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Abstract
Learning a measure of similarity between pairs of objects isan important generic problem in ma-
chine learning. It is particularly useful in large scale applications like searching for an image that
is similar to a given image or finding videos that are relevantto a given video. In these tasks, users
look for objects that are not only visually similar but also semantically related to a given object.
Unfortunately, the approaches that exist today for learning such semantic similarity do not scale to
large data sets. This is both because typically their CPU andstorage requirements grow quadrat-
ically with the sample size, and because many methods imposecomplex positivity constraints on
the space of learned similarity functions.

The current paper presents OASIS, anOnline Algorithm for Scalable Image Similaritylearn-
ing that learns a bilinear similarity measure over sparse representations. OASIS is an online dual
approach using the passive-aggressive family of learning algorithms with a large margin criterion
and an efficient hinge loss cost. Our experiments show that OASIS is both fast and accurate at a
wide range of scales: for a data set with thousands of images,it achieves better results than existing
state-of-the-art methods, while being an order of magnitude faster. For large, web scale, data sets,
OASIS can be trained on more than two million images from 150Ktext queries within 3 days on
a single CPU. On this large scale data set, human evaluationsshowed that 35% of the ten nearest
neighbors of a given test image, as found by OASIS, were semantically relevant to that image. This
suggests that query independent similarity could be accurately learned even for large scale data sets
that could not be handled before.
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1. Introduction

Large scale learning is sometimes defined as the regime where learning is limited bycomputational
resources rather than by availability of data (Bottou, 2008). Learning a pairwise similarity measure
is a particularly challenging large scale task: since pairs of samples have to be considered, the large
scale regime is reached even for fairly small data sets, and learning similarity for large data sets
becomes exceptionally hard to handle.

At the same time, similarity learning is a well studied problem with multiple real world appli-
cations. It is particularly useful for applications that aim to discover new and relevant data for a
user. For instance, a user browsing a photo in her album may ask to find similar or related images.
Another user may search for additional data while viewing an online video orbrowsing text docu-
ments. In all these applications, similarity could have different flavors: a user may search for images
that are similar visually, or semantically, or anywhere in between.

Many similarity learning algorithms assume that the available training data contains real-valued
pairwise similarities or distances. However, in all the above examples, the precise numerical value
of pairwise similarity between objects is usually not available. Fortunately, onecan often obtain
information about therelative similarity of different pairs (Frome et al., 2007), for instance, by
presenting people with several object pairs and asking them to select the pair that is most similar.
For large scale data, where man-in-the-loop experiments are prohibitivelycostly, relative similarities
can be extracted from analyzing pairs of images that are returned in response to the same text query
(Schultz and Joachims, 2004). For instance, the images that are ranked highly by one of the image
search engines for the query “cute kitty” are likely to be semantically more similar than a random
pair of images. The current paper focuses on this setting: similarity information is extracted from
pairs of images that share a common label or are retrieved in response to a common text query.

Similarity learning has an interesting reciprocal relation with classification. On one hand, pair-
wise similarity can be used in classification algorithms like nearest neighbors or kernel methods. On
the other hand, when objects can be classified into (possibly overlapping)classes, the inferred labels
induce a notion of similarity across object pairs. Importantly however, similaritylearning assumes
a form of supervision that is weaker than in classification, since no labels are provided. OASIS is
designed to learn aclass-independentsimilarity measure with no need for class labels.

A large number of previous studies have focused on learning a similarity measure that is also a
metric, like in the case of a positive semidefinite matrix that defines a Mahalanobisdistance (Yang,
2006). However, similarity learning algorithms are often evaluated in a context of ranking. For in-
stance, the learned metric is typically used together with a nearest-neighbor classifier (Weinberger
et al., 2006; Globerson and Roweis, 2006). When the amount of training data available is very
small, adding positivity constraints for enforcing metric properties is usefulfor reducing over fitting
and improving generalization. However, when sufficient data is available,as in many modern appli-
cations, adding positive semi-definitiveness constraints consumes considerable computation time,
and its benefit in terms of generalization are limited. With this view, we take here anapproach that
avoids imposing positivity or symmetry constraints on the learned similarity measure.

The current paper presents an approach for learning semantic similarity that scales up to an
order of magnitude larger than current published approaches. Threecomponents are combined to
make this approach fast and scalable: First, our approach uses an unconstrained bilinear similarity.
Given two imagesp1 and p2 we measure similarity through a bilinear formpT

1 Wp2, where the
matrix W is not required to be positive, or even symmetric. Second we use a sparserepresentation
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of the images, which allows to compute similarities very fast. Finally, the training algorithm that
we developed, OASIS,Online Algorithm for Scalable Image Similarity learning, is an online dual
approach based on the passive-aggressive algorithm (Crammer et al.,2006). It minimizes a large
margin target function based on the hinge loss, and already converges tohigh quality similarity
measures after being presented with a small fraction of the training pairs.

We find that OASIS is both fast and accurate at a wide range of scales: for a standard benchmark
with thousands of images, it achieves better (but comparable) results than existing state-of-the-
art methods, with computation times that are shorter by orders of magnitude. For web-scale data
sets, OASIS can be trained on more than two million images within three days on a single CPU,
and its training time grows linearly with the size of the data. On this large scale data set, human
evaluations of OASIS learned similarity show that 35% of the ten nearest neighbors of a given image
are semantically relevant to that image.

The paper is organized as follows. We first present our online algorithm,OASIS, based on the
Passive-aggressive family of algorithms. We then present the sparse feature extraction technique
used in the experiments. We continue by describing experiments with OASIS onproblems of image
similarity, at two different scales: a large scale academic benchmark with tensof thousands of
images, and a web-scale problem with millions of images. The paper ends with a discussion on
properties of OASIS.

2. Learning Relative Similarity

We consider the problem of learning a pairwise similarity functionS, given data on the relative
similarity of pairs of images.

Formally, letP be a set of images, andr i j = r(pi , p j)∈R be a pairwise relevance measure which
states how stronglyp j ∈ P is related topi ∈ P . This relevance measure could encode the fact that
two images belong to the same category or were appropriate for the same query. We do not assume
that we have full access to all the values ofr. Instead, we assume that we can compare some pairwise
relevance scores (for instancer(pi , p j) andr(pi , pk)) and decide which pair is more relevant. We
also assume that whenr(pi , p j) is not available, its value is zero (since the vast majority of images
are not related to each other). Our goal is to learn a similarity functionS(pi , p j) that assigns higher
similarity scores to pairs of more relevant images,

S(pi , p+
i ) > S(pi , p−i ) , ∀pi , p+

i , p−i ∈ P such thatr(pi , p+
i ) > r(pi , p−i ). (1)

In this paper we overload notation by usingpi to denote both the image and its representation as a
column vectorpi ∈ R

d. We consider a parametric similarity function that has a bi-linear form,

SW(pi , p j) ≡ pT
i W p j (2)

with W ∈ R
d×d. Importantly, if the imagespi are represented as sparse vectors, namely, only a

numberki ≪ d of thed entries in the vectorpi are non-zeroes, then the value of Equation (2) can be
computed very efficiently even whend is large. Specifically,SW can be computed with complexity
of O(kik j) regardless of the dimensionalityd.
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2.1 An Online Algorithm

We propose an online algorithm based on the Passive-Aggressive (PA) family of learning algorithms
introduced by Crammer et al. (2006). Here we consider an algorithm that uses triplets of images
pi , p+

i , p−i ∈ P such thatr(pi , p+
i ) > r(pi , p−i ).

