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ABSTRACT speaker authentication. The former community proposed

. the followings: multiple concatenated features (e.g. static
The the use of several acoustic feature types, also called th%nd dynamic (more robust) features), the front-end multi-

multi-stream approach, has proven to b? very suqcessful Meature approach [1], multi-style training [2], the multi-stream
speech recognition tasks and to a certain extent in Speakeépproach [3] (whereby several features are used and pro-

multi-stream text-independent ker authentication bessed independently), narrow-band training [4] (whereby
uili-stream te dependent speaker authenticalion SyS-e o a hands are used instead of several streams), Tandem [5],
tem. This system is trained in two steps: first train the

. . d I diti d then train th full combination approach [6] and more recently, the union
stream €Experts under clean conditions an en train ey, o gel [7] (where several subsets of bands are combined and
combination mechanism to merge the scores of the strea

experts under both clean and noisy conditions. The ideg]Oint by the sum rule), to cite a few. In term_s of theoreti-
here is to take advantage of the rather predictabl.e reliability cal conc':ept.s, however, bth spgech re_cognmon and speaker
) . . . authentication are almost identical. This study is somewhat
anpl diversity of str_ear_ns under different co_ndlt_|ons. Hence, inspired by many research works already done in the area of
ngse-roﬁystness mainly due tho the comblnatllon m(_achla-d robust speech recognition through feature and model adap-
nism. T .'S two-step approach offers severa practical a “tation. However, there are several implementation differ-
vantages. the stream gxperts can be trained in parallel (e'g'ences that are unique to speaker authentication. The work
by using several machines); heterogeneous types of feat_ureaone here hence will not only confirm findings in robust
gi? r?;:;?fpaegd(\:;g;eb?:;‘;L?{}S;?rrgv\?ig:g;)o::it;%gg:zr peech recognitio_n but also demonstrate_ ho_w similar con-
epts can be applied to speaker authentication. Therefore,

to sub-streams. An important finding is that a trade-off is of- emphasis will be put on the significant differences between
ten necessary between the overall good performance undeE)oth applications

all conditions(clean and noisy) and good performance un-
derclean conditionsTo reconcile this trade-off, we propose

to give more emphasis or prior to clean conditions, thus, re-
sulting in a combination mechanism that does not deterio-  The focus of this paper is to deal with the robustness as-
rate under clean conditions (as compared to the best streampect of multi-stream fusion for speaker authentication. In a

yetis robust to noisy conditions. system with\V speech feature streams (and heicspeech
experts), and where some streams are more resistant to noise
1. INTRODUCTION but deteriorate in performance in clean conditions while oth-

ers perform better in clean conditions but deteriorate quickly

Condition mismatch between training and testing is one of in noisy conditions, we would like to know whether com-
the most severe obstacles to making biometric authenticabining such streams at the score level will result in better
tion systems practical for day-to-day applications. This sameP€erformance under both clean and noisy conditions.
problem is also encountered in speech recognition applica-
tions. Considerable amount of efforts have already been put
to tackle the issue of robustness against mismatch condi-

tions in the speech recognition community while not so in Section 2 outlines how multi-stream can be implemented

for speaker authentication tasks. The proposed framework
The authors thank the Swiss National Science Foundation for support-was tested on a NIST2001 database detailed in Section 3. A
ing this work through the National Centre of Competence in Research get of Comp]ementary features used are bneﬂy exp]ained in

(NCCR) on “Interactive Multimodal Information Management (IM2)”. Section 4. This is followed by experimental results in Sec-
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ments and Johnny Mathoz for providing many of the foundation works ~ tions 5 and 6 (furt_her experiments on controlling the priors),
on which these experiments were carried out. and conclusions in Section 7.




2. NOISE-ROBUST COMBINATION MECHANISM In our opinion, the closest work to what is proposed here
FOR MULTI-STREAM APPROACH is by Cerisara et al [4] but in the context of speech recog-
nition. They proposed to train the COM of a multi-band
2.1. Classical and Multi-Stream Approaches to Noise-  system (which is a Single-Layer Perceptron) in white noise,
Robustness whereas the sub-band based experts are trained in clean con-
ditions. The resulting multi-band system showed higher
noise robustness toostof the noise cases tested, i.e., white
noise, high-frequency (pink) noise, low-frequency (pink)
noise, hair-dryer noise and car noise). Unfortunately, un-
der clean conditions (and also in canteen noise), the per-
formance of this system actually degraded compared to the
system which is trained only in clean conditions. Hence,
noisy conditions are tolerated with degraded performance
in clean conditions.
In this paper, we opt for the multi-stream approach rather
N than for the multi-band approach. Both approaches are con-
P <y|{f(Xc)}ceC»@> ; (1)  ceptually similar. The multi-stream approach exploits the
use of different acoustic feature types. These feature types
are selected such that the resultant feature-based expert have
different performance in different conditions (see Section 4),
i.e., some features perform better in clean conditions while
others perform better in noisy conditions. This is the first

