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Abstract. Combining multiple information sources, typically from several data
streams is a very promising approach, both in experiments and to some extend
in various real-life applications. However, combining too many systems (base-
experts) will also increase both hardware and computation costs. One way to se-
lecting a subset of optimal base-experts out of N is to carry out the experiments
explicitly. There are 2

N
− 1 possible combinations. In this paper, we propose

an analytical solution to this task when weighted sum fusion mechanism is used.
The proposed approach is at least valid in the domain of person authentication. It
has a complexity that is additive between the number of examples and the number
of possible combinations while the conventional approach, using brute-force ex-
perimenting, is multiplicative between these two terms. Hence, our approach will
scale better with large fusion problems. Experiments on the BANCA multi-modal
database verified our approach. While we will consider here fusion in the context
of identity verification via biometrics, or simply biometric authentication, it can
also have an important impact in meetings because this a priori information can
assist in retrieving highlights in meeting analysis as in “who said what”. Further-
more, automatic meeting analysis also requires many systems working together
and involves possibly many audio-visual media streams. Development in fusion
of identity verification will provide insights into how fusion in meetings can be
done. The ability to predict fusion performance is another important step towards
understanding the fusion problem.

1 Introduction

Combining multiple systems, or base-experts, to boost performance is a very promising
approach. In [1], for instance, as many as 14 experts were fused and tested on the
XM2VTS database. This study concluded that by adding more experts, the performance
of the fused system will not be degraded. While this is true, in practice, fusion leads to
added hardware and computational cost. Hence, it is often desirable to select an optimal
subset of experts for fusion.

If there are N base-experts, a brute-force experimenting will require 2N − 1 fusion
experiments to select the smallest optimal subset of base-expert candidates for fusion.
Here, in the context of biometric authentication (BA), we attempt to reduce the over-
head computation cost without compromising the effectiveness. The overhead cost is
avoided by evaluating the F-ratio criterion 2N − 1 times instead of carrying out 2N − 1
experiments. F-ratio is a term that is non-linearly a function of Equal Error Rate (EER).



F-ratio arises naturally when assuming that the client and impostor scores are normally
distributed. The accuracy of this criterion depends only on how accurately one can esti-
mate the parameters in the VR-EER analysis. The first part of this analysis is Variance
Reduction (VR) and the second part is Equal Error Rate (EER) analysis. In short, it
has been shown [2] that fusion in BA using multiple experts result in reduced variance,
which in turns, results in reduced EER. EER is a commonly used error measure in BA.
One specificity about this analysis is that the correlation among experts are explicitly
considered and can be described by a class-dependent full covariance matrix.

In this work, we will consider a subtask in meeting analysis: identity verification
via biometrics, or simply biometric authentication. Knowing the identity in meeting
has an important impact in meetings because this a priori information can assist in re-
trieving highlights in meetings as in “who said what”. Biometric authentication also
shares another similarity with meeting analysis; in biometric authentication, users (or
participants) are often known and only a few biometric examples (e.g. face with differ-
ent orientations, speech samples, etc) per user are available to the system. The system
is then required to verify the identity. In meetings, the participants are usually known
and thus tracking of the person becomes a matter of identity verification. Furthermore,
automatic meeting analysis also requires many systems working together and involves
possibly many audio-visual media streams, e.g., the speech signal and the facial fea-
tures. Development in fusion of biometric authentication will provide insights into how
fusion in meeting can be done.

In the following, by using weighted sum fusion, we show that the VR-EER analysis
can be used to predict optimal fusion candidates if the development set matches the
evaluation set. In the presence of slight mismatch between development and evaluation
sets, such is the case of the BANCA database, the predicted subset is still acceptable.

Section 2 presents two methods to choosing optimal fusion candidates: the brute-
force approach and our proposed analytical approach. Section 3 presents briefly the
BANCA experiment setup whereby 70 fusion experiments will be conducted. Sec-
tions 4 verifies experimentally that F-ratio calculated from a development set matches
its counterpart on an evaluation set. Section 5 further examines the predictability of fu-
sion candidates based on F-ratio calculated from the development set. The complexity
of the proposed technique is evaluated in Section 6. This is followed by conclusions in
Section 7.