We aim to find a parametric similarity functionSsuch that all triplets obey

SW(pi , p+
i ) > SW(pi , p−i )+1 (3)

which means that it fulfills Equation (1) with a safety margin of 1. We define the following hinge
loss function for the triplet:

lW(pi , p+
i , p−i ) = max

{

0,1−SW(pi , p+
i )+SW(pi , p−i )

}

. (4)

Our goal is to minimize a global lossLW that accumulates hinge losses (4) over all possible triplets
in the training set:

LW = ∑
(pi ,p

+
i ,p−i )∈P

lW(pi , p+
i , p−i ) .

In order to minimize this loss, we apply the Passive-Aggressive algorithm iteratively over triplets
to optimizeW. First, W is initialized to some valueW0. Then, at each training iterationi, we
randomly select a triplet(pi , p+

i , p−i ), and solve the following convex problem with soft margin:

Wi = argmin
W

1
2
‖W−Wi−1‖2

Fro +Cξ (5)

s.t. lW(pi , p+
i , p−i ) ≤ ξ and ξ ≥ 0

where‖·‖Fro is the Frobenius norm (point-wiseL2 norm). Therefore, at each iterationi, Wi is
selected to optimize a trade-off between remaining close to the previous parametersWi−1 and min-
imizing the loss on the current tripletlW(pi , p+

i , p−i ). TheaggressivenessparameterC controls this
trade-off.

OASIS
Initialization:

Initialize W0 = I

Iterations
repeat

Sample three imagesp, p+
i , p−i , such thatr(pi , p+

i ) > r(pi , p−i ).
UpdateWi = Wi−1 + τiVi

whereτi = min
{

C,
lWi−1(pi ,p

+
i ,p−i )

‖Vi‖2

}

andVi = [p1
i (p+

k − p−k ), . . . , pd
i (p+

k − p−k )]T

until (stopping criterion)

Figure 1: Pseudo-code of the OASIS algorithm.
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We follow Crammer et al. (2006) to solve the problem in Equation (5). WhenlW(pi , p+
i , p−i ) =

0, it is clear thatWi = Wi−1 satisfies Equation (5) directly. Otherwise, we define the Lagrangian

L(W,τ,ξ,λ) =
1
2
‖W−Wi−1‖2 +Cξ+ τ(1−ξ− pT

i W(p+
i − p−i ))−λξ (6)

whereτ ≥ 0 andλ ≥ 0 are Lagrange multipliers. The optimal solution is such that the gradient
vanishes∂L(W,τ,ξ,λ)

∂W = 0, hence

∂L(W,τ,ξ,λ)

∂W
= W−Wi−1− τVi = 0

where the gradient matrixVi = ∂LW
∂W = [p1

i (p+
i − p−i ), . . . , pd

i (p+
i − p−i )]T . The optimal newW is

therefore
W = Wi−1 + τVi (7)

where we still need to estimateτ. Differentiating the Lagrangian with respect toξ and setting it to
zero also yields:

∂L(W,τ,ξ,λ)

∂ξ
= C− τ−λ = 0 (8)

which, knowing thatλ ≥ 0, means thatτ ≤ C. Plugging Equations (7) and (8) back into the La-
grangian in Equation (6), we obtain

L(τ) =
1
2

τ2‖Vi‖
2 + τ(1− pT

i (Wi−1 + τVi)(p+
i − p−i )) .

Regrouping the terms we obtain

L(τ) = −
1
2

τ2‖Vi‖
2 + τ(1− pT

i Wi−1(p+
i − p−i )) .

Taking the derivative of this second Lagrangian with respect toτ and setting it to 0, we have

∂L(τ)
∂τ

= −τ‖Vi‖
2 +(1− pT

i Wi−1(p+
i − p−i )) = 0

which yields

τ =
1− pT

i Wi−1(p+
i − p−i )

‖Vi‖2 =
lWi−1(pi , p+

i , p−i )

‖Vi‖2 .

Finally, Sinceτ ≤C, we obtain

τ = min

{

C,
lWi−1(pi , p+

i , p−i )

‖Vi‖2

}

. (9)

Equations (7) and (9) summarize the update needed for every triplets(pi , p+
i , p−i ). It has been

shown (Crammer et al., 2006) that applying such an iterative algorithm yieldsa cumulative online
loss that is likely to be small. It was furthermore shown that selecting the bestWi during training
using a hold-out validation set achieves good generalization. We also show below that multiple runs
of the algorithm converge to provide similar precision (see Figure 7).
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2.2 Loss Bounds

Following closely the analysis of loss bounds for passive aggressive (PA) algorithms developed by
Crammer et al. (2006) we state similarrelative bounds for the OASIS framework. We do this by
rewriting OASIS as a straightforward linear classification problem. Denote by −→wi the vector ob-
tained by“unfolding” the matrixW (concatenating all its columns into a single vector) and similarly
−→xi the unfolded matrixpi(p+

i − p−i )T . Using this notation, the constraint in Equation (3) becomes

−→wi ·
−→xi > 1 ,

with · denoting the standard inner product. This is equivalent to the formulation ofPA when the
label yi is always 1. The introduction of slack variables in Equation (5) brings us tothe variant
denoted by Crammer et al. (2006) as PA-I.

The loss bounds in Crammer et al. (2006) rely on−→w0 being the zero vector. Since here we
initialize withW0 = I (the identity matrix) we need to adapt the analysis slightly. Let−→u be a vector

in R
d

2

obtained by unfolding an arbitrary matrixU. We define

l i = 1−−→wi ·
−→xi and l∗i = 1−−→u ·−→xi ,

wherel i is the instantaneous loss at round i, andl∗i is the loss suffered by the arbitrary vector−→u .
The following two theorems rely on Lemma 1 of Crammer et al. (2006), which we restate without
proof:

∑τi(2l i − τi‖xi‖
2−2l∗i ) ≤ ‖−→u −−→w0‖

2 .

While in Crammer et al. (2006)−→w0 is the zero vector, in our case−→w0 is the unfoldedidentity matrix.
We therefore have

‖−→u −−→w0‖
2 = ‖U‖2

Fro −2trace(U)+n .