Let us define real noisy conditions @s which consist of
the tuple (noise type, SNR) where SNR is the correspond-
ing Signal-to-Noise Ratio of the noise type. Note that both
noise types and SNRs are not discrete. Hefide con-
tinuous but often regarded as discrete in the literature. We
will adopt such convention here. Let the utterance of a raw

speech signal be represented Ey A system (with pa-
rameter®) that is designed to be robust against mismatch
conditionsC can be represented by the following classical
approach:

where f is a feature extraction function, such as Mel-scale
Frequency Cepstrum Coefficients (MFCCs) andg Y is

a class label. For speech recognitigngould be class of
phonemes (hence multi-class problem). For speaker au

thenticationy could be either client or impostor (two-class ior diff
problem). major difference.

In the classical approach, the mismatch conditions are. One possible advantage of using streams instead of us-

handled by incorporating such mismatch into the training "9 Sub-bands is that the effect of coloured noise on sub-
phase of the system. This often results in deterioration of bands are unpredictable from one sub-band to another; whereas

for streams, they are possibly predictable, i.e., one stream
may be more robust to noise (coloured or not) than another.
Since reliable streams/sub-bands should be weighted more
than unreliable ones, the multi-band approach cannot ex-
ploit such prior knowledge while the multi-stream approach
X¢ = [p(ym(fc’)? @8)} _ wherec = clean probably could. Hence, we expect that, due to the COM,
s€S the multi-stream approach will be robust to many kinds of
p < |{)F>} o ) @ noise_types. This is also a hypothesis that we would_like
YNAFjeec, BoOM |- to validate. As far as we know, our proposed technique

In the first step, one estimates the posterior probability of Which makes use of such prior knowledge to fuen-

the class labej for each stream € S independently. Each  10ns of stream-based expeitias not been applied neither
stream-based system has the paramet e@set)? is thus for speech recognition nor for speaker authentication tasks.
- : F

a vector whose elements are the hypothesis of strkeans
that the feature vectci?c> belongs to clasg. Note that these
stream-based systems are trained in clean conditions only|n terms of implementation, we train the COM using “ar-
Noise-resistance is actually handled in step two, where eachificial noisy conditions”. The motivation for doing so is
noisy conditionc < C is computed explicitly in the hy-  that one does not know in advance how the real (noisy)
pothesis spac&s.. Therefore, noise-robustness is due to conditions will be like. Hence, we propose to use an in-
this second step, which can be regarded as a fusid§|of tuitive (although naive) class of artificial conditions, i.e.,
stream-based systems by a second classifier with paramewhite noise at different SNRs. This practice has long been
ter setOcons. This classifier is called the COmbination well-accepted in speech recognition community and has shown
Mechanism (COM). It should be emphasised that the multi- to work in [4]. Note that contrary to speech recognition,
stream approach proposed in the literature (e.g. [6] in they in speaker authentication takes on two possible values:
context of speech recognition) often does not consider dif- client or impostor. In speech recognition, step one is car-
ferent noisy conditions when training the COM. The main ried out using Gaussian Mixture Models (GMMs) or Multi-

idea here is to incorporate such noise-robustness into thd_ayer Perceptrons (MLPs) (such as Tandem), whereas in
COM. speaker authentication, GMMs with MaximuarPosteriori

performance in clean conditions as well as in otheseen
noisy conditions [2].

In the proposed multi-stream approach, this problem can
be solved in two steps, as follows:

and

2.2. Implementation Issues



(MAP) adaptation have been tde factoapproach because Algorithm 1

Robust multi-stream training

for practical reasons, they are found to be particularly suit- (Zain, Ztest S,C)

able for such task. This difference is principally architec-
tural.

A GMM models the statistical distribution of training
feature vectors for each client. Briefly, a common impostor
GMM model (also called a world model) is first obtained
from many speakers using the Expectation-Maximization
algorithm [8]. The world model is then adapted to each
client's speech features using MAP estimation [9]. To make
adecision, an average log-likelihood ratio between the client-
adapted model and the world model (over all feature frames)
is compared to a threshold chosen on development data.

