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Abstract. We compare the use of two Markovian models, HMMs and
IOHMMs, to discriminate between three mental tasks for brain computer
interface systems using an asynchronous protocol. We show that the dis-
criminant properties of IOHMMs give superior classification performance
but that, probably due to the lack of prior knowledge in the design of
an appropriate topology, none of these models are able to use temporal
information adequately.

1 Introduction

Over the last 20 years, several research groups have shown the possibility to
create a new communication system, called Brain Computer Interface (BCI),
which enables a person to operate computers or other devices by using only
the electrical activity of the brain, recorded by electrodes placed over the scalp,
without involving the muscular activity [7]. Cognitive processing (e.g. arith-
metic operations, language, etc.) and imagination of limb movements are ac-
companied by changes in oscillations of the electro-encephalographic (EEG)
signal, known as EEG rhythms [5], which can be captured by classification sys-
tems. Up to now, most proposed works in BCI research used static classifiers,
while only a few works attempted to model the dynamics of these changes. For
instance, in [6] the authors used Hidden Markov Models (HMMs) to discrim-
inate between two motor-related mental tasks: imagination of hand or foot
movement. However, these experiments were based on EEG signals recorded
with a synchronous protocol, in which the subject had to undertake the imag-
ined movement after receiving a cue given by the machine.

In this paper we explore the use of Markovian models, in particular, HMMs
and an extension of them - the Input-Output HMMs - for distinguishing be-
tween three cognitive and motor-related mental tasks, for BCI systems based
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on an asynchronous protocol [4]. In this protocol, the subject does not fol-
low any fixed scheme but concentrates repetitively on a mental action for a
random amount of time and switches directly to the next task, without pass-
ing through a resting state. Thus the signal associated to each mental task
represents a continuous sequence of mental events without marked beginning
or end, from which the Markovian models should extract some discriminant
information about the underlying dynamics.

The rest of the paper is organized as follows. In Sec. 2 and Sec. 3 HMM
and IOHMM models are presented. Sec. 4 describes the data and the protocol
used in the experiments. Experimental results are presented in Sec. 5 and
discussed in Sec. 6. Final conclusions are drawn in Sec. 7.

2 Hidden Markov Models

A Hidden Markov Model (HMM) is a probabilistic model of two sets of random
variables Q1:T = {Q1, . . . , QT } and Y1:T = {Y1, . . . , YT } [1]. The variables
Q1:T , called states, represent a stochastic process whose evolution over time
cannot be observed directly, but only through the realizations of the variables
Y1:T , which are, in our case, the EEG signal recorded from several electrodes.
For the computations to be tractable, it is necessary to assume the existence
of conditional independence relations among the random variables, which can
generally be expressed by the graphical model of Fig. 1(a). Furthermore,
the observations Y1:T are considered to be identically distributed given the
state sequence. Thus, to completely define an HMM model it suffices to give1:
the initial state probability vector π of elements πi = P (Q1 = i); the state
transition matrix A2, with aij = P (Qt = i|Qt−1 = j) and the set of emission
probability density functions B = {bi(yt) = p(yt|Qt = i)}, which are, in our
case, modeled by Gaussian mixtures (GMMs) [2].
For classification, a different model with associated parameters Θc = {π, A, B}
for each class c ∈ [1, . . . , C] is trained so that the likelihood

∏
m∈Mc

p(ym
1:T |Θc)

of the observed training sequences is locally maximized using the Baum-Welch
method, which is a particular case of the EM algorithm [3]. During testing, an
unknown sequence is assigned to the class whose model gives the highest joint
density of observations:

c∗ = arg max
c

p(y1:T |Θc) .

3 Input-Output Hidden Markov Models

An Input-Output Hidden Markov Model (IOHMM) is an extended HMM in
which the distributions of the output variables Y1:T and the states Q1:T are

1We indicate with P (Qt = i) the probability that the variable Qt takes the value
i ∈ [1, . . . , N ], and, to simplify the notations, with p(yt) the probability density function
associated to the random variable Yt.

2It is assumed that the state transitions are independent of time t.



conditioned on a set of input variables X1:T [1]. For classification, the input
variables represent the observed sequences and the output variables represent
the classes. As shown in Fig. 1(b), independence properties analogue to the
HMM case are assumed. Thus to parameterize an IOHMM we need the same
set of distributions, which in this case are conditioned on the input variables.
To model these distributions, we define a Multilayer Perceptron (MLP) [2] state
network Nj and an MLP output network Oj for each state j ∈ [1, . . . , N ]. Each
state network Nj has to predict the next state distribution:

P (Qt = i|Qt−1 = j, xt) ,

while each output network Oj computes the current class distribution:

P (Yt = c|Qt = j, xt) .

Training maximizes the likelihood
∏

m∈M P (ym
1:T |xm

1:T , Θ3) using a generalized
EM algorithm, which is an extension of the EM algorithm where, in the maxi-
mization step, the expected value of the likelihood cannot be analytically max-
imized and is instead increased by gradient ascent [3]. Note that, as opposed
to the HMM framework where for each class a different model is trained on
examples of that class only, here a unique IOHMM model is trained. During
testing, we assign an unknown sequence4 to the class c∗ such that:

c∗ = arg max
c

P (Y1 = c, . . . , YT = c|x1:T ,Θ)5 .
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Figure 1: Graphical model specifying the conditional independence proper-
ties for an HMM (a) and an IOHMM (b). The nodes represent the random
variables, while the arrows express direct dependencies between variables.

3Here Θ represents the set of MLP network parameters.
4In our case the whole test sequence belongs to one class.
5Another way to use the model is to assign class label only at the end of the sequence,

modifying the likelihood maximization. Experiments carried out with this method gave worse
performance, and thus are not reported here.