Using this modified lemma we can restate the relevant bound:

Theorem 1 Let (−→x1),...,(−→xM) be a sequence of examples where−→xi ∈R
d2

, ‖−→xi ‖ ≤R for all i = 1...M.
Then, for any matrixU ∈ R

n2, the number of prediction mistakes made by OASIS on this sequence
of examples is bounded from above by,

max{R2,1/C}
(

‖U‖2
Fro −2trace(U)+n+2C

M

∑
i=1

l∗i
)

where C is the aggressiveness parameter provided to OASIS.

2.3 Sampling Strategy

For real world data sets, the actual number of triplets(pi , p+
i , p−i ) is typically very large and cannot

be stored in memory. Instead, we use the fact that the number of relevant images for a category or
a query is typically small, and keep a list of relevant images for each query or category. For the
case of single-labeled images, we can efficiently retrieve an image that is relevant to a given image,
by first finding its class, and then finding another image from that class. The case of multi-labeled
images is described in Section 5.2.

Specifically, to sample a triplet(pi , p+
i , p−i ) during training, we first uniformly sample an image

pi from P . Then we uniformly sample an imagep+
i from the images sharing the same categories
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or queries aspi . Finally, we uniformly sample an imagep−i from the images that share no category
or query with pi . When the setP is very large and the number of categories or queries is also
very large, one does not need to maintain the set of non-relevant images for each image: sampling
directly fromP instead only adds a small amount of noise to the training procedure and is notreally
harmful.

When relevance feedbacksr(pi , p j) are provided as real numbers and not just∈ {0,1}, one
could use these number to bias training towards those pairs that have a higher relevance feedback
value. This can be done by consideringr(pi , p j) as frequencies of appearance, and sampling pairs
according to the distribution of these frequencies.

3. Image Representation

The problem of selecting an informative representation of images is still an unsolved computer
vision challenge, and an ongoing research topic. Different approaches for image representation
have been proposed including by Feng et al. (2004); Takala et al. (2005) and Tieu and Viola (2004).
In the information retrieval community there is wide agreement that a bag-of-words representation is
a very useful representation for handling text documents in a wide rangeof applications. For image
representation, there is still no such approach that would be adequate for a wide variety of image
processing problems. However, among the proposed representations,a consensus is emerging on
using local descriptorsfor various tasks, for example, Lowe (2004); Quelhas et al. (2005).This
type of representation segments the image intoregions of interest, and extracts visual features from
each region. The segmentation algorithm as well as the region features vary among approaches,
but, in all cases, the image is then represented as a set of feature vectorsdescribing the regions of
interest. Such a set is often called abag-of-local-descriptors.

In this paper we take the approach of creating a sparse representation based on the framework of
local descriptors. Our features are extracted by dividing each image intooverlapping square blocks,
and each block is then described with edge and color histograms. For edgehistograms, we rely on
uniform Local Binary Patterns(uLBPs) proposed by Ojala et al. (2002). These texture descriptors
have shown to be effective on various tasks in the computer vision literature(Ojala et al., 2002;
Takala et al., 2005), certainly due to their robustness with respect to changes in illumination and
other photometric transformations (Ojala et al., 2002). Local Binary Patterns estimate a texture
histogram of a block by considering differences in intensity at circular neighborhoods centered on
each pixel. Precisely, we useLBP8,2 patterns, which means that a circle of radius 2 is considered
centered on each block. For each circle, the intensity of the center pixel iscompared to the inter-
polated intensities located at 8 equally-spaced locations on the circle, as shown on Figure 2, left.
These eight binary tests (lower or greater intensity) result in an 8-bit sequence, see Figure 2, right.
Hence, each block pixel is mapped to a sequence among 28 = 256 possible sequences and each
block can therefore be represented as a 256-bin histogram. In fact, it has been observed that the bins
corresponding to non-uniform sequences (sequences with more than 2transitions 1→ 0 or 0→ 1)
can be merged, yielding more compact 59-bin histograms without performanceloss (Ojala et al.,
2002).

Color histograms are obtained by K-means clustering. We first select a palette or typical colors
by training a color codebook from the Red-Green-Blue pixels of a large training set of images using
K-means. The color histogram of a block is then obtained by mapping each block pixel to the closest
color in the codebook palette.
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Figure 2: An example of Local Binary Pattern (LBP8,2). For a given pixel, the Local Binary Pattern
is an 8-bit code obtained by verifying whether the intensity of the pixel is greater or lower
than its 8 neighbors.

Finally, the histograms describing color and edge statistics of each block areconcatenated,
which yields a single vector descriptor per block. Our local descriptor representation is therefore
simple, relying on both a basic segmentation approach and simple features. Naturally, alternative
representations could also be used with OASIS, (Feng et al., 2004; Grangier et al., 2006; Tieu
and Viola, 2004) However, this paper focuses on the learning model, anda benchmark of image
representations is beyond the scope of the current paper.

As a final step, we use the representation of blocks to obtain a representation for an image. For
computation efficiency we aim at a high dimensional and sparse vector space. For this purpose, each
local descriptor of an imagep is represented as a discrete index, calledvisual termor visterm, and,
like for text data, the image is represented as abag-of-vistermsvector, in which each componentpi

is related to the presence or absence of vistermi in p.
The mapping of the descriptors to discrete indexes is performed accordingto a codebookC,

which is typically learned from the local descriptors of the training images through k-means clus-
tering (Duygulu et al., 2002; Jeon and Manmatha, 2004; Quelhas et al., 2005). The assignment of
the weightpi of vistermi in imagep is as follows:

pi =
fi di

√

∑d
j=1( f j d j)2

,

where fi is the term frequency ofi in p, which refers to the number of occurrences ofi in p, while
d j is the inverse document frequency ofj, which is defined as−log(r j), r j being the fraction of
training images containing at least one occurrence of vistermj. This approach has been found
successful for the task of content based image ranking described by Grangier and Bengio (2008).

In the experiments described below, we used a large set of images collectedfrom the web
to train the features. This set is described in more detail in Section 5.2. We used a set of 20
typical RGB colors (hence the number of clusters used in the k-means for colors was 20), the block
vocabulary sized = 10000 and our image blocks were of size 64x64 pixels, overlapping every
32 pixels. Furthermore, in order to be robust to scale, we extracted blocks at various scales by
successively down scaling images by a factor of 1.25 and extracting the features at each level, until
there were less than 10 blocks in the resulting image. There was on averagearound 70 non-zero
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values (out of 10000) describing a single image. Note that no other information (such as meta-data)
was added in the input vector representation each image.

