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Abstract
Despite their massive size, successful deep artificial neural 
networks can exhibit a remarkably small gap between train-
ing and test performance. Conventional wisdom attributes 
small generalization error either to properties of the model 
family or to the regularization techniques used during 
training.

Through extensive systematic experiments, we show how 
these traditional approaches fail to explain why large neural 
networks generalize well in practice. Specifically, our experi-
ments establish that state-of-the-art convolutional networks 
for image classification trained with stochastic gradient 
methods easily fit a random labeling of the training data. 
This phenomenon is qualitatively unaffected by explicit 
regularization and occurs even if we replace the true images 
by completely unstructured random noise. We corroborate 
these experimental findings with a theoretical construc-
tion showing that simple depth two neural networks already 
have perfect finite sample expressivity as soon as the num-
ber of parameters exceeds the number of data points as it 
usually does in practice.

We interpret our experimental findings by comparison 
with traditional models.

We supplement this republication with a new section at 
the end summarizing recent progresses in the field since the 
original version of this paper.

1. INTRODUCTION
For centuries, scientists, policy makers, actuaries, and sales-
men alike have exploited the empirical fact that unknown 
outcomes, be they future or unobserved, often trace regular-
ities found in past observations. We call this idea generaliza-
tion: finding rules consistent with available data that apply 
to instances we have yet to encounter.

Supervised machine learning builds on statistical tra-
dition in how it formalizes the idea of generalization. We 
assume observations come from a fixed data generating pro-
cess, such as samples drawn from a fixed distribution. In a 
first optimization step, called training, we fit a model to a set 
of data. In a second step, called testing, we judge the model 
by how well it performs on newly generated data from the 
very same process.

This notion of generalization as test-time performance 
can seem mundane. After all, it simply requires the 
model to achieve consistent success on the same data 
generating process as was encountered during train-
ing. Yet the seemingly simple question of what theory 

The original version of this paper was published in Proceedings of the 5th 
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underwrites the generalization ability of a model has 
occupied the machine learning research community for 
decades.

There are a variety of theories proposed to explain 
generalization.

Uniform convergence, margin theory, and algorith-
mic stability are but a few of the important concep-
tual tools to reason about generalization. Central to 
much theory are different notions of model complexity. 
Corresponding generalization bounds quantify how 
much data is needed as a function of a particular com-
plexity measure. Despite much significant theoretical 
work, the prescriptive and descriptive value of these 
theories remains debated.

This work takes a step back. We do not offer any new 
theory of generalization. Rather, we offer a few simple exper-
iments to interrogate the empirical import of different pur-
ported theories of generalization. With these experiments at 
hand, we broadly investigate what practices do and do not 
promote generalization, what does and does not measure 
generalization?

1.1. The randomization test
In our primary experiment, we create a copy of the training 
data where we replace each label independently by a ran-
dom label chosen from the set of valid labels. A dog picture 
labeled “dog” might thus become a dog picture labeled “air-
plane”. The randomization breaks any relationship between 
the instance, for example, the image, and the label. We then 
run the learning algorithm both on the natural data and 
on the randomized data with identical settings and model 
choice. By design, no generalization is possible on the ran-
domized data. After all, we fit the model against random 
labels!

For any purported measure of generalization, we can 
now compare how it fares on the natural data versus the 
randomized data. If it turns out to be the same in both 
cases, it could not possibly be a good measure of general-
ization for it cannot even distinguish learning from natu-
ral data (where generalization is possible) from learning on 
randomized data (where no generalization is possible). Our 
primary observation is:

Deep neural networks easily fit random 
labels.

http://dx.doi.org/10.1145/3446776


research highlights 

 

108    COMMUNICATIONS OF THE ACM   |   MARCH 2021  |   VOL.  64  |   NO.  3

More precisely, when trained on a completely random 
labeling of the true data, neural networks achieve 0 train-
ing error. The test error, of course, is no better than random 
chance as there is no correlation between the training labels 
and the test labels. In other words, by randomizing labels 
alone we can force the generalization error of a model to 
jump up considerably without changing the model, its size, 
hyperparameters, or the optimizer. We establish this fact 
for several different standard architectures trained on the 
CIFAR10 and ImageNet classification benchmarks. While 
simple to state, this observation has profound implications 
from a statistical learning perspective:

1.  The effective capacity of neural networks is sufficient 
for memorizing the entire data set.

2.  Even optimization on random labels remains easy. In 
fact, training time increases only by a small constant 
factor compared with training on the true labels.