2 Brute-Force Experimenting Versus Analytical Solution To
Predicting Optimal Fusion Candidates

This section presents a conventional approach followed by our proposed approach to
predicting a subset of candidates (base-experts or systems) that will be optimised in
terms of performance when combined. The first approach is termed brute-force exper-
imenting while the second is our proposal using an analytical solution. Note that this
analytical solution is only possible when the fusion model is a linear combination of a
subset of (the output of) N base-experts from all the available M base-experts.

Let us introduce the following notations. Let yk
i be the output of system i indicating

how probable a given input stimulus (biometric trait) is a client when the actual class



label (target class) is k ∈ {C, I}, i.e., either a client or an impostor. Here, the expected
value of client is always greater than that of impostor, i.e., E[yk=C

i ] > E[yk=I
i ], where

E[z] is the expectation of z. Furthermore, let us assume that the combined model is of
the form:

yk
GEN ≡

N
∑

i=1

yk
i αi, (1)

where N is the chosen chosen number of experts and αi|∀i weigh the output of each
base-expert.

2.1 The Brute-Force Approach

Suppose there are two sets of data containing scores of M base-experts: development
and evaluation data sets. The goal is to identify among all the M , which combination of
at most N base-experts will give an optimal performance. In the brute-force approach,
to choose from at most N out of M base-experts, there are altogether

MC1 + MC2 + . . . + MCN =

N
∑

i=1

MCi (2)

possibilities, where mCk is “m choose k” or m!
k!(m−k)! by definition. To choose from all

possible combinations, the total number is 2M − 1. The reason for minus one is that
we do not consider the solution containing 0 base-expert. The brute-force approach will
perform the following:

1. For each of the possible combinations:
– estimate the best weights in the linear combination (1) from the development

set according to a criterion (such as Mean Squared Error)
– use the weights to evaluate the performance on the development set

2. Choose the best fusion candidate based on the criterion
3. Evaluate the chosen model on the evaluation set

In practice, before the linear combination, the output yk
i of each expert should be

normalised so that none of the base-expert score yk
i will dominate the combination

just because it has large values. Let y
norm,k
i be the normalised value of yk

i . The most
common way to normalise the score is as follows:

y
norm,k
i ≡ yk

i − µall
i

σall
i

, i = 1 . . . , N. (3)

The normalizing parameters µall
i and σall

i are mean and standard deviation calculated
from the development set. These parameters are then applied on both the development
and evaluation sets. In this way, the procedure of linear combination actually works on



normalised score space. The linear combination is thus performed as follows:

y
norm,k
GEN ≡

N
∑

i=1

y
norm,k
i αi, (4)

where αi=1...,N are weights associated to each base-expert i and y
norm,k
GEN is the fused

score. The weights can be found using different methods, such as least-square minimi-

sation or Fisher’s linear discriminant [3, Chap. 3]. Two sets of
{

y
norm,k
GEN |k = {C, I}

}

are thus obtained, one from the development set and the other from the evaluation set.
Note that y

norm,k
GEN is one-dimensional (after fusion) and y

norm,k
i |∀i, as well as yk

i |∀i are
N -dimensional data (of scores). The final decision function F (x) (given a biometric
sample x, which is implicit in all variables yk

i , ∀i=1,...,N ), accepts or rejects an access
claim by comparing y

norm,k
GEN with a threshold, as follows:

F (x) =

{

accept if ynorm
GEN > ∆

reject otherwise.
(5)

This threshold should be calculated from the development set and then applied to the
evaluation set.