4. Related Work

Similarity learning can be considered in two main setups, depending on the type of available training
labels. First, a regression setup, where the training set consists of pairsof objectsx1

i ,x
2
i and their

pairwise similarityyi ∈ R. In many cases however, precise similarities are not available, but rather
a weaker notion of similarity order. In one such setup, the training set consists of triplets of objects
x1

i ,x
2
i ,x

3
i and a ranking similarity function, that can tell which of the two pairs(x1,x2) or (x1,x3) is

more similar. Finally, multiple similarity learning studies assume that a binary measure of similarity
is availableyi ∈ {+1,−1}, indicating whether a pair of objects is similar or not.

For small-scale data, there are two main groups of similarity learning approaches. The first
approach, learning Mahalanobis distances, can be viewed as learning alinear projection of the data
into another space (often of lower dimensionality), where a Euclidean distance is defined among
pairs of objects. Such approaches include Fisher’s Linear DiscriminantAnalysis (LDA), relevant
component analysis (RCA) (Bar-Hillel et al., 2003), supervised globalmetric learning (Xing et al.,
2003), large margin nearest neighbor (LMNN) (Weinberger et al., 2006) and Metric Learning by
Collapsing Classes (Globerson and Roweis, 2006). A Mahalanobis distance learning algorithm
which uses a supervision signal identical to the one we employ in OASIS is Rosales and Fung
(2006), which learns a special kind of PSD matrix via linear programming. See also a review by
Yang (2006) for more details.

The second family of approaches, learning kernels, is used to improve performance of kernel
based classifiers. Learning a full kernel matrix in a non parametric way is prohibitive except for
very small data. As an alternative, several studies suggested to learn a weighted sum of pre-defined
kernels (Lanckriet et al., 2004) where the weights are being learned from data. In some applications
this was shown to be inferior to uniform weighting of the kernels (Noble, 2008). The work of
Frome et al. (2007) further learns a weighting over local distance function for every image in the
training set. Non linear image similarity learning was also studied in the context of dimensionality
reduction, as in Hadsell et al. (2006).

Finally, Jain et al. (2008a,b), based on work by Davis et al. (2007), aimto learn metrics in an
online setting. This work is one of the closest work with respect to OASIS: itlearns a linear model
of a [dis-]similarity function between documents in an online way. The main difference is that the
work of Jain et al. (2008a) learn a true distance throughout the learningprocess, imposing positive
definiteness constraints, and is slightly less efficient computationally. We argue in this paper that
in the large scale regime, such a constraint is not necessary given the amount of available training
examples.

Another work closely related to OASIS is that of Rasiwasia and Vasconcelos (2008), which
also tries to learn a semantic similarity function between images. In their case, however, semantic
similarity is learned by representing each image by the posterior probability distribution over a pre-
defined set of semantic tags, and then computing the distance between two images as the distance
between the two underlying posterior distributions. The representation sizeof images in this ap-
proach is therefore equal to the number of semantic classes, hence it will not scale when the number
of semantic classes is very large as in free text search.
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5. Experiments

Evaluating large scale learning algorithms poses special challenges. First,current available bench-
marks are limited either in their scale, like 30K images in Caltech256 as described by Griffin et al.
(2007), or in their resolution, such as the tiny images data set of Torralba et al. (2007). Large
scale methods are not expected to perform particularly well on small data sets, since they are de-
signed to extract limited information from each sample. Second, many images on the web cannot be
used without explicit permission, hence they cannot be collected and packed into a single database.
Large, proprietary collections of images do exist, but are not available freely for academic research.
Finally, except for very few cases, similarity learning approaches in current literature do not scale
to handle large data sets effectively, which makes it hard to compare a new large scale method with
the existing methods.

To address these issues, this paper takes the approach of conducting experiments at two different
scales. First, to demonstrate the scalability of OASIS we applied OASIS to a web-scale data with 2.7
million images. Second, to investigate the properties of OASIS more deeply, we compare OASIS
with small-scale methods using the standard Caltech256 benchmark.

5.1 Evaluation Measures

We evaluated the performance of all algorithms using standard ranking precision measures based on
nearest neighbors. For each query image in the test set, all other test images were ranked according
to their similarity to the query image. The number of same-class images among the topk images
(thek nearest neighbors) was computed. When averaged across test images(either within or across
classes), this yields a measure known as precision-at-top-k, providing a precision curve as a function
of the rankk.

We also calculated themean average precision(mAP), a measure that is widely used in the
information retrieval community. To compute average precision, the precision-at-top-k is first cal-
culated for each test image. Then, it is averaged over all positionsk that have a positive sample.
For example, if all positives are ranked highest, the average-precisionis 1. The average-precision
measure is then further averaged across all test image queries, yielding the mean average precision
(mAP).

5.2 Web-Scale Experiment

Our first set of experiments is based on Google proprietary data that is twoorders of magnitude
larger than current standard benchmarks. We collected a set of∼150K text queries submitted to the
Google Image Search system. For each of these queries, we had accessto a set of relevant images,
each of which is associated with a numerical relevance score. This yieldeda total of∼2.7 million
images, which we split into a training set of 2.3 million images and a test set of 0.4 millionimages
(see Table 1).

Set Number of Queries Number of Images
Training 139944 2292259
Test 41877 402164

Table 1: Statistics of the Web data set.
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5.2.1 EXPERIMENTAL SETUP

We used the query-image relevance information to create an image-image relevance as follows.
Denote the set of text queries byQ and the set of images byP . For eachq∈ Q , let P+

q denote the
set of images that are relevant to the queryq, and letP−

q denote the set of irrelevant images. The
query-image relevance is defined by the matrixRQI : Q ×P → R

+, and obeysRQI(q, p+
q ) > 0 and

RQI(q, p−q ) = 0 for all q∈ Q , p+
q ∈ P+

q , p−q ∈ P−
q . We also computed a normalized version ofRQI,

which can be interpreted as a joint distribution matrix, or the probability to observe a queryq and
an imagep for that query,

Pr(q, p) =
RQI(q, p)

∑q′,p′ RQI(q′, p′)
.

In order to compute the image-image relevance matrixRII : P ×P → R
+, we treated images as

being conditionally independent given the queries,Pr(p1, p2|q) = Pr(p1|q)Pr(p2|q), and computed
the joint image-image probability as a relevance measure

Pr (p1, p2) = ∑
q∈Q

Pr (p1, p2|q)Pr (q) = ∑
q∈Q

Pr(p1 | q)Pr(p2 | q)Pr(q) .

To improve scalability, we used a threshold over this joint distribution, and considered two
images to be related only if their joint distribution exceeded a cutoff valueθ

RII (p1, p2) = [Pr(p1, p2)]θ (10)

where[x]θ = x for x > θ and is zero otherwise. To set the value ofθ we have manually inspected a
small subset of pairs of related images taken from the training set. We selected the largestθ such
that most of those related pairs had scores above the threshold, while minimizing noise inRII .