3.  Randomizing labels is solely a data transformation, 
leaving all other properties of the learning problem 
unchanged.

In particular, we find that many of the more popular expla-
nations of generalization fail to capture what’s happening in 
state-of-the-art deep learning models.

Extending on this first set of experiments, we also 
replace the true images by completely random pixels (e.g., 
Gaussian noise) and observe that convolutional neural net-
works continue to fit the data with zero training error. This 
shows that despite their structure, convolutional neural 
nets can fit random noise. We furthermore vary the amount 
of randomization, interpolating smoothly between the case 
of no noise and complete noise. This leads to a range of 
intermediate learning problems where there remains some 
level of signal in the labels. We observe a steady deteriora-
tion of the generalization error as we increase the noise 
level. This shows that neural networks are able to capture 
the remaining signal in the data while at the same time fit 
the noisy part using brute-force.

We discuss in further detail below how these observa-
tions rule out several standard generalization bounds as 
possible explanations for the generalization performance of 
state-of-the-art neural networks.

1.2. The role of regularization
Regularization can be thought of as the operational counter-
part of a notion of model complexity. When the complexity 
of a model is very high, regularization introduces algorith-
mic tweaks intended to reward models of lower complexity. 
Regularization is a popular technique to make optimization 
problems “well posed”: when an infinite number of solu-
tions agree with the data, regularization breaks ties in favor 
of the solution with lowest complexity.

Our second set of experiments interrogates the role that 
regularization plays in training overparameterized neural 
networks. Our experiments reveal that most of the regular-
ization techniques in deep learning are not necessary for 
generalization: if we turn off the regularization parameters, 
test-time performance remains strong. Hence, explicit 

regularization alone does not suffice to explain how deep 
learning models generalize. To summarize our finding:

Explicit regularization may improve 
generalization performance, but is neither 

necessary nor by itself sufficient for 
controlling generalization error.

While explicit regularizers like “dropout” and “weight-
decay” may not be essential for generalization, it is cer-
tainly the case that not all models that fit the training 
data well generalize well. Indeed, in neural networks, we 
almost always choose our model as the output of running 
stochastic gradient descent. Appealing to linear models, 
we analyze how SGD acts as an implicit regularizer. For lin-
ear models, SGD always converges to a solution with small 
norm. Hence, the algorithm itself is implicitly regularizing 
the solution. Indeed, we show on small data sets that even 
Gaussian kernel methods can generalize well with no regu-
larization. Though this does not explain why certain archi-
tectures generalize better than other architectures, it does 
suggest that more investigation is needed to understand 
exactly what the properties are inherited by models that 
were trained using SGD.

1.3. Finite sample expressivity
We complement our empirical observations with a theoreti-
cal construction showing that generically large neural net-
works can express any labeling of the training data. More 
formally, we exhibit a very simple two-layer ReLU network 
with p = 2n + d parameters that can express any labeling of 
any sample of size n in d dimensions. A previous construc-
tion due to Livni et al.22 achieved a similar result with far 
more parameters, namely, O(dn). While our depth-2 network 
inevitably has large width, we can also come up with a depth 
k network in which each layer has only O(n/k) parameters.

While prior expressivity results focused on what functions 
neural nets can represent over the entire domain, we focus 
instead on the expressivity of neural nets with regard to a 
finite sample. In contrast to existing depth separations13, 15, 40, 11  
in function space, our result shows that even depth-2 net-
works of linear size can already represent any labeling of the 
training data.

1.4. Related prior work
Below we discuss some related prior work. In Section 6.1, we 
discuss recent work that followed the initial publication of 
our work.

Barlett4 proved bounds on the fat shattering dimension 
of multilayer perceptrons with sigmoid activations in terms 
of the 1-norm of the weights at each node. This important 
result gives a generalization bound for neural nets that is 
independent of the network size. However, for RELU net-
works, the 1-norm is no longer informative. This leads to 
the question of whether there is a different form of capac-
ity control that bounds generalization error for large neural 
nets. This question was raised in a thought-provoking work 
by Neyshabur et al.,30 who argued through experiments that 
network size is not the main form of capacity control for 
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the inputs (rather than labels), arriving at the same general 
conclusion.