The above procedure is then repeated for
∑N

i=1
MCi combinations. The combina-

tion or fusion candidate that gives the lowest Equal Error Rate (EER) on the evaluation
set is the so-called “optimal” fusion candidate. EER is defined as the point where False
Acceptance Rate (FAR) equals False Rejection Rate (FRR). They are defined as:

FAR(∆) =
number of FAs(∆)

number of impostor accesses
, (6)

FRR(∆) =
number of FRs(∆)

number of client accesses
. (7)

Note that FA and FR are functions of a pre-determined threshold ∆. The empirical
procedure to find ∆ that satisfies the EER criterion (on the development set) is:

∆∗ = arg min
∆

|FAR(∆) − FRR(∆)|. (8)

The empirical EER value found this way is often reported as a single value called Half
Total Error Rate (HTER). It is defined as the average of FAR and FRR:

HTER(∆∗) =
FAR(∆∗) + FRR(∆∗)

2
. (9)

The fusion candidate with minimum HTER on the development set is considered the
optimal solution. Taking normalisation step into account, for each fusion candidate the
brute-force approach thus needs to loop through the data:

– once to obtained normalise scores on the development and evaluation data sets;
– at least once to calculate the weights1 on the development data set,

1 An iterative solution may require more passes, e.g. a single-layer Perceptron.
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Fig. 1. A geometric interpretation of the proposed approach. Expert 1 is IDIAP’s voice system
and expert 2 is Surrey’s automatic face authentication system, applied on the Ud-g1 BANCA data
set.

– once to apply the weights on the development and evaluation data sets, and
– once to evaluate the EER criterion on the development and evaluation data sets

The optimal fusion candidate found on the evaluation set is considered the “ground-
truth”. When there is no mismatch between development and evaluation data sets, we
expect that the optimal fusion candidate found using this procedure to be similar.

2.2 The Analytical Solution

The proposed approach assumes that all yk
i ’s are Gaussian distributed. It has the advan-

tage that there is no need to loop through the data set
∑N

i=1
MCi times but only once.

To quickly give an intuitive picture, in a two-dimensional case (i.e., fusing only two
experts), data points of one of the experiments (to be discussed in Section 3) are plotted
in Figure 1. Superimposed on the data points are two full-covariance Gaussians, one for
the client scores and the other for the impostor scores.

The technical challenge of the proposed method is to estimate the EER of the fused
score y

norm,k
GEN . This can be done as follows: first estimate the normalising parameters

µall
i and σall

i from the development set. Then, estimate the class-dependent Gaussian
parameters Φ ≡ {µk, Σk}. µk is a vector containing the class-dependent mean score
of experts µk

i for i = 1, . . . , N and Σk is the class-dependent covariance matrix whose
elements are Σk

i,j ≡ E[W k
i , W k

j ], where W k
i is the noise distribution associated to

expert i (see also the appendix). Note that Σk
i,i is simply the variance of scores of expert

i.



From these parameters, it is possible to calculate the weights αi and EER using an
intermediate variable called F-ratio. The technical details of deriving F-ratio is beyond
the scope of this study. They can be found in [2]. The calculation of weights can be
found in classical references such as [3, Chap. 3]. Here, we present how the theoretical
EER can be calculated. Let EERnorm

GEN be the EER of the normalised fused score. Its
solution is:

EERnorm
GEN =

1

2
− 1

2
erf

(

F-rationorm
GEN√
2

)

, (10)

where

F-rationorm
GEN =

µ
norm,C
GEN − µ

norm,I
GEN

σ
norm,C
GEN + σ

norm,I
GEN

, (11)

and

erf(z) =
2√
π

∫ z

0

exp
[

−t2
]

dt. (12)

µ
norm,k
GEN and σ

norm,k
GEN are mean and standard deviation of the fused and normalised

score y
norm,k
GEN . Their solutions are:

µ
norm,k
GEN =

N
∑

i=1

αi

σall
i

(

µk
i − µall

i

)

(13)

and

(σnorm,k
GEN )2 =

N
∑

m=1

N
∑

n=1

αmαn

σall
m σall

n

E
[

W k
mW k

n

]

(14)

respectively, for any k ∈ {C, I}. The derivation of Eqns. (13 and 14) can be shown in
the appendix. As can be seen, all calculations can be solved analytically, including the
optimal decision threshold ∆ in the final decision function F (x), as defined in Eqn. (5).
The solution of ∆ is:

∆ =
µ

norm,I
GEN σ

norm,C
GEN + µ

norm,C
GEN σ

norm,I
GEN

σ
norm,I
GEN + σ

norm,C
GEN

. (15)

The decision boundary in Figure 1 was indeed obtained using Eqn. (15). This analytical
solution is actually derived from what is called VR-EER analysis due to our preceding
work [2]. This analysis links the well-known variance reduction (VR) phenomenon due
to committee of classifiers (as discussed in [3, Chap. 9] and elsewhere in the literature)
to reduced EER. The parameters are thus called VR-EER parameters.