Equation 10 is written as if one needs to calculate the full joint matrixRII , but this matrix grows
quadratically with the number of images. In practice, we can use the fact thatRQI is very sparse, to
quickly create a list with images that are relevant to a given image. To do this given an imagepi ,
we go over all the queries for which it is relevantRQI(q, pi), and for each of these queries, collect
the list of all images that are relevant to that query. The average number of queries relevant for an
image in our data is small (about 100), and so is the number of images relevantfor a given query.
As a result,RII can be calculated efficiently even for large image sets.

We trained OASIS over 2.3 million images in the training set using the sampling mechanism
based on the relevance of each image, as described in Section 2.3. To select the number of training
iterations, we used as a validation set a small subset of the training set to trace the mean average
precision of the model at regular intervals during the training process. Training was stopped when
the mean average precision had saturated, which happened after 160 millioniterations (triplets).
Overall, training took a total of∼4000 minutes on a single CPU of a standard modern machine.
Finally, we evaluated the trained model on the 400 thousand images of the test set.

5.2.2 RESULTS

We start with specific examples illustrating the behavior of OASIS, and continue with a quantita-
tive analysis of precision and speed. Table 2 shows the top five images as ranked by OASIS on
four examples of query-images in the test set. The relevant text queries for each image are shown
beneath the image. The first example (top row), shows a query-image that was originally retrieved
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Query image Top 5 relevant images retrieved by OASIS

Table 2: OASIS: Successful cases from the Web data set

in response to the text query “illusion”. All five images ranked highly by OASIS are semantically
related, showing other types of visual illusions. Similar results can be observed for the three re-
maining examples on this table, where OASIS captures well the semantics of animal photos (cats
and dogs), mountains and different food items.

In all these cases, OASIS captures similarity that is both semantic and visual, since the raw
visual similarity of these images is not high. A different behavior is demonstrated in Table 3. It
shows three cases where OASIS was biased by visual similarity and provided high rankings to im-
ages that were semantically non relevant. In the first example, the assortment of flowers is confused
with assortments of food items and a thigh section (5th nearest neighbor) which has visually similar
shape. The second example presents a query image which in itself has no definite semantic element.
The results retrieved are those that merely match texture of the query image and bear no semantic
similarity. In the third example, OASIS fails to capture the butterfly in the query image.

To obtain a quantitative evaluation of OASIS we computed the precision at topk, using a thresh-
old θ = 0, which means that an image in the test set is considered relevant to a queryimage, if there
exists at least one text query to which they were both relevant to.

The obtained precision values were quite low, achieving 1.5% precision at the top ranked image.
This is drastically lower than the precision described below for Caltech256,and could be the result
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Query image Top 5 relevant images retrieved by OASIS

Table 3: OASIS: Failure cases from the Web data set

of multiple reasons. First, the number of unique textual queries in our data is very large (around
150K), hence the images in this data set were significantly more heterogeneous than images in the
Caltech256 data.

Second, and most importantly, our labels that measure pairwise relevance are very partial. This
means that many pairs of images that are semantically related are not labeled assuch. A clear
demonstration of this effect is observed in Tables 2 and 3. The query images (like “scottish fold”)
have labels that are usually very different from the labels of the retrieved images (as in “humor
cat”, “ agility”) even if their semantic content is very similar. This is a common problem in content-
based analysis, since similar content can be described in many different ways. In the case discussed
here, the partial data on the query-image relevanceRQI is further propagated to the image-image
relevance measureRII .

5.2.3 HUMAN EVALUATION EXPERIMENTS

In order to obtain a more accurate estimate of the real semantic precision, we performed a rating
experiment with human evaluators. We chose the 25 most relevant images1 from the test set and
retrieved their 10 nearest neighbors as determined by OASIS. We excluded query-images which
contained porn, racy or duplicates in their 10 nearest neighbors. We also selected randomly a set of
10 negative imagesp− that were chosen for each of the query imagesp such thatRII (p, p−) = 0.
These negatives were then randomly mixed with the 10 nearest neighbors.

All 25 query images were presented to twenty human evaluators, asking themto mark which of
the 20 candidate images aresemantically relevantto the query image.2 Evaluators were volunteers

1. The overall relevance of an image was estimated as the sum of relevances of the image with respect to all queries.
2. The description of the task as given to the evaluators is provided in Appendix A.
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selected from a pool of friends and colleagues, many of which had experience with search or ma-
chine vision problems. We collected the ratings on the positive images and calculated the precision
at topk.
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Figure 3: (A) Precision at topk as a function ofk neighbors computed againstRII (θ = 0) for the
web-scale test set.(B) Precision at topk as a function ofk neighbors for the human
evaluation subset.(C) Mean precision for 5 selected queries. Error bars denote the
standard error of the mean. To select the queries for this plot, we first calculated the mean-
average precision per query, sorted the queries by their mAP, and selected the queries
ranked at position 1, 6, 11, 16, and 21.(D) Precision of OASIS and human evaluators,
per query, using rankings of all (remaining) human evaluators as a ground truth.

Figure 3(B) shows the average precision across all queries and evaluators. Precision peaks
at 42% and reaches 35% at the top 10 ranked image, being significantly higher than the values
calculated automatically usingRII .

We observed that the variability across different query images was also very high. Figure 3(C)
shows the precision for 5 different queries, selected to span the rangeof average-precision values.
The error bars at each curve show the variability in the responses of different evaluators. The
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precision of OASIS varies greatly across different queries. Some query images were “easy” for
OASIS, yielding high scores from most evaluators, while other queries retrieved images that were
consistently found to be irrelevant by most evaluators.

We also compared the magnitude of variability across human evaluators, with variability across
queries. We first calculated the mAP from the precision curves of every query and evaluator, and
then calculated the standard deviation in the mAP of every evaluator and of every query. The
mean standard deviation over queries was 0.33, suggesting a large variability in the difficulty of
image queries, as observed in Figure 3(C) . The mean standard deviation over evaluators was 0.25,
suggesting that different evaluators had very different notions of what images should be regarded as
“semantically similar” to a query image.

Finally, to estimate an “upper bound” on the difficulty of the task, we also computed the pre-
cision of the human evaluators themselves. For every evaluator, we used the rankings of all other
evaluators as ground truth, to compute his precision. As with the ranks of OASIS, we computed the
fraction of evaluators that marked an image as relevant, and repeated this separately for every query
and human evaluator, providing a measure of “coherence” per query.Figure 3(D) shows the mean
precision obtained by OASIS and human evaluators for every query in our data. For some queries
OASIS achieves precision that is very close to that of the mean human evaluator. In many cases
OASIS achieves precision that is as good or better than some evaluators.