The experiments are run on two image classification data-
sets, the CIFAR10 dataset and the ImageNet ILSVRC 2012 
dataset. We test the Inception V3 architecture on ImageNet 
and a smaller version of Inception, Alexnet, and MLPs on 
CIFAR10. Please see Appendix A of Zhang et al.44 for more 
details of the experimental setup.

2.1. Fitting random labels and pixels
We run our experiments with the following modifications of 
the labels and input images:

•	 True labels: the original dataset without modification.
•	 Partially corrupted labels: independently with proba-

bility p, the label of each image is corrupted as a uni-
form random class.

•	 Random labels: all the labels are replaced with random 
ones.

•	 Shuffled pixels: a random permutation of the pixels is 
chosen and then the same permutation is applied to all 
the images in both training and test set.

•	 Random pixels: a different random permutation is 
applied to each image independently.

•  Gaussian: A Gaussian distribution (with matching 
mean and variance to the original image dataset) is 
used to generate random pixels for each image.

Surprisingly, stochastic gradient descent with unchanged 
hyperparameter settings can optimize the weights to fit to 
random labels perfectly, even though the random labels 
completely destroy the relationship between images and 
labels. We further break the structure of the images by shuf-
fling the image pixels, and even completely resampling the 
random pixels from a Gaussian distribution. But the net-
works we tested are still able to fit.

Figure 1a shows the learning curves of the Inception 
model on the CIFAR10 dataset under various settings. We 
expect the objective function to take longer to start decreas-
ing on random labels because initially the label assignments 
for every training sample are uncorrelated. Therefore, large 
prediction errors are backpropagated to make large gradi-
ents for parameter updates. However, since the random 
labels are fixed and consistent across epochs, the network 
starts fitting after going through the training set multiple 
times. We find the following observations for fitting ran-
dom labels very interesting: (a) we do not need to change 
the learning rate schedule; (b) once the fitting starts, it con-
verges quickly; and (c) it converges to (over)fit the training 
set perfectly. Also note that “random pixels” and “Gaussian” 
start converging faster than “random labels.” This might be 
because with random pixels, the inputs are more separated 
from each other than natural images that originally belong 
to the same category, therefore, easier to build a network for 
arbitrary label assignments.

On the CIFAR10 dataset, Alexnet and MLPs all converge 
to zero loss on the training set. The shaded rows in Table 1 
show the exact numbers and experimental setup. We also 
tested random labels on the ImageNet dataset. As shown 

neural networks. An analogy to matrix factorization illus-
trated the importance of implicit regularization.

Hardt et al.18 give an upper bound on the generalization 
error of a model trained with stochastic gradient descent 
in terms of the number of steps gradient descent took. 
Their analysis goes through the notion of uniform stabil-
ity.8 As we point out in this work, uniform stability of a 
learning algorithm is independent of the labeling of the 
training data. Hence, the concept is not strong enough to 
distinguish between the models trained on the true labels 
(small generalization error) and models trained on the 
random labels (large generalization error). This also high-
lights why the analysis of Hardt et al.18 for nonconvex opti-
mization was rather pessimistic, allowing only a very few 
passes over the data. Our results show that even empiri-
cally training neural networks is not uniformly stable for 
many passes over the data.

There has been much work on the representational 
power of neural networks, starting from universal approxi-
mation theorems for multi-layer perceptrons.12, 25, 13, 24, 15, 40, 11 
All of these results are at the population level characterizing 
which mathematical functions certain families of neural 
networks can express over the entire domain. We instead 
study the representational power of neural networks for a 
finite sample of size n. This leads to a very simple proof that 
even O(n)-sized two-layer perceptrons have universal finite-
sample expressivity.

2. EFFECTIVE CAPACITY OF NEURAL NETWORKS
The size of a model family is often huge as it counts all pos-
sible functions in a certain set, including those that are 
unlikely to be found by the learning algorithm. By effective 
capacity, we informally refer to the size of the subset of mod-
els that is effectively achievable by the learning procedure. 
The capacity of this subset could be much smaller as it con-
tains only “well-behaved” functions produced by some spe-
cific optimization algorithms, with bounded computation 
budget, and sometimes with explicit or implicit regulariza-
tions. Our goal is to understand the effective model capac-
ity of feed-forward neural networks. Toward this goal, we 
choose a methodology inspired by nonparametric random-
ization tests. Specifically, we take a candidate architecture 
and train it both on the true data and on a copy of the data in 
which the true labels were replaced by random labels. In the 
second case, there is no longer any relationship between the 
instances and the class labels. As a result, learning is impos-
sible. Intuition suggests that this impossibility should man-
ifest itself clearly during training, for example, by training 
not converging or slowing down substantially. To our sur-
prise, several properties of the training process for multiple 
standard architectures are largely unaffected by this trans-
formation of the labels. This poses a conceptual challenge. 
Whatever justification we had for expecting a small general-
ization error to begin with must no longer apply to the case 
of random labels.