The next section will present the experiment setup that will be used to test our
proposed approach.

3 Experiment Setup

The BANCA database [4] is the principal database used in this paper. It has a collection
of face and voice prints of up to 260 persons in 5 different languages. In this paper, we



only used the English subset. Hence only 52 people are used here; 26 are males and
26 are females. There are altogether 7 protocols, namely, Mc, Ma, Md, Ua, Ud, P and
G, simulating matched control, matched adverse, matched degraded, uncontrolled ad-
verse, uncontrolled degraded, pooled and grant test, respectively. For protocols P and G,
there are 312 client accesses and 234 impostor accesses. For all other protocols, there
are 78 client accesses and 104 impostor accesses. A set of face and speaker authentica-
tion experiments were carried out by University of Surrey (2 face experiments), IDIAP
(speaker), UC3M (speaker) and UCL (face)2. Hence, there are 5 baseline experiments
per protocol, making a total of 35 baseline experiments. Details of these experiments
can be found in [5]. For each protocol, we used the following score files:

– IDIAP_voice_gmm_auto_scale_33_200
– SURREY_face_svm_auto
– SURREY_face_svm_man
– UC3M_voice_gmm_auto_scale_34_500
– UCL_face_lda_man

Moreover, for each protocol, there are two subgroups, called g1 and g2. In this paper,
g1 is used as a development set while g2 is used as an evaluation set. The test set is
considered the “ground-truth” data set and is used exclusively for testing only. It is
particularly useful to determine generalisation performance, i.e., how well a classifier
performs on unseen data sets. For each protocol, by combining each time two baseline
experts, one can obtain 10 fusion experiments, given by 5C2. This results in a total of 70
experiments for all protocols. Similarly by combining each time three baseline experts,
one will have a total of 7 × 5C3 = 70 experiments.

4 Generalisation Using Weighted-Sum Fusion

In [6], it was shown that given full knowledge about VR-EER parameters, F-ratio of
fused score using the mean operator can be estimated accurately. Furthermore EER can
be predicted fairly accurately, by assuming that the client and impostor scores are drawn
from Gaussian distributions. There are two issues to be examined here. The first issue
is, given full knowledge about the VR-EER parameters (typically on a development
set), would theoretical F-ratios match empirical F-ratios3? The second issue is, would
it be possible to predict F-ratio on unseen data. This is the issue of generalisation. In
this case, F-ratio from the development set is compared to F-ratio from the evaluation
sets of BANCA protocols (see Section 3) . Note that each of these tests will be repeated
25 − 1 = 31 times for each of the 7 protocols, each time using a different combination
of 1–5 base-experts. Hence, there are altogether 217 experiments.

These two issues are detailed below:

2 Available at “ftp://ftp.idiap.ch/pub/bengio/banca/banca scores”
3 Empirical F-ratio means that the F-ratio is obtained by actually carrying out a complete ex-

periment, whereas theoretical F-ratio means that the F-ratio is estimated analytically. Hence,
evaluation of empirical F-ratio requires a pass through the data while its theoretical counterpart
requires only direct applications of Eqns. (11), (13) and (14).



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

E
m

pi
ric

al
 F

−
ra

tio

Theoretical F−ratio

Theoretical posterior F−ratio
Theoretical posterior F−ratio = Empirical F−ratio

Fig. 2. Comparison of a theoretical prior F-ratio
and empirical F-ratio, based on BANCA devel-
opment set, over all possible combinations and
all protocols, i.e., 217 data points.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

development set

ev
al

ua
tio

n 
se

t

Fig. 3. F-ratios of combined scores of the devel-
opment set versus those of the evaluation set,
over all possible combinations and all proto-
cols, i.e., 217 data points.