5.2.4 SPEED AND SCALABILITY

We further studied how the runtime of OASIS scales with the size of the training set. Figure 4 shows
that the runtime of OASIS, as found by early stopping on a separate validation set, grows linearly
with the train set size. We compare this to the fastest result we found in the literature, based on a fast
implementation of LMNN by Weinberger and Saul (2008). LMNN learns a Mahalanobis distance
for k-nearest neighbor classification, aiming to have the nearest neighbors of a sample belong to the
same class, and samples from different classes separated by a large margin. The LMNN algorithm
is known to scale quadratically with the number of objects, although their experiments with MNIST
data show that the active set of constraints grows linearly. This could be because MNIST has 10
classes only. In many real world data however, the number of classes typically grows almost linearly
with the number of samples.

5.3 Caltech256 Data Set

To compare OASIS with small-scale methods we used theCaltech256data set (Griffin et al., 2007).
This data set consists of 30607 images that were obtained from Google imagesearch and from
PicSearch.com. Images were assigned to 257 categories and evaluated by humans in order to ensure
image quality and relevance. After we have pre-processed the images as described in Section 3 and
filtered images that were too small, we were left with 29461 images in 256 categories. To allow
comparisons with other methods in the literature that were not optimized for sparse representation,
we also reduced the block vocabulary sized from 10000 to 1000. This processed data is available
online athttp://ai.stanford.edu/∼gal/Research/OASIS.

Using the Caltech256 data set allows us to compare OASIS with existing similarity learning
methods. For OASIS, we treated images that have the same labels as similar. Thesame labels were
used for comparing with methods that learn a metric for classification, as described below.
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Figure 4: Comparison of the runtime of OASIS and fast-LMNN by Weinberger and Saul (2008),
over a wide range of scales. LMNN results (on MNIST data) are faster than OASIS
results on subsets of the web data. However LMNN scales quadratically withthe number
of samples, hence is three times slower on 60K images, and may be infeasible for handling
2.3 million images.

5.3.1 COMPARED METHODS

We compared the following approaches:

1. OASIS. - The algorithm described above in Section 2.1.

2. Euclidean. - The standard Euclidean distance in feature space. The initialization of OASIS
using the identity matrix is equivalent to this distance measure.

3. MCML - Metric Learning by Collapsing Classes (Globerson and Roweis, 2006).This ap-
proach learns a Mahalanobis distance such that samples from the same class are mapped to
the same point. The problem is written as a convex optimization problem, and we have used
the gradient-descent implementation provided by the authors.

4. LMNN - Large Margin Nearest Neighbor Classification (Weinberger et al., 2006). This ap-
proach learns a Mahalanobis distance fork-nearest neighbor classification, aiming to have the
k-nearest neighbors of a given sample belong to the same class while examples from different
classes are separated by a large margin. As a preprocessing phase, images were projected to a
basis of the principal components (PCA) of the data, with no dimensionality reduction, since
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this improved the precision results. We also compared with a fast implementation ofLMNN,
that uses a clever scheme of maintaining a set of active constraints (Weinberger and Saul,
2008). We used the web data discussed above to compare with previously published results
obtained with fast-LMNN on MNIST data (see Figure 4).

5. LEGO - Online metric learning (Jain et al., 2008a). LEGO learns a Mahalanobis distance
in an online fashion using a regularized per instance loss, yielding a positive semidefinite
matrix. The main variant of LEGO aims to fit a given set of pairwise distances.We used
another variant of LEGO that, like OASIS, learns from relative distances. In our experimental
setting, the loss is incurred for same-class examples being more than a certaindistance away,
and different class examples being less than a certain distance away. LEGO uses the LogDet
divergence for regularization, as opposed to the Frobenius norm used in OASIS.

For all these approaches, we used an implementation provided by the authors. Algorithms were
implemented in Matlab, with runtime bottlenecks implemented in C for speedup (exceptLEGO).
We test below two variants of OASIS applied to the Caltech256 data set: a pureMatlab implementa-
tion, and one that has aC components. We used aC++ implementation of OASIS for the web-scale
experiments described below.

We have also experimented with the methods of Xing et al. (2003) and RCA (Bar-Hillel et al.,
2003). We found the method of Xing et al. (2003) to be too slow for the sets inour experiments.
RCA is based on a per-class eigen decomposition that is not well defined when the number of
samples is smaller than the feature dimensionality. We therefore experimented witha preprocessing
phase of dimensionality reduction followed by RCA, but results were inferior to other methods and
were not included in the evaluations below. RCA also did not perform well when tested on the full
data, where dimensionality was not a problem, possibly because it is not designed to handle well
sparse data.

5.3.2 EXPERIMENTAL PROTOCOL

We tested all methods on subsets of classes taken from the Caltech256 repository. Each subset was
built such that it included semantically diverse categories, spanning the full range of classification
difficulty, as measured by Griffin et al. (2007). We used subsets of sizes 10, 20, 50 and 249 classes
(we used 249 classes since classes 251-256 are strongly correlated with other classes, and since
class 129 did not contain enough large images). The full lists of categoriesin each set are given in
Appendix B. For each set, images from each class were split into a training set of 40 images and a
test set of 25 images, as proposed by Griffin et al. (2007).

We used cross-validation to select the values of hyper parameters for allalgorithms except
MCML. Models were learned on 80% of the training set (32 images), and evaluated on the remain-
ing 20%. Cross validation was used for setting the following hyper parameters: the early stopping
time for OASIS; theω parameter for LMNN (ω ∈ {0.125,0.25,0.5}), and the regularization param-
eterη for LEGO (η ∈ {0.02,0.08,0.32}). We found that LEGO was usually not sensitive to the
choice ofη, yielding a variance that was smaller than the variance over different cross-validation
splits. Results reported below were obtained by selecting the best value of the hyper parameter and
then training again on the full training set (40 images). For MCML, we used the default parameters
supplied with the code from the authors, since its very long run time and multiple parameters made
it non-feasible to tune hyper parameters on this data.
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Figure 5: Mean average precision of OASIS as a function of the number of training steps. Error
bars represent standard error of the mean over 5 selections of training(40 images) and
test (25 images) sets. Performance is compared with a baseline obtained using the näıve
Euclidean metric on the feature vector. C=0.1(A) 10 classes. Test performance saturates
around 30K training steps, while going over all triplets would require 2.8 million steps.
(B) 20 classes.

5.3.3 RESULTS

Figure 5 traces the mean average precision over the training and the test sets as it progresses during
learning. For the 10 classes task, precision on the test set saturates early (around 35K training steps),
and then decreases very slowly.

Figure 6 and Table 4 compare the precision obtained with OASIS, with four competing ap-
proaches, as described above (Section 5.3.1). OASIS achieved consistently superior results through-
out the full range ofk (number of neighbors) tested, and on all four sets studied. Interestingly, we
found that LMNN performance on the training set was often high, suggesting that it overfits the
training set. This behavior was also noted by Weinberger et al. (2006) in some of their experiments.