To gain further insight into this phenomenon, we experi-
ment with different levels of randomization exploring the 
continuum between no label noise and completely cor-
rupted labels. We also try out different randomizations of 
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in the last three rows of Table 2 in Appendix of Zhang  
et al.,44 although it does not reach the perfect 100% top-1 
accuracy, 95.20% accuracy is still very surprising for 1.2 million 
random labels from 1000 categories. Note that we did not 
do any hyperparameter tuning when switching from the true 
labels to the random labels. It is likely that with some modi-
fication of the hyperparameters, perfect accuracy could be 
achieved on random labels. The network also manages to 
reach ∼90% top-1 accuracy even with explicit regularizers 
turned on.

Partially corrupted labels. We further inspect the behav-
ior of neural network training with a varying level of label 
corruptions from 0 (no corruption) to 1 (complete random 
labels) on the CIFAR10 dataset. The networks fit the cor-
rupted training set perfectly for all the cases. Figure 1b 
shows the slowdown of the convergence time with increas-
ing level of label noises. Figure 1c depicts the test errors after 
convergence. Since the training errors are always zero, the 
test errors are the same as generalization errors. As the noise 
level approaches 1, the generalization errors converge to  
90%—the performance of random guessing on CIFAR10.

2.2. Implications
In light of our randomization experiments, we discuss 
how our findings pose a challenge for several traditional 
approaches for reasoning about generalization.

Rademacher complexity and VC-dimension. Rademacher 
complexity is commonly used and flexible complexity mea-
sure of a hypothesis class. The empirical Rademacher com-
plexity of a function class F on a dataset {z1, …, zn} is defined as

	 � (1)

where σ1, …, σn ∈ {±1} are i.i.d. uniform random variables. 
Usually we aim to bound the Rademacher complexity of the 
loss function class L = {(z = (x, y) ) = (h(x), y) : h ∈ H}, where 
zi = (xi, yi) are input-output pairs. For L-Lipschitz loss func-
tion  and real valued hypothesis class H,  
by contraction lemma. The Rademacher complexity mea-
sures the ability of a function class to fit random ±1 binary 
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Figure 1. Fitting random labels and random pixels on CIFAR10. (a) The training loss of various experiment settings decaying with the training 
steps. (b) The relative convergence time with different label corruption ratio. (c) The test error (also the generalization error since training 
error is 0) under different label corruptions.

Model # params
Random 
crop

Weight 
decay

Train 
accuracy

Test 
accuracy

Inception 1,649,402 Yes Yes 100.0 89.05

Yes No 100.0 89.31

No Yes 100.0 86.03

No No 100.0 85.75

(fitting  
random 
labels)

No No 100.0 9.78

Inception 
w/o 
BatchNorm

1,649,402 No Yes 100.0 83.00

No No 100.0 82.00

(fitting ran-
dom labels)

No No 100.0 10.12

Alexnet 1,387,786 Yes Yes 99.90 81.22

Yes No 99.82 79.66

No Yes 100.0 77.36

No No 100.0 76.07

(fitting ran-
dom labels)

No No 99.82 9.86

MLP 3 × 512 1,735,178 No Yes 100.0 53.35

No No 100.0 52.39

(fitting  
random 
labels)

No No 100.0 10.48

MLP 1 × 512 1,209,866 No Yes 99.80 50.39

No No 100.0 50.51

(fitting  
random 
labels)

No No 99.34 10.61

Table 1. The training and test accuracy (in %) of various models on 
the CIFAR10 dataset.

Performance with and without data augmentation and weight decay are 
compared. The results of fitting random labels are also included.
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The following regularizers are covered:
•	 Data augmentation: augment the training set via 

domain-specific transformations. For image data, com-
monly used transformations include random crop-
ping, random perturbation of brightness, saturation, 
hue, and contrast.

