_j)}{p(x_i)p(y_j)} \right]$$

Wrapper Methods

- Basic (naive) algorithm:
 - 1. For each subset of features, solve the problem.
 - 2. Select the best subset.
- Impossible because the problem is exponentially long!
- Alternatives: greedy heuristics such as forward selection or backward elimination

Forward Selection

- 1. let $\mathcal{P} = \emptyset$ be the current set of selected features
- 2. let \mathcal{Q} be the full set of features
- 3. while size of \mathcal{P} smaller than a given constant
 - (a) for each $v \in \mathcal{Q}$
 - i. set $\mathcal{P}' \leftarrow \{v\} \cup \mathcal{P}$
 - ii. train the model with \mathcal{P}' and keep the validation performance
 - (b) set $\mathcal{P} \leftarrow \{v^*\} \cup \mathcal{P}$ where v^* corresponds to the **best** validation performance obtained in step 3a
 - (c) set $\mathcal{Q} \leftarrow \mathcal{Q} \setminus \{v^*\}$
 - (d) keep the validation performance obtained with current ${\cal P}$
- 4. return the best set \mathcal{P}

Backward Elimination

- 1. let \mathcal{P} be the full set of features
- 2. while size of \mathcal{P} greater than a given constant
 - (a) for each $v \in \mathcal{P}$
 - i. set $\mathcal{P}' \leftarrow \mathcal{P} \setminus \{v\}$
 - ii. train the model with \mathcal{P}' and keep the validation performance
 - (b) set $\mathcal{P} \leftarrow \mathcal{P} \setminus \{v^*\}$ where v^* corresponds to the worst validation performance obtained in step 2a
 - (c) keep the validation performance obtained with current ${\cal P}$
- 3. return the best set \mathcal{P}

Comparison: Wrappers vs Filters

- Both methods are ultimately heuristics because of the combinatorial barrier.
- Wrappers try to solve the real problem, hence you really optimize your criterion.
- Filters solve a different problem... it might not be appropriate.
- Wrappers are potentially very time consuming: you have to solve the ultimate problem numerous times.
- Filters are much faster because the problem they solve is in general simpler.

Feature Weighting Methods

- Instead of selecting a subset of features, which is a combinatorial problem, why not simply weight them?
- Most feature weighting methods are based on the wrapper approach
- Heuristics for feature weighting:
 - gradient descent on the input space → train with all features, then fix the parameters and estimate the importance of each input, and loop
 - AdaBoost when each model is trained on one feature only (\longrightarrow final solution is a linear combination)

Other Feature Selection Methods

- There are of course plenty other feature selection heuristics
 - SVMs when the kernel is linear (\rightarrow number of features = number of support vectors.
 - Methods such as decision trees which intrinsically select features.