As for step two (see Eqn. (2)), we propose to use MLPs
and SVMs as the COM. This is because the output score
vector)_fp are highly correlated [10]. Non-linear mappings
such as MLPs and SVMs provide a flexible means of find-
ing the optimal separation hyper-plan. By simply analysing
variance reduction due to averaging |&f| streams, it is
known that the resultant combined systeamnot perform
worse than the average performanck|S| streams. Em-
pirical evaluations in [10] showed that non-linear mapping
oftenperforms better than simple averaging, given that the
right hyper-parameters (e.g. number of hidden units of MLP;
standard deviation of SVM with Gaussian kernels) are used.

Z : patternsek X, Y >
Xex: training example
y € Y : the labels of training examples i
s € S : feature type (e.g. MFCC, LFCC)
ceC: condition
X . € X. : example corrupted by condition
STEP_)]_' train stream-based GMM experts
Use(X,¥) € Zirain
for eachs € S do .

{©%, 0%} =train GMM (< f5(X),y >)
end for
STEP_)Z test stream-based GMM experts under
Use(X,y) € Ztest
for eachec € C do

LLR®
[test GMM ({@SC, oL}, fs(?c))}

C
Xy =

seS

end for

STEP 3: train the COM (MLP_5>0r SVMs)
Oconm = train COM< U cc X &,y >)
return (V/Seg{@%«, @%}, @COM)

They can be tuned by cross-validation. In fact, discrimina-
tion in streams is strongly desirable so that higher weights

are given to the more reliable streams and vice-versa, un-streams. Finally, step three consists of training the COM
der different conditions. The accept/reject decision is takenusing the resultant set of vectors just mentioned. Here, we
based on the output of the COM. This is detailed in Sec- used MLPs or SVMs. The COM provides a mapping func-

tion 3.2.

tion from RIS! input dimensions to one output dimension

We outline here a particular implementation of a noise- Where the final accept/reject decision will be taken once
robust text-independent speaker authentication task in Al-a threshold is determined. Our implementation of multi-
gorithm 1. This algorithm takes in two data sets: training Stream text-independent speaker authentication is shown in

(Ztrain) and test Eiesy sets, which are taken from thue-
velopmentset. The first data set is used to train the base

Figure 1 with features described in Section 4.

This procedure has several advantages. Firstly, the sub-

expert whereas the second set is used to train the COMsystems in P()_f\@S) can be trained simultaneously (e.g.,
Step one consists of training the stream-based GMM ex-on different machines). Secondly, since the underlying streams

pertss = 1,...

,|S| independently using clean sequences of can be trained and tested independently, it is therefore pos-

speech utterance.The number of Gaussians should be tunesible to use different window length, frame rates and differ-
by using the cross-validation technique. Step two consistsent parameters to extract the features. This will be particu-
of testing eachs-th expert independently using both clean Ilarly useful to incorporate for instance time information at

sequences and sequences corrupted by an artificially gener-

ated noise at different SNRs. Here, we use white noise at 18
dBs, 12 dBs, 6 dBs and 0 dBs. The procedure “train GMM”
models the statistical distribution ef fs()_f), y > fory =
client andy = impostor. The output of this procedure is a
set of parameters describing the client and impostor distri-
butions, i.e.9% and@% respectively. The “test GMM” is

a procedure that takes the client and impostor distributions,
together with the test feature from a given noise condition
and outputs a LLR. This is done for each streantence,
LLR¢ is a vector of|S| elements, which is the number of

| LFCC I——’| GMM
MFCC I——>| GMM
SSC I——>| GMM l—’
PAC H GMM |—'>

Fig. 1. A Multi-stream architecture
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different modulation frequencies. Finally, only a subset of FRR are functions of the threshol due to the fact that

C will probably be needed to be considered by the COM, the decision function is itself a function &. In this study,

i.e., it does not have to take into account the artificial con- the commonly used Half Total Error Rate (HTER) is used
ditions at all the SNRs, because the reliability of streams as an evaluation criteridnlt is defined agFAR + FRR) /2.