•	 Weight decay: equivalent to a 2 regularizer on the 
weights; also equivalent to a hard constrain of the 
weights to an Euclidean ball, with the radius decided by 
the amount of weight decay.

•  Dropout39: mask out each element of a layer output randomly 
with a given dropout probability. Only the Inception V3 
for ImageNet uses dropout in our experiments.

Table 1 shows the results of Inception, Alexnet, and MLPs on 
CIFAR10, toggling the use of data augmentation and weight 
decay. Both regularization techniques help to improve the 
generalization performance, but even with all of the regular-
izers turned off, all of the models still generalize very well.

Table 2 in Appendix of Zhang et al.44 shows a similar 
experiment on the ImageNet dataset. A 18% top-1 accu-
racy drop is observed when we turn off all the regularizers. 
Specifically, the top-1 accuracy without regularization is 
59.80%, while random guessing only achieves 0.1% top-1 
accuracy on ImageNet. More strikingly, with data augmen-
tation on but other explicit regularizers off, Inception is able 
to achieve a top-1 accuracy of 72.95%. Indeed, it seems like 
the ability to augment the data using known symmetries is 
significantly more powerful than just tuning weight decay or 
preventing low training error.

Inception achieves 80.38% top-5 accuracy without regu-
larization, while the reported number of the winner of 
ILSVRC 2012 achieved 83.6%. So while regularization is 
important, bigger gains can be achieved by simply changing 
the model architecture. It is difficult to say that the regular-
izers count as a fundamental phase change in the general-
ization capability of deep nets.

3.1. Implicit regularizations
Early stopping was shown to implicitly regularize on some 
convex learning problems.21, 43 In Table 2 in Appendix of 
Zhang et al.,44 we show in parentheses the best test accuracy 
along the training process. It confirms that early stopping 
could potentiallya improve the generalization performance. 
Figure 2a shows the training and testing accuracy on 
ImageNet. The shaded area indicates the accumulative best 
test accuracy, as a reference of potential performance gain 
for early stopping. However, on the CIFAR10 dataset, we do 
not observe any potential benefit of early stopping.

Batch normalization is an operator that normalizes the 
layer responses within each mini-batch. It has been widely 
adopted in many modern neural network architectures such 
as Inception and Residual Networks. Although not explicitly 
designed for regularization, batch normalization is usu-
ally found to improve the generalization performance. The 

label assignments, which closely resemble our random-
ization test. Since our empirical results on randomization 
tests suggest that many neural networks fit the training set 
with random labels perfectly, we expect that  approx-
imately achieves the maximum for the corresponding loss 
class L. For example, for the indicator loss, . This 
is a trivial upper bound on the Rademacher complexity that 
does not lead to useful generalization bounds in realistic set-
tings. A similar reasoning applies to VC-dimension and its 
continuous analog fat-shattering dimension, unless we fur-
ther restrict the network. While Barlett4 proves a bound on 
the fat-shattering dimension in terms of 1 norm bounds on  
the weights of the network, this bound does not apply to 
the ReLU networks that we consider here. This result was 
generalized to other norms by Neyshabur et al.,31 but even 
these do not seem to explain the generalization behavior 
that we observe.

Uniform stability. Stepping away from complexity mea-
sures of the hypothesis class, we can instead consider prop-
erties of the algorithm used for training. This is commonly 
done with some notion of stability, such as uniform stabil-
ity. Uniform stability of an algorithm A measures how sensi-
tive the algorithm is to the replacement of a single example. 
However, it is solely a property of the algorithm, which does 
not take into account specifics of the data or the distribu-
tion of the labels. It is possible to define weaker notions 
of stability.27, 32, 36 The weakest stability measure is directly 
equivalent to bounding generalization error and does take 
the data into account. However, it has been difficult to uti-
lize this weaker stability notion effectively.

3. THE ROLE OF REGULARIZATION
Most of our randomization tests are performed with 
explicit regularization turned off. Regularizers are the 
standard tool in theory and practice to mitigate overfit-
ting in the regime when there are more parameters than 
data points.42 The basic idea is that although the original 
hypothesis is too large to generalize well, regularizers help 
confine learning to a subset of the hypothesis space with 
manageable complexity. By adding an explicit regularizer, 
say by penalizing the norm of the optimal solution, the 
effective Rademacher complexity of the possible solutions 
is dramatically reduced.