OASIS achieves superior or equal performance, with a runtime that is faster by about two orders
of magnitudes than MCML, and about one order of magnitude faster than LMNN. The run time of
OASIS and LEGO was measured until the point of early stopping.

Table 5 shows the total CPU time in minutes for training each of the algorithms compared (mea-
sured on a standard 1.8GHz Intel Xeon CPU). For the purpose of a faircomparison with competing
approaches, we tested two implementations of OASIS: The first was fully implemented Matlab. The
second had the core of the algorithm implemented inC and called from Matlab.3 LMNN code and
MCML code were supplied by the authors and implemented in Matlab, with core parts implemented
in C. LEGO code was supplied by the authors and fully implemented in Matlab.

Importantly, we found that Matlab does not make full use of the speedup that can be gained by
sparse image representation. As a result, theC/C++ implementation of OASIS that we tested is
significantly faster.

3. The OASIS code is available online athttp://ai.stanford.edu/∼gal/Research/OASIS
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10 classes OASIS MCML LEGO LMNN Euclidean

Matlab Matlab+C Matlab Matlab+C -

Mean avg prec 33±1.6 29±1.7 27±0.8 24±1.6 23±0.9
Top 1 prec. 43±4.0 39±5.1 39±4.8 38±5.4 37±4.1
Top 10 prec. 38±1.3 33±1.8 32±1.2 29±2.1 27±1.5
Top 50 prec. 23±1.5 22±1.3 20±0.5 18±1.5 18±0.7

20 classes OASIS MCML LEGO LMNN Euclidean

Mean avg. prec 21±1.4 17±1.2 16±1.2 14±0.6 14±0.7
Top 1 prec. 29±2.6 26±2.3 26±2.7 26±3.0 25±2.6
Top 10 prec. 24±1.9 21±1.5 20±1.4 19±1.0 18±1.0
Top 50 prec. 15±0.4 14±0.5 13±0.6 11±0.2 12±0.2

50 classes OASIS MCML LEGO LMNN Euclidean

Mean avg. prec. 12±0.4 ∗ 9±0.4 8±0.4 9±0.4
Top 1 prec. 21±1.6 ∗ 18±0.7 18±1.3 17±0.9
Top 10 prec. 16±0.4 ∗ 13±0.6 12±0.5 13±0.4
Top 50 prec. 10±0.3 ∗ 8±0.3 7±0.2 8±0.3

Table 4: Mean average precision and precision at top 1, 10, and 50 of all compared methods. Values
are averages over 5 cross validation folds;± values are the standard deviation across the 5
folds. A ’*’ denotes cases where a method took more than 5 days to converge.

OASIS OASIS MCML LEGO LMNN (naive) fast-LMNN

classes Matlab Matlab+C Matlab+C Matlab Matlab+C Matlab+C

10 42±15 0.12± .03 1835±210 143±44 337±169 247±209
20 45±8 0.15± .02 7425±106 533±49 631±40 365±62
50 25±2 1.6± .04 ∗ 711±28 960±80 2109±67
249 485±113 1.13± .15 ∗ ∗∗ ∗∗ ∗∗

Table 5: Runtime (minutes) of all compared methods. Values are averages over 5 cross validation
folds,± values are the standard deviation across the 5 folds. A ’∗’ denotes cases where a
method took more than 5 days to converge. A ’∗∗’ denotes cases where performance was
worse than the Euclidean baseline.

5.4 Parallel Training

We presented OASIS as optimizing an objective function at each step. SinceOASIS is based on the
PA framework, it is also known to minimize a global objective of the form

‖W‖2
Fro +C∑

i

l i
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Figure 6: Comparison of the performance of OASIS, LMNN, MCML, LEGOand the Euclidean
metric in feature space. Each curve shows the precision at topk as a function ofk neigh-
bors. The results are averaged across 5 train/test partitions (40 trainingimages, 25 test
images), error bars are standard error of the means (s.e.m.), black dashed line denotes
chance performance.(A) 10 classes.(B) 20 classes.(C) 50 classes.

as shown by Crammer et al. (2006) This objective is convex since the losses l i are linear inW.
For such convex functions, it is guaranteed that any linear combination ofsolutions is superior than
each of the individual solutions. This property suggests another way to speed up training, by training
multiple rankers in parallel and averaging the resulting models. Each of the individual models can
be trained with a smaller number of iterations. Note however that there is no guarantee that the total
CPU time is improved.

Figure 7 demonstrates this approach; we trained 5 or 10 rankers in parallel and plot the test set
mean average precision as a function of the number of training iterations.
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Figure 7: Comparing individual rankers and a linear combination of 5 and 10 rankers. Results are
for an experiment with 249 classes of the Caltech256 data set.
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Figure 8: Comparison of Symmetric variants of OASIS.(A) 10 classes.(B) 20 classes.

6. Symmetry and Positivity

The similarity matrixW learned by OASIS is not guaranteed to be positive or even symmetric. Some
applications, like ranking images by semantic relevance to a given image query are known to be
non-symmetric when based on human judgement (Tversky, 1977). However, in some applications
symmetry or positivity constraints reflect a prior knowledge that may help avoiding overfitting.
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Furthermore positiveW impose a Mahalanobis metric over the data, that can be further factorized
to extract a linear projection of the data into a Euclidean space:xTWy = (Ax)T(Ay) such that
ATA = W. Such projectionA of the data can be useful for visualization and exploratory analysis of
data for example in scientific applications. We now discuss variants of OASISthat learn a symmetric
or positive matrices.

6.1 Symmetric Similarities

A simple approach to enforce symmetry is to project the OASIS modelW onto the set of symmetric
matricesW′ = sym(W) = 1

2

(

WT +W
)

. The update procedure then consists of a series of gradient
steps followed by projection to the feasible set (of symmetric matrices). This approach is sometimes
called projected gradient, and we denote it hereOnline-Proj-Oasis. Alternatively, projection can
also be applied after learning is completed (denoted hereProj-Oasis).

Alternatively, the asymmetric score functionSW(pi , p j) in the losslW can be replaced with a
symmetric score

S′W(pi , p j) ≡−(pi − p j)
T W (pi − p j) .

and derive an OASIS-like algorithm (which we callDissim-Oasis). The optimal update for this
loss has a symmetric gradientV′i = (pi − p+

i )(pi − p+
i )T − (pi − p−i )(pi − p−i )T . Therefore, ifW0

is initialized with a symmetric matrix (for example, the identity matrix) allWi are guaranteed to
remain symmetric.Dissim-Oasisis closely related to LMNN (Weinberger et al., 2006). This can be
seen be casting the batch objective of LMNN, into an online setup, which hasthe formerr(W) =
−ω ·S′W(pi , p+

i ) + (1−ω) · l ′W(pi , p+
i , p−i ). This online version of LMNN becomes equivalent to

Dissim-Oasis forω = 0.
Figure 8 compares the precision of the different symmetric methods with the original OASIS.