1. Posterior test. One knows all the VR-EER parameters. This is typically the case
for the development set. The empirical F-ratio of each fusion candidate is compared
with its theoretical counterpart, with the weights estimated from the same set. This
test is called posterior because one has all the information about the data set.

2. Evaluation test. Having all the information about the development set, the goal
here is to test if one can extrapolate this information on an (unseen) evaluation set.
This tests how closely the development set corresponds to the evaluation set. Em-
pirical F-ratio of evaluation set is plotted against its development set counterpart.

The results are shown in Figure 2 for the first test and Figure 3 for the second test. As can
be seen, the posterior test shows that, given full knowledge about the VR-EER param-
eters, each data point (which corresponds to each fusion experiment) can be predicted
accurately. The evaluation test shows that F-ratios of the development set is correlated
to that of the evaluation set. Hence, prediction is possible. The inaccuracy is due to the
inherent mismatch between the development and the evaluation sets.

5 Predicting Optimal Subsets of Base-Expert Candidates

In the previous evaluation test, it was shown that the F-ratios between the development
and the evaluation sets due to fusion are correlated. This implies that good candidates
for fusion in a development set would also be good candidates in the corresponding
evaluation set. The next experiment is to examine how accurate the prediction of the
best fusion candidate can be if we were to choose from all M base-experts. Note that
we could have also conducted a series of experiments to find out the accuracy of predict-
ing at most the N best fusion candidates from all M base-experts for different values
of N ≤ M . Since choosing from all is a more difficult task than choosing at most N ,
we will only illustrate the former problem. Before doing so, let us label some of the



Table 1. Labels of corresponding fusion experiments using 1, 2, 3 and 4 base-experts. The num-
bers 1–5 in the right columns of each table correspond to the five base-experts discussed in Sec-
tion 3. The letter “E” is assigned to fusion of all experts.

(a) base-expert
labels experts

a 1
b 2
c 3
d 4
e 5

(b) 2-expert fusion
labels experts

f 1 2
g 1 3
h 1 4
i 1 5
j 2 3
k 2 4
l 2 5

m 3 4
n 3 5
o 4 5

(c) 3-expert fusion
labels experts

p 1 2 3
q 1 2 4
r 1 2 5
s 1 3 4
t 1 3 5
u 1 4 5
v 2 3 4
w 2 3 5
x 2 4 5
y 3 4 5

(d) 4-expert fusion
labels experts

z 1 2 3 4
A 1 2 3 5
B 1 2 4 5
C 1 3 4 5
D 2 3 4 5

combinations as listed in Table 1. The numbers 1–5 correspond to the five base-experts
discussed in Section 3. Figure 4 shows the top five fusion candidates due to choosing
from all 31 fusion candidates. There are 7 sub-figures, each corresponding to a BANCA
protocol. The EERs of the candidates are sorted from the smallest to the biggest in the
x-axis. Hence the first item in the x-axis is the best candidate fusion candidate. For ex-
ample, the best candidate according to protocol G, as shown in Figure 4, is z (1-2-3-4),
according to the development set but is A (1-2-3-5) according to the evaluation set.
Since the evaluation set is taken as the “ground-truth”, i.e, A is the correct answer, we
need to consider the top 3 candidates in order to “remedy” this error. For the protocol
Mc as well as Md and Ua , it takes the top two candidates to remedy this error. Ideally,
it is desirable that the top candidate as proposed by the development and evaluation
set to be the same. Such is the case for protocols P, Ma and Ud. By varying the top-k
candidates where k = 1, 2, 3 and applying the analysis for other protocols, we obtain
Table 2. As can be observed, most of the errors committed by choosing the top fusion
candidate can be rectified when choosing the top-2 fusion candidates. Note that even
though some proposed optimal fusion candidates are not coherent with the evaluation
set, the proposed optimal fusion candidates are not very far off from their follow-up
candidates in terms of EER, across different protocols, i.e., top few optimal candidates
have very similar EERs. As a result, even if the proposed candidate according to the de-

Table 2. Mistakes committed by choosing the top-k fusion candidate(s) by choosing from all 31
fusion candidates, over all 7 protocols, for k = 1, 2, 3. As k increases, errors will decrease.