As we will see, in deep learning, explicit regularization 
seems to play a rather different role. As the bottom rows 
of Table 2 in Appendix of Zhang et al.44 show, even with 
dropout and weight decay, InceptionV3 is still able to fit 
the random training set extremely well if not perfectly. 
Although not shown explicitly, on CIFAR10, both Inception 
and MLPs still fit perfectly the random training set with 
weight decay turned on. However, AlexNet with weight 
decay turned on fails to converge on random labels. To 
investigate the role of regularization in deep learning, we 
explicitly compare behavior of deep nets learning with and 
without regularizers.

Instead of doing a full survey of all kinds of regularization 
techniques introduced for deep learning, we simply take 
several commonly used network architectures and compare 
the behavior when turning off the equipped regularizers. 

a  We say “potentially” because to make this statement rigorous, we need 
to have another isolated test set and test the performance there when we 
choose early stopping point on the first test set (acting like a validation set).
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the sample size to be polynomially large in the dimension of 
the input and exponential in the depth of the network, pos-
ing a clearly unrealistic requirement in practice.

We instead directly analyze the finite-sample expressivity 
of neural networks, noting that this dramatically simplifies 
the picture. Specifically, as soon as the number of param-
eters p of a networks is greater than n, even simple two-layer 
neural networks can represent any function of the input 
sample. We say that a neural network C can represent any 
function of a sample of size n in d dimensions if for every 
sample S ⊆ Rd with |S| = n and every function f: S → R, there 
exists a setting of the weights of C such that C(x) = f(x) for 
every x ∈ S.

Theorem 1. There exists a two-layer neural network with ReLU 
activations and 2n + d weights that can represent any function 
on a sample of size n in d dimensions.

The proof is given in Appendix C of Zhang et al.,44 where 
we also discuss how to achieve width O(n/k) with depth k. 
We remark that it is a simple exercise to give bounds on 
the weights of the coefficient vectors in our construction. 
Lemma 144 gives a bound on the smallest eigenvalue of the 
matrix A. This can be used to give reasonable bounds on the 
weight of the solution w.

5. IMPLICIT REGULARIZATION: AN APPEAL TO LINEAR 
MODELS
Although deep neural nets remain mysterious for many rea-
sons, we note in this section that it is not necessarily easy 
to understand the source of generalization for linear models 
either. Indeed, it is useful to appeal to the simple case of lin-
ear models to see if there are parallel insights that can help 
us better understand neural networks.

Suppose we collect n distinct data points {(xi, yi)} where xi 

Inception architecture uses a lot of batch normalization lay-
ers. To test the impact of batch normalization, we create a 
“Inception w/o BatchNorm” architecture that is exactly the 
same as Inception, except with all the batch normalization 
layers removed. Figure 2b compares the learning curves 
of the two variants of Inception on CIFAR10, with all the 
explicit regularizers turned off. The normalization operator 
helps stabilize the learning dynamics, but the impact on the 
generalization performance is only 3∼4%. The exact accu-
racy is also listed in the section “Inception w/o BatchNorm” 
of Table 1.

In summary, our observations on both explicit and 
implicit regularizers are consistently suggesting that regu-
larizers, when properly tuned, could help to improve the 
generalization performance. However, it is unlikely that the 
regularizers are the fundamental reason for generalization, 
as the networks continue to perform well after all the regu-
larizers removed.

4. FINITE-SAMPLE EXPRESSIVITY
Much effort has gone into characterizing the expressiv-
ity of neural networks, for example, Cybenko12, Mhaskar25, 
Delalleau and Bengio13, Mhaskar and Poggio24, Eldan and 
Shamir15, Telgarsky40, Cohen and Shashua11 Almost all of 
these results are at the “population level” showing what 
functions of the entire domain can and cannot be repre-
sented by certain classes of neural networks with certain 
number of parameters. For example, it is known that at the 
population level, depth k is generically more powerful than 
depth k − 1.

We argue that what is more relevant in practice is the 
expressive power of neural networks on a finite sample of 
size n. It is possible to transfer population level results to 
finite sample results using uniform convergence theorems. 
However, such uniform convergence bounds would require 
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Figure 2. Effects of implicit regularizers on generalization performance. aug is data augmentation; wd is weight decay; BN is batch 
normalization. The shaded areas are the cumulative best test accuracy, as an indicator of potential performance gain of early stopping.  
(a) Early stopping could potentially improve generalization when other regularizers are absent. (b) Early stopping is not necessarily helpful 
on CIFAR10, but batch normalization stabilizes the training process and improves the generalization.
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on a commodity workstation with 24 cores and 256 GB of 
RAM with a conventional LAPACK call. By first applying a 
Gabor wavelet transform to the data and then solving (3), the 
error on MNIST drops to 0.6%. Surprisingly, adding regular-
ization does not improve either model’s performance!