4 Data Acquisition

The EEG potentials were recorded with a portable system using 32 electrodes
located at standard positions of the 10-20 International System, at a sample
rate of 512 Hz. The raw potentials (without artifact rejection or correction)
were spatially filtered using a surface Laplacian computed with a spherical
spline [5]. Then the power spectral density over 250 milliseconds of data was
computed with a temporal shift of 31.2 milliseconds, in the band 4-40 Hz and
for the following 19 electrodes: F3, FC1, FC5, T7, C3, CP1, CP5, P3, Pz, P4,
CP6, Cp2, C4, T8, FC6, FC2, F4, Fz and Cz.

Data was acquired from two healthy subjects without any experience with
BCI systems during three consecutive days. Each day, the subjects performed
5 recording sessions lasting 4 minutes, with an interval of around 5 minutes
in-between. During each recording session the subjects had to concentrate on
three different mental tasks: imagination of repetitive self-paced left and right
hand movements and mental generation of words starting with a given letter.
The subjects had to change every 20 seconds between one mental task and
another under the instruction of an operator6. In this study we have analyzed
the performance on the last two days of recording, when the subjects had
already acquired some confidence with the mental tasks.

5 Experiments

The HMM and IOHMM models have been trained on the EEG signal of the
first three sessions of recordings of each day, while the following two sessions
were used as validation and test sets. In the HMM model, the validation set
was used to choose the number of states, in the range from 2 to 7, and the
number of Gaussians (between 3 and 15). In the IOHMM, the validation set
was used to choose the number of states (from 2 to 7), the number of iterations
and the number of hidden units (between 25 and 200) for the MLP transition
and emission networks. The MLP networks had one hidden layer. For reasons
explained in the next section, we used a fully connected topology in which each
hidden state could be reached by any other state. We split each recording
session into signal segments of 1, 2 and 3 seconds, with a shift of half a second,
obtaining a number of examples between 360 and 420.

Tables 1 and 2 show the performance of the two subjects over the second
and third day of recording, using HMM and IOHMM models and their static
counterparts, that is, GMM and MLP models respectively. GMMs and MLPs
correspond to HMMs and IOHMMs with only one hidden state and thus can
be used to test whether there is an advantage in using dynamical models over
static ones. For each day, the columns give the error rate for different window
lengths.

6During the real operation of the system the changing of mental task is performed as soon
as the task has been recognized by the system.



Subject Second Day Third Day
A 1 s 2 s 3 s 1 s 2 s 3 s

HMM 40.0% 36.4% 29.5% 24.3% 15.8% 09.0%
GMM 41.7% 34.3% 32.7% 22.4% 14.3% 12.1%

IOHMM 39.6% 32.8% 28.9% 19.6% 13.3% 09.3%
MLP 40.5% 29.4% 27.0% 19.3% 14.5% 09.8%

Table 1: Error rate of Subject A on the second and third day of recording,
using HMMs and IOHMMs and their static counterparts: GMMs and MLPs.

Subject Second Day Third Day
B 1 s 2 s 3 s 1 s 2 s 3 s

HMM 47.2% 46.2% 43.8% 49.1% 40.0% 36.3%
GMM 50.1% 45.9% 40.7% 45.7% 43.4% 34.9%

IOHMM 34.5% 29.4% 28.6% 36.7% 33.0% 27.5%
MLP 36.2% 29.7% 24.5% 40.0% 35.9% 31.4%

Table 2: Error rate of Subject B on the second and third day of recording.

6 Discussion

From the results presented in Tables 1 and 2 it can be seen that the classifiers
perform significantly better than chance (66.7%), even with almost no user’ s
training, and that there is a great improvement when increasing the window
length from 1 up to 3 seconds (which would still correspond to a reasonable
speed for a BCI system, because of the short window shift).

We can also observe the superior performance of IOHMMs and MLPs com-
pared to HMMs and GMMs. This can theoretically be explained by the fact
that, when using HMMs, a separate model is trained for each class on examples
of that class only. As a consequence, the training focuses on the characteris-
tics of each class and not on the differences among them. On the contrary, in
the IOHMM framework, a single model is trained using the examples from all
the classes. This type of learning seems particularly appropriate when dealing
with highly variable and noisy signal such as EEG, giving also more stable
performance in different runs of the same experiments.

Another important result, shown in Tables 1 and 2, is the impossibility
to choose between dynamical models and their static counterparts, which can
be due to several reasons. The use of an asynchronous protocol in which the
subject performs repetitive self-paced mental actions makes impossible to de-
termine the beginning of each mental event. This fact, together with the lack
of prior information about the dynamics of the rhythms hinders the selection
of a state topology more appropriate than the fully connected one (which is
known to have weak learning capabilities) and the modeling through an appro-
priate, and often crucial, state initialization. Furthermore, the high variability



of the EEG signal recorded during different sessions, even if recorded very
close in time, often makes the hyper-parameters chosen from an independent
validation set not suitable for the test set.

7 Conclusions

This work pointed out two important aspects in the Markovian modeling of
EEG, which are arousing growing interest in BCI research: first, the superiority
of more discriminant models like IOHMMs over generative ones like HMMs;
second, the lack of a practical advantage in using these models, as opposed
to static ones, when no prior information can be used to build an appropriate
structure for the hidden states.

A future research direction could be the application of other graphical mod-
els more accurately designed for the particular application, while maintaining
a discriminant approach as in the IOHMM framework. An example could be a
model that takes into account the high level of noise in the EEG, which includes
artifacts and all the EEG activity which is not relevant for the discrimination of
the mental task. In this case, the hidden structure should be designed to model
the noisy component separately, in such a way that only the discriminant part
is used for classification.
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