are somewhat predictable. Hence, the COM will be able Here, we assume that the costs of false acceptance and false
to generalise given proper tuning of hyper-parameters andrejection are equal and that the prior (class) distribution of

regularisation. clients and impostors are equal as well. The HTER is cal-
culated based on threshaldwhich itself is estimateérom
3. EXPERIMENT SETUP a development setThis threshold is estimated such that
|[FAR(A) — FRR(A)| is minimised. Itis then used to make
3.1. Database decisions on an evaluation set. Hence, the HTERnisi-

asedwith respect to the evaluation set since its associated
The NIST2001 database [11] is used here. Itis a commonlythreshold is estimateal priori on the development set. We
used (benchmark) database for text-independent speaker ay|| the resultant measure anpriori HTER and is used
thentication tasks. The data is obtained from the Switchboargyhenever an evaluation set is used. The lower HTER is, the
2 Phase 3 Corpus collected by the Linguistic Data Consor-petter the performance.
tium. Here, only the female subset (which is known to be
slightly more difficult than the male subset) is used for eval-
uation. In the original database two different handsets were

used (i.e., carbon and electret). However, only data from_l_ . ine here is: h h d
electret handsets are used (5 speakers who used the carboAqe main 1ssue to examine €re 1S. how toc 00s€ a goo
candidate feature set to be included into the multi-stream

handsets are removed) so that any variation of performance, ho di h vsis of Vari d
if any, will not be attributed to this factor. This database approach? According to the analysis of Variance Reduc-

was separated into three subsets: a training set for the worldon (VR) [14], two systems should be as uncorrelated as

model, a development set and an evaluation set. The femalé’oss'ple' Henc_e, d'YEfS'ty 1S |mportar_1t. _Smcg, the issue
world model was trained on 218 speakers for a total of 3 examined here is noise-robustness, this diversity should be

hours of speech. For both development and evaluation (fe_with respect to noise-robustness, i.e., the candidate features
' ﬁ,hould behave differently in different noise conditions. For

male) clients, there was about 2 minutes of telephone speect .
used to train the models and each test access was less th&mstance, one feature should (result in experts that) perform

1 minute long. The development population consisted of 45 well in one condition (e.g. (_:I_ean) while a_nother fe_a_ture ber-
females while there were 506 females in the evaluation set.fqrm well in another condition (e.g. noisy condition at a
The total number of accesses for the development popula

4. MULTI-STREAM FEATURES

given SNR). We have chosen four features that exhibit such

tion was 2694 and 32029 for the evaluation population with complemgntary behaviggr, listed in the order of d(_acreasing
a proportion of 10% of true accesses. Note that 4 types oféccuracy in clean conditions (based on our experiments on
noise:white , oproom (for operational room)actory the NIST2001 database), as follows:

andlynx noise, taken from the NOISEX-92 database [12],

. e LFCCs: The Linear Filter-bank Cepstral Coefficient
are used to contaminate the NIST2001 dataset.

[15] speech features were computed with 24 linearly-
spaced filters on each frame of Fourier coefficients
3.2. Evaluation Criterion sampled with a window length of 20 milliseconds and
each window moved at a rate of 10 milliseconds. 16
DCT coefficients were computed to decorrelate the
24 coefficients (log of power spectrum) obtained from

In our multi-stream speaker authentication, the accept/reject
decision is defined as:

)< { ot Uy et ocoy) -4 eloear e (e same iy lrgh
reject  otherwise applied to all other features mentioned be
(3) low.) The first temporal derivatives (deltas) were added
. .
Note thatX » derived in step one of Egn. 2 is not used to to the feature set (so as other features described here-
make the decision. The decision is only made in step two inafter). Furthermore, Cepstral Mean Subtraction (CMS)
as shown here. Because of this binary decision, the sys- was also applied to normalise the effect due to chan-
tem may commit two types of error: false acceptance (FA) nel distortion.
A —

and false rejection (FR). FA happens wheaX ) = accept 11t should be noted the popular Equal Error Rate (EBA¥ not used

— SO rai here because this criterion does not reflect real applications where a thresh-
andy = impostor. FR happens whefi(X) = reject and old must be fixed in advance. Moreover, the use of DET or ROC curves

y = client. They are qgantified by False Acceptance Rate o compare two systems has recently been shown to be erroneous and mis-
(FAR) and False Rejection Rate (FRR). Note that FAR and leading [13], despite the fact that they are widely accepted in the literature.
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Fig. 2. A priori HTERS (in percentage; the lower the better) of various single-stream experts using GMMs under
different noisy conditions, carried out on the female evaluation subset of the NIST2001 database. The labels are the

best stream expert due to the associated feature set. o _ N . _
imising the influence of additive noise. Experimental