Similar results follow for CIFAR10. Simply applying 
a Gaussian kernel on pixels and using no regularization 
achieves 46% test error. By preprocessing with a random 
convolutional neural net with 32,000 random filters, this 
test error drops to 17% errorb. Adding 2 regularization fur-
ther reduces this number to 15% error. Note that this is with-
out any data augmentation.

Note that this kernel solution has an appealing interpre-
tation in terms of implicit regularization. Simple algebra 
reveals that it is equivalent to the minimum 2-norm solu-
tion of Xw = y. That is, out of all models that exactly fit the 
data, SGD will often converge to the solution with minimum 
norm. It is very easy to construct solutions of Xw = y that do 
not generalize: for example, one could fit a Gaussian kernel 
to data and place the centers at random points. Another sim-
ple example would be to force the data to fit random labels 
on the test data. In both cases, the norm of the solution is 
significantly larger than the minimum norm solution.

Unfortunately, this notion of minimum norm is not pre-
dictive of generalization performance. For example, return-
ing to the MNIST example, the 2-norm of the minimum 
norm solution with no preprocessing is approximately 
220. With wavelet preprocessing, the norm jumps to 390. 
Yet the test error drops by a factor of 2. So while this min-
imum-norm intuition may provide some guidance to new 
algorithm design, it is only a very small piece of the gener-
alization story.

6. CONCLUSION
In this work, we presented a simple experimental framework 
for interrogating purported measures of generalization. 
The experiments we conducted emphasize that the effective 
capacity of several successful neural network architectures 
is large enough to shatter the training data. Consequently, 
these models are in principle rich enough to memorize the 
training data. This situation poses a conceptual challenge to 
statistical learning theory as traditional measures of model 
complexity struggle to explain the generalization ability of 
large artificial neural networks. An important insight result-
ing from our experiments is that optimization continues 
to be empirically easy even if the resulting model does not 
generalize. What drives generalization therefore cannot be 
identical to what makes optimization of deep neural net-
works easy in practice, another important—yet, as we show, 
distinct—question.

The situation we find ourselves in bears semblance 
to where machine learning was in the 1960s. One of the 
first striking successes of machine learning dates back to 
Rosenblatt’s 1958 discovery of the Perceptron algorithm. 
In modern language, the Perceptron learns a linear func-
tion from labeled examples. Cycling through the data one 

is d-dimensional feature vectors and yi is labels. Letting loss 
denote a nonnegative loss function with loss(y, y) = 0, con-
sider the empirical risk minimization (ERM) problem

	 � (2)

If d ≥ n, then we can fit any labeling. But is it then possible 
to generalize with such a rich model class and no explicit 
regularization?

Let X denote the n × d data matrix whose i-th row is . If 
X has rank n, then the system of equations Xw = y has an infi-
nite number of solutions regardless of the right-hand side. 
We can find a global minimum in the ERM problem (2) by 
simply solving this linear system.

But do all global minima generalize equally well? Is there 
a way to determine when one global minimum will gener-
alize whereas another will not? One popular way to under-
stand quality of minima is the curvature of the loss function 
at the solution. But in the linear case, the curvature of all 
optimal solutions is the same.9 To see this, note that in the 
case when yi is a scalar,

where . A similar formula can be found when 
y is vector valued. In particular, the Hessian is not a function 
of the choice of w. Moreover, the Hessian is degenerate at all 
global optimal solutions.

If curvature does not distinguish global minima, what 
does? A promising direction is to consider the workhorse 
algorithm, stochastic gradient descent (SGD), and inspect 
which solution SGD converges to. Since the SGD update 
takes the form where ηi is the step size and 
et is the prediction error loss. If w0 = 0, we must have that the 
solution has the form  for some coefficients α. 
Hence, if we run SGD we have that w = XTα lies in the span of 
the data points. If we also perfectly interpolate the labels, we 
have Xw = y. Enforcing both of these identities, this reduces 
to the single equation

	 � (3)

which has a unique solution. Note that this equation only 
depends on the dot-products between the data points xi. We 
have thus derived the “kernel trick”34—albeit in a round-
about fashion.