All symmetric variants performed slightly worse, or equal to the original asymmetric OASIS. Asym-
metric OASIS is also twice faster than DISSIM-OASIS. The precision ofProj-Oasiswas equivalent
to that of OASIS. This was because the asymmetric OASIS learning rule actually converged to an
almost-symmetric model (as measured by a symmetry indexρ(W) = ‖sym(W)‖2

‖W‖2
= 0.94).

6.2 Positive Similarity

Most similarity learning approaches focus on learning metrics. In the context of OASIS, whenW is
positive semi definite (PSD), it defines a Mahalanobis distance over the images. The matrix square-
root of W, ATA = W can then be used to project the data into a new space in which the Euclidean
distance is equivalent to theW distance in the original space.

We experimented with positive variants of OASIS, where we repeatedly projected the learned
model onto the set of PSD matrices, once everyt iterations. Projection is done by taking the eigen
decompositionW = V ·D ·VT whereV is the eigenvector matrix andD is the diagonal eigenvalues
matrix limited to positive eigenvalues. Figure 9 traces precision on the test set throughout learning
for various values oft.

The effect of positive projections is complex. First, continuously projecting once every few steps
helps to reduce overfitting, as can be observed by the slower decline of the blue curve (upper smooth
curve) compared to the orange curve (lowest curve). However, when projection is performed after
many steps (instead of continuously), performance of the projected modelactually outperforms the
continuous-projection model (upper jittery curve). The reason for this effect is likely to be that the
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Figure 9: Mean average precision (mAP) during training for three PSD projection schemes, using
the set of 20 classes from caltech256.

estimates of the positive sub-space are very noisy when only based on a few samples (see also Chen
et al. 2009, Section 2.1). Indeed, accurate estimation of the negative subspace is known to be a
hard problem, because small perturbations can turn a negative but small eigenvalue, into a small but
positive one. As a result, the set of vectors selected based on having positive eigenvalues, is highly
variable. We found that this effect was so strong, that the optimal projection strategy is to avoid
projection throughout learning completely. Instead, projecting into PSD after learning (namely,
after a model was chosen using early stopping) provided the best performance in our experiments.

An interesting alternative to obtain a PSD matrix was explored by Kulis et al. (2009) and
Jain et al. (2008a). Using a LogDet divergence between two matricesDld(X,Y) = tr(XY−1)−
log(det(XY−1)) ensures that, given an initial PSD matrix, all subsequent matrices will be PSDas
well. It would be interesting to test the effect of using LogDet regularization in the OASIS setup.

7. Discussion

We have presented OASIS, a scalable algorithm for learning image similarity that captures both
semantic and visual aspects of image similarity. Three key factors contribute tothe scalability of
OASIS. First, using a large margin online approach allows training to converge even after seeing a
small fraction of potential pairs. Second, the objective function of OASISdoes not require the sim-
ilarity measure to be necessarily a metric during training, although it appears tonaturally converge
to a symmetric solution. Finally, we use a sparse representation of low level features which allows
computing scores very efficiently.
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We found that OASIS performs well in a wide range of scales: from problems with thousands
of images, where it slightly outperforms existing metric-learning approaches, to large web-scale
problems, where it achieves high accuracy, as estimated by human evaluators.

OASIS differs from previous methods in that the similarity measure that it learns is not forced to
be a metric, or even symmetric. When the number of available samples is small, it is useful to add
constraints that reflect prior knowledge on the type of similarity measure expected to be learned.
However, we found that these constraints were not helpful even for problems with a few hundreds
of samples. Interestingly, human judgements of pairwise similarity are known to be asymmetric, a
property that can be easily captured by an OASIS model.

OASIS learns a class-independent model: it is not aware of which queries or categories were
shared by two similar images. As such, it is more limited in its descriptive power andit is likely that
class-dependent similarity models could improve precision. On the other hand, class-independent
models could generalize to handle classes that were not observed duringtraining, as in transfer
learning. Large scale similarity learning, applied to images from a large varietyof classes, could
therefore be a useful tool to address real-world problems with a large number of classes.
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Appendix A. Human Evaluation

The following text was given as instructions to human evaluators when judging the relevance of
images to a query image.

Scenario:
A user is searching images to use in a presentation he/she plans to

give. The user runs a standard image search, and selects an image,
the ‘‘query image’’. The user then wishes to refine the search and
look for images that are SEMANTICALLY similar to the query image.

The difficulty lies, in the definition of ‘‘SEMANTICALLY’’. This can
have many interpretations, and you should take that into account.

So for instance, if you see an image of a big red truck, you can
interpret the user intent (the notion of semantically similar) in
various ways:

- any big red truck
- any red truck
- any big truck
- any truck
- any vehicle

You should interpret ‘‘SEMANTICALLY’’ in a broad sense rather than
in a strict sense but feel free to draw the line yourself (although
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be consistent).

Your task:
You will see a set of query images on the left side of the screen,

and a set of potential candidate matches, 5 per row, on the
right. Your job is to decide for each of the candidate images if it
is a good semantic match to the query image or not. The default is
that it is NOT a good match. Furthermore, if for some reason you
cannot make-up your mind, then answer ‘‘can’t say’’.

Appendix B. Caltech256 Class Sets

• 10 classes: bear, skyscraper, billiards, yo-yo, minotaur, roulette-wheel, hamburger, laptop-
101, hummingbird, blimp.

• 20 classes: airplanes-101, mars, homer-simpson, hourglass, waterfall, helicopter-101, mountain-
bike starfish-101, teapot, pyramid, refrigerator, cowboy-hat, giraffe, joy-stick, crab-101, bird-
bath, fighter-jet tuning-fork, iguana, dog.

• 50 classes: car-side-101, tower-pisa, hibiscus, saturn, menorah-101, rainbow, cartman, chandelier-
101, backpack, grapes, laptop-101, telephone-box, binoculars, helicopter-101, paper-shredder,
eiffel-tower, top-hat, tomato, star-fish-101, hot-air-balloon, tweezer,picnic-table, elk, kangaroo-
101, mattress, toaster, electric-guitar-101, bathtub, gorilla, jesus-christ, cormorant, man-
dolin, light-house, cake, tricycle, speed-boat, computer-mouse, superman, chimp, pram, fried-
egg, fighter-jet, unicorn, greyhound, grasshopper, goose, iguana, drinking-straw, snake, hot-
dog.

• 249 classes: classes 1-250, excluding class 129 (leopards-101), which had lessthan 65 large
enough images.
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