results in Section 5 show that PAC-MFCCs are very

e MFCCs: The Mel-scale Filter-bank Cepstral. Coef- robust to noise but deteriorate greatly in clean condi-
ficient [15] speech features were computed with 24 tions.
filters linearly spacedn the Mel-scal@n each frame
of Fourier coefficients. The first 12 DCT coefficients How would these features behave under different noise

were computed to decorrelate the 24 coefficients (log types and at different SNRs? A set of experiments is per-
of power spectrum) obtained from the filter-bank. Agairformed and the results are shown in Figure 2.
deltas were added and CMS was applied. The best stream in each noise type at a given SNR is
SSCs Spectral Subband Centroids [16, 17] are a set labeled. It can be observed that LFCC features are the best
’ set of features in clean conditions. Across different noisy
conditions, it can be observed that SSC features turn out
of SSCs are more robust than the originally proposed to be the bes_t feature_§ while PAC features are the b_est in
SSCs. (Hereinafter, all SSCs imply mean-subtracted extremely noisy coqdltlons. N_ote that there is a consistent
SSCs.) The SSCs used here were obtained from 16behav!our across dlﬁgrent n0|se.types, thus, making such
centroids. They parameter, which is a parameter that behaviour predictable in other noise types.
raises the power spectrum, was set to 1.

of centroids confined to be within each spectral sub-
band. It was found that the mean-subtracted version

2The speech/silence segmentation is performed using two-competing
e PAC-MFCCs: The Phase Auto-Correlation MFCCs [18§3aussians: one models the speech segments and the other models the silent

were extracted using 24 filter-banks spaced linearly segments. Note that we assume that this segmentation is uniform across

he Mel | ith 16 Th .7 different features and different conditions. Hence, it is performed once
on the Mel-scale, wit cepstrums. ey aré Simi- 5,q applied to all other experiments. As a result, the experiments reported

lar to MFCCs except that the the Fourier coefficients here are optimistically biased because in real situation, the segmentation of
are derived uniquely from the phase-angle produced speech and silent cannot be reliably determined under noisy conditions. On

_ ; ; the other hand, since the aim of this study is to measure the effectiveness of
by auto-correlating speech waveforms instead of from the COM againshoisy speech featurgi is undesirable that the unreliable

both the magnitude and phas?‘angle of speech WaV€segmentation (under noisy condition) be a variable factor that might make
forms as commonly done. This has the effect of min- the analysis difficult.
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Fig. 3. A priori HTERS (in percentage) of various COMs (using MLPs and SVMs) trained under (1) clean conditions,
and (2) under clean and various white noise conditions. The COMs were tested on the female evaluation subset of the
NIST2001 database that were artificially corrupted by different noisy conditions. The COMs are labeled as [classifier
type][hyper-parameters][conditions trained]

5 EXPERIMENTAL RESULTS IN MISMATCHED for the latter set of experiments, the COM performances
' NOISY CONDITIONS in fact deteriorate under clean conditions compared to the

best stream expert (LFCC) but improve under noisy condi-

To test if prior knowledge of the COM is actually helpful tions. Under clean conditions, the MLPs achieved 13.096%
or not, we first train the COM to fuse scores uniquely under Of HTER while the SVMs achieved 14.428% of HTER. The
clean conditions and the whole systems are tested on differ2€st stream expert is better than both systems with 99% of
ent conditions (different noise types at SNRs of 18, 12, 6 confidence level according to the McNemar's Test. Clearly,
and 0 dBs). Both MLPs and SVMs are used as the cowm. the COM are trained to be be optimal in all conditions.
The second set of experiments consists of training the comTherefore, they lose to the best stream expert in clean condi-
under clean and white noise at the mentioned SNRs. Thelions. It seems that there is a compromise to make: to excel
generalisation performance of both sets of experiments un-n all conditions (hence losing in the clean conditions) or
der different noisy conditionsot seen during trainingre 10 excel in the clean conditions only (hence losing in noisy
shown in Figure 3. It can be observed that the former setconditions).
of experiments performs well in clean conditions and grad-
ually deteriorates (as compared to the best stream) under
noisy conditions. In fact, under clean conditions, the MLPs 6. CONTROLLING COMPROMISE BY PRIORS
and SVMs have a HTER of 11.684% and 11.518%, respec-
tively and are significantly better than the best stream expertSuch compromise, in fact, can be expressed by viewing the
(i.e., LFCC expert, with HTER of 11.984%) according to problem in step two of Eqn. (Xlightly differently, i.e.,c
the McNemar's test at 99% of confidence I€VE9]. As can be viewed as a target hidden state to be estimated. We