Top k Errors committed over 7 protocols

1 4
2 1
3 0
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the corresponding base-experts with E denoting fusing all the experts.

velopment set might be incorrect, the increase of EER error due to this wrong selection
is not big.

6 Analysis of Complexity

We now analyse the complexity of our proposed approach and compare it with the brute-
force approach. Let the number of development examples and evaluation examples be
ldev and leva In the brute-force approach, to choose one best fusion candidate from all
possible M base-experts, one would have to carry out the experiment 2M − 1 times.
Furthermore, in each experiment, one has to loop through ldev + leva examples. The
complexity is thus:

O
(

(ldev + leva) × (2M − 1)
)

. (16)

In the proposed approach, one only has to loop through the both development and test
sets once to derive all the VR-EER parameters (i.e., class-dependent mean and covari-
ance matrix plus the global mean and standard deviations) and then to evaluate the



F-ratio criterion 2N − 1 times on the test set. Hence, the complexity is thus:

O
(

ldev + leva) + 2M − 1
)

. (17)

In the brute-force approach, the 2M − 1 is multiplicative with the number of develop-
ment and test examples whereas in the proposed approach, these two terms are additive.
Therefore, our approach is scalable to larger fusion problems with significant reduction
of computation cost. It should be noted that the computation involved even in the brute-
force approach in this case is simple (M = 5). However, for large problems, this benefit
will be more obvious.

7 Conclusion

In this paper, using a Gaussian model with full covariance matrix to model the client
and impostor distributions, on the zero-mean unit-variance normalised score space, we
showed how to predict theoretically the performance of an authentication system based
on Equal Error Rate (EER) using weighted sum fusion. This approach is based on VR-
EER analysis due to [2]. The advantage of the proposed approach is that one does not
have to make the assumption that the base-experts are independent and that their scores
are not correlated, as frequently done in the literature. In fact, the dependency is already
captured by the covariance matrix. Although a single full covariance matrix seems to be
overly simple (as compared to mixture of Gaussians with diagonal covariance matrix),
we have shown that it is adequate to model EER [6] as a function of F-ratio, a quantity
that measures how separable the client distribution is from the its impostor counterpart.

The central idea of this work is to use F-ratio as a criterion to search for an optimal
subset of base-experts for fusion in an efficient way. Although F-ratio was previously
established in [2], this study demonstrates a way to predict the performance of fusion
analytically, without compromising the effectiveness when one actually carries out the
fusion experiments. Hence the proposed technique allows us to select an optimal subset
of base-experts for fusion in an efficient way. To choose one optimal fusion candidate
from M base-experts, the brute-force approach needs to carry out 2M − 1 experiments
and for each experiment, this approach will need to cycle through the data set several
times. The proposed approach needs only to loop through the development and test set
once and to evaluate the F-ratio criterion 2M − 1 times. Hence, our approach has only
a fixed computation cost with respect to the size of the available data set and will scale
well with large fusion problems.

We tested our approach on the BANCA database and showed that F-ratio can be
predicted accurately if one has the full knowledge about the data distribution (e.g. de-
velopment data set). The prediction degrades when one knows less and less about the
data (e.g. the test data set). In fact, by actually carrying out 217 fusion experiments on
the BANCA database, we showed that the F-ratio on the development set (g1) is corre-
lated to that of the test set (g2), despite their mismatch. Exploiting this ability, we were
able to predict an optimal subset of fusion (base-expert) candidates fairly accurately on
the 7 BANCA protocols. The accuracy cannot be 100% since there exists an intrinsic
mismatch between the development and evaluation sets.
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A Derivation of Solutions