We can therefore perfectly fit any set of labels by forming 
the Gram matrix (aka the kernel matrix) on the data K = XXT 
and solving the linear system Kα = y for α. This is an n × n 
linear system that can be solved on standard workstations 
whenever n is less than a hundred thousand, as is the case 
for small benchmarks like CIFAR10 and MNIST.

Quite surprisingly, fitting the training labels exactly 
yields excellent performance for convex models. On MNIST 
with no preprocessing, we are able to achieve a test error 
of 1.2% by simply solving Kα = y with a Gaussian kernel on 
the pixel representation. Note that this is not exactly sim-
ple as the kernel matrix requires 30 GB to store in memory. 
Nonetheless, this system can be solved in under 3 minutes 

b  This conv-net is the Coates and Ng10 net, but with the filters selected at ran-
dom instead of with k-means.
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design in many of those studies. Dedicated workshops 
on phenomena in deep learning are being organized in 
all major machine learning conferences nowadays. Even 
some theory conferences start to consider pure empirical 
studies that reveal “interesting and not well understood 
behavior”c in the call-for-papers. Thus, we are excited to 
see what happens in the next four years as well as excited 
to have highlighted some of the development over the past 
four years since we wrote the original manuscript.�

example at a time, whenever the Perceptron encounters an 
example where the sign of the linear function disagrees with 
the binary label, it nudges the coefficients of the linear func-
tion either toward or away from the example. Analysis from 
the 1960s provided generalization results for the Perceptron 
assuming that there was some solution out there that properly 
labeled all data we might ever see. An instance of the popular 
stochastic gradient method, the Perceptron, remains strik-
ingly similar to modern machine learning practice. Indeed, 
the results on linear models in Section 5 are effectively a gen-
eralization of the 60-year-old results on the Perceptron.

The primary difference between now and then is one of scale 
and complexity. In place of a simple linear function, we find 
intricate models that stack several nonlinear transformations, 
so-called layers, on top of each other. Each layer has its own 
set of trainable parameters. Such concatenation adds com-
plexity: we no longer get the beautiful convergence and gener-
alization theorems of the Perceptron. The classic Perceptron 
theory explained why overparameterized linear models might 
generalize in some special cases, but these results do not pro-
vide an explanation of the power of nonlinear models.

6.1. A partial survey of recent progress
The original version of this paper44 motivated a tremendous 
amount of new work on generalization that we cannot fully 
survey here. However, we will attempt to summarize some 
general trends.

Regarding our observation that conventional general-
ization bounds based on uniform convergence or uniform 
stability are inadequate for overparameterized deep neural 
networks, extensive efforts were made toward tighter gen-
eralization bounds (e.g., Kawaguchi et al.,19 Bartlett et al.,5 
Neyshabur et al.,28 Golowich et al.,17 Liang et al.20). In the 
PAC-Bayes setting, where the learning algorithm is allowed 
to output a distribution over parameters, new generaliza-
tion bounds were also derived.14, 29, 2, 46

Aligned with our observation that overparameterized 
deep networks generalize even without any explicit regular-
ization, and our analysis of implicit regularization in linear 
models, there is renewed interest in seeking to explain gen-
eralization in deep learning by characterizing the implicit 
regularization induced by the learning algorithms.37, 38, 35, 1

In-depth analysis on memorization of overparameterized 
models also extends our intuition on overfitting from the tra-
ditional U-shaped risk curve to the “double descent” risk curve. 
Specifically, in the overparameterized regime where the model 
capacity greatly exceeds the training set size, fitting all the train-
ing examples (i.e., interpolating the training set), including noisy 
ones, is not necessarily at odds with generalization.23, 7, 6, 16

Despite significant progress on theoretical understand-
ing of deep learning in the past few years, a full math-
ematical characterization of the whole story remains 
challenging. Since the original version of this paper,44 
much more work starts approaching the question of 
understanding deep learning using empirical studies, 
by designing systematic and principled experiments 
(e.g., Arpit et al.,3 Zhao et al.,45 Morcos et al.,26 Recht et 
al.,33 Toneva et al.41). The randomization test proposed 
in this paper serves as the backbone in the experimental 

c  Quoted from the call-for-papers of Algorithmic Learning Theory (ALT) 
2020.
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