3This is done by calculating(no1 — n10)2 — 1)/(no1 + n10) >

p wherep is the inverse function oft’2 distribution (with 1 degree of are the number ddiifferentmistakes done by the two systems on shene
freedom) at a desired confidence interval (i.e., 99%), and andnio accesses.
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Fig. 4. A priori HTERSs (in percentage) of the COM (using MLPs with 6 hidden units) trained under clean and various
white noise conditions, with emphasis on clean examples. The COM was tested on the female evaluation subset of the
NIST2001 database that were artificially corrupted by different noisy conditions.

the proportion of the training data for the COM is 6:1:1:1:1
for the following conditions: clean, 18, 12, 6 and O dBs,
respectively. To achieve similar effects in SVMs, one can
control the soft-margin of each example, often represented
as theC'. It controls how much an example contribute to the
margin. Unfortunately, by means of cross-validation on the
C parametétand the sigma parameter of Gaussian Kernel,
we did not succeed in tuning these parameters to achieve the
_ desirable output as done using MLPs. One can see the tun-
wherez is the normalising tern®(f(X.)|©). The firstun-  ing of hyper-parameter as choosing one particular mapping
derbraced term is the conditional likelihood and the secondfynction out of a set of infinite functions that will have an
underbraced term is the prior. Note that the piitgy, c) = optimal performance under both clean and noisy conditions.
P(yle)P(c) = P(y)P(c) sincey is independent of. This suggests that a specialised and more restrictive classi-

From the two previous sets of experiments, it is found fier would have been desirable rather than using a generic
that indeed the COM can be better than the best streantlassifier with almost infinite capacities. The final results
expert underclean conditions Therefore, to improve the  are shown in Figure 4. As can be observed, this COM gives
COM under clean conditions and yet stay relatively robust a good trade-off in both clean and noisy conditions, across
under noisy conditions, one should give more prior to the different noise types at different SNRs. Under clean condi-
clean conditions, i.e (¢ = clean. tions, the MLP achieves 12.163% of HTER while the best

There are several ways to incorporate such prior, which stream (LFCC) expert achieves 11.984% of HTER. Using
basically translates into giving more weights to examples McNemar’s test, there is no significant difference at 99%
(for both client or impostor class labels) in clean conditions.
We.Chose the most str.alghtforward Y‘.’ay’ €., t?y rep(.aatmgthe same noise condition are assigned similar valuand eachC value
N times the examples in clean conditions. Thids again differs by an order of 10. Typical example 6f for the conditions clean,
controlled by cross-validation and is found to be 6. Hence, 18, 12, 6 and 0 dBs arg100 : 10 : 10 : 10 : 10}.

propose to solve:
—_
P(y,clf(Xc),0) 4)

Using Bayesian formulation, this can be solved using:

Ply,elf(X0), 0) = - PUTDIO.y,¢) Py, )

4We used suitable guess 6ffor different conditions, i.e., examples of



of confidence level. Hence, with properly adjusted prior, a
good performance trade-off of the COM in both clean and
noisy conditions can be achieved. 6]

7. CONCLUSIONS
(7]
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speaker authentication system using a two-step approach:
first train the stream experts under clean conditions and then [g
train the combination mechanism (COM) to merge the scores
of the stream experts under both clean and noisy conditions. [9]
The idea here is to take advantage of the rather predictable
reliability and diversity of streams under different condi-
tions. Hence, noise-robustness is due to the combination[lo]
mechanism. This two-step approach offers several practi-
cal advantages: the stream experts can be trained in parallel
(e.g., by using several machines); heterogeneous types of
features can be used and the resultant system can be robuﬂl]
to all types of noise conditions. An important finding is that
a trade-off is often necessary between the overall good per-
formance under all conditions and good performance under
clean conditions. To reconcile this trade-off, we proposed
to give more emphasis or prior to clean conditions, thus, re-
sulting in a combination mechanism tlthd not deteriorate
under clean conditions (as compared to the best stream) yef13
stayed robust to noisy conditions. ]
Future studies in this direction will include analysing
how the output hypothesis space is affected by the change
in the feature space (which itself is affected by the raw au-
dio signal) due to different Signal-to-Noise Ratios (SNRs).
Ability to predict this change might give a hint on how to [14]
better combine the feature streams.
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