Suppose yk
i,j is the j-th observed sample of the i-th response of class k, recalling that

i = 1, . . . , N and k = {C, I}. We assume that this observed variable has a deterministic
component and a noise component and that their relation is additive. The deterministic
component is due to the fact that the class is discrete in nature, i.e., during authentica-
tion, we know that a user in either a client or an impostor. The noise component is due
to some random processes during biometric acquisition (e.g. degraded situation due to
light change, miss-alignment, etc) which in turns affect the quality of extracted features.
Indeed, it has a distribution governed by the extracted feature set x often in a non-linear
way. By ignoring the source of distortion in extracted biometric features, we actually
assume the noise component to be random (while in fact they may be not if we were
able to systematically incorporate all possible variations into the base-expert model).

Let µk
i be the deterministic component. Note that its value is only dependent on

the class k = {C, I} and independent of j. We can now model yk
i,j as a sum of this

deterministic value plus the noise term wk
i,j , as follows:

yk
i,j = µk

i + wk
i,j , (18)

for k ∈ {C, I} where wk
i,j follows an unknown distribution W k

i with zero mean and
(σk

i )2 variance, i.e., wk
i,j ∼ W k

i

(

0, (σk
i )2
)

. By adopting such a simple model, from
the fusion point of view, we effectively encode the i-th expert score as the sum of a
deterministic value and another random variable, in a class-dependent way. Following
Eqn. (18), we can deduce that yk

i,j ∼ Y k
i ≡ W k

i

(

µk
i , (σk

i )2
)

. We can then write:

Y k
i = µk

i + W k
i , (19)

The expectation of Y k
i (over different j samples) is:

E[Y k
i ] = E[µk

i ] + E[W k
i ] = µk

i . (20)

Let Σk
i,j be the i-th and j-th element of the covariance matrix of Y k

i |∀i, i.e., Σk. It can
be calculated as:

Σk
i,j ≡ E

[

(Y k
i − µk

i )(Y k
j − µk

j )
]

= E[W k
i W k

j ] (21)



where Σk
i,j is the covariance between two distributions Y k

i and Y k
j . When i = j, we

have the definition of variance of Yk
i , i.e.,

Σk
i,i ≡ (σk

i )2 = E[W k
i W k

i ]. (22)

Let µ
norm,k
GEN and σ

norm,k
GEN be the mean and standard deviation of combined scores de-

rived from yk
i for i = 1, . . . , N (see Eqn. (4)). Let Y

norm,k
GEN be the distribution from

which y
norm,k
GEN is drawn. Note that µk

GEN and σk
GEN can be defined by Eqn. (20) and

Eqn. (22) by replacing the index i by GEN and similarly for µ
norm,k
GEN and σ

norm,k
GEN .

The expected value of Y
norm,k
GEN , for k = {C, I}, is:

µ
norm,k
GEN ≡ E[Y norm,k

GEN ]

=

N
∑

i=1

αiE[Y norm,k
i ]

=

N
∑

i=1

αi

σall
i

(

E[Y k
i ] − µall

i

)

=
N
∑

i=1

αi

σall
i

(

µk
i − µall

i

)

(23)

The variance of Y
norm,k
GEN is:

(σnorm,k
GEN )2 = Cov(Y norm,k

GEN , Y
norm,k
GEN )

= E

[

(

Y
norm,k
GEN − E[Y norm,k

GEN ]
)2
]

= E





(

N
∑

i=1

αi(Y
k
i − µall

i )

σall
i

−
N
∑

i=1

αi(µ
k
i − µall

i )

σall
i

)2




= E





(

N
∑

i=1

αi(Y
k
i − µk

i )

σall
i

)2




= E





(

N
∑

i=1

αiW
k
i

σall
i

)2


 (24)

To expand Eqn. (24), one should take care of possible correlation between different W k
m

and W k
n , as follows:

(σnorm,k
GEN )2 = E

[(

N
∑

m=1

N
∑

n=1

αmW k
mαnW k

n

σall
m σall

n

)]

=
N
∑

m=1

N
∑

n=1

αmαn

σall
m σall

n

E
[

W k
mW k

n

]

(25)

for any k ∈ {C, I}.
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