
Journal of Machine Learning Research 23 (2022) 1-28 Submitted 1/20; Revised 2/22; Published 2/22

Are All Layers Created Equal?

Chiyuan Zhang CHIYUAN.ZH@GMAIL.COM
Google, Mountain View, CA

Samy Bengio BENGIO@GMAIL.COM
Apple, Cupertino, CA

Yoram Singer YORAM.SINGER@GMAIL.COM

Google, Mountain View, CA

Editor: Lorenzo Rosasco

Abstract
Understanding deep neural networks is a major research objective with notable experimental and
theoretical attention in recent years. The practical success of excessively large networks underscores
the need for better theoretical analyses and justifications. In this paper we focus on layer-wise
functional structure and behavior in overparameterized deep models. To do so, we study empirically
the layers’ robustness to post-training re-initialization and re-randomization of the parameters. We
provide experimental results which give evidence for the heterogeneity of layers. Morally, layers
of large deep neural networks can be categorized as either “robust” or “critical”. Resetting the
robust layers to their initial values does not result in adverse decline in performance. In many cases,
robust layers hardly change throughout training. In contrast, re-initializing critical layers vastly
degrades the performance of the network with test error essentially dropping to random guesses. Our
study provides further evidence that mere parameter counting or norm calculations are too coarse in
studying generalization of deep models, and “flatness” and robustness analysis of trained models
need to be examined while taking into account the respective network architectures.
Keywords: Deep Learning, Overparameterization, Robustness, Generalization, Understanding

1. Introduction

Deep neural networks have been remarkably successful in many real world machine learning
applications. The practical success of excessively large networks cannot be explained by the
classical wisdom of uniform convergence and learnability. In many critical applications, such as
self-driving vehicles and automatic medical diagnostics, distilled understanding of the systems can be
as important as achieving the state-of-the-art performance. One important question is on interpreting
and explaining the decision function of trained networks. It is closely related to another important
topic on networks’ generalization and robustness under drifting or even adversarially perturbed data
distribution. In this paper, we study how individual layers coordinate the computation in trained
neural network models, and relate the empirical results to generalization and robustness properties.

Theoretical research of the functions computed by neural networks dates back to the ’80s. It is
known that a neural network with a single (sufficiently wide) hidden layer is a universal approximator
for continuous functions over compact domains (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991;
Devroye et al., 2013; Györfi et al., 2006; Anthony and Bartlett, 2009). More recent research further
examines whether deep networks can have superior representation power than shallow ones with
the same number of units or edges (Pinkus, 1999; Delalleau and Bengio, 2011; Montufar et al.,

©2022 Chiyuan Zhang, Samy Bengio, Yoram Singer.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v23/20-069.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/20-069.html

ZHANG, BENGIO AND SINGER

2014; Telgarsky, 2016; Shaham et al., 2015; Eldan and Shamir, 2015; Mhaskar and Poggio, 2016;
Rolnick and Tegmark, 2017). The capacity to represent arbitrary functions on finite samples is
also extensively discussed (Hardt and Ma, 2017; Zhang et al., 2017; Nguyen and Hein, 2018; Yun
et al., 2018). However, the constructions used in the aforementioned work for building networks
approximating particular functions are typically “artificial” and are unlikely to be obtained by
gradient-based learning algorithms. We focus instead on empirically studying, post-training, the role
different layers take in representing a learned function by gradient-based methods.

Generalization is a fundamental theoretical question in machine learning. The recent observation
that big neural networks can fit random labels on the training set (Zhang et al., 2017) makes it difficult
to apply classical learning theoretic results based on uniform convergence over the hypothesis space.
One approach to get around this issue is to show that, while the space of neural networks of a given
architecture is huge, gradient-based learning on “well behaved” tasks leads to relatively “simple”
models. More recent research focuses on the analysis of the post-training complexity metrics such as
norm, margin, robustness, or flatness of the learned model in contrast to the pre-training capacity of
the entire hypothesis space. This line of work obtained sharper generalization bounds for for neural
networks (e.g. Kawaguchi et al., 2017; Bartlett et al., 2017; Neyshabur et al., 2017; Liang et al.,
2017). In another line of work, Belkin et al. show that overparameterization and perfectly fitting
the training set (i.e. interpolation) is not an issue for generalization (e.g. Belkin et al., 2018a,b,c;
Azizan et al., 2019). Further more, they argue that even norm-based generalization bounds could
become non-informative in the regime of interpolation. Our work provides further empirical evidence
and alludes to more fine-grained analysis. We propose that the layers in a deep network are not
homogeneous in the role they play at representing a predictor. Some layers are critical to forming
good predictions while others are robust as they are fairly insensitive to the assignment of their
weights during training. Thus, depending on the capacity of the network and the complexity of
the target function, gradient-based trained networks conserve the complexity by not using excess
capacity.

Before proceeding, we would like to further mention a few related papers. Modern neural
networks are typically overparameterized and thus redundant in their representations. Previous work
exploited overparameterization to compress (Han et al., 2015) or distill (Hinton et al., 2015) a trained
network. It is also shown that one can achieve comparable performance by training only a small
fraction of network parameters such as a subset of the channels in each convolutional layer (Rosenfeld
and Tsotsos, 2018). As a tool for interpreting residual networks as ensemble of shallow networks,
Veit et al. (2016) found that residual blocks in a trained network can be deleted or permuted to some
extent without degrading the test performance too much. Another line of research showed that under
extreme overparameterization, such as when the network width is polynomial in the training set
size and input dimension (Allen-Zhu et al., 2018; Du et al., 2018a,b; Zou et al., 2018), or even in
the asymptotic regime of infinite width (Jacot et al., 2018; Lee et al., 2019), the network weights
move slowly during training. We make similar observations in this paper. However, we find that in
more pragmatic settings (network widths in the order of thousands), different layers exhibit different
behaviors and the network cannot be treated in a monolithic way.

Notice that our work, as well as the literature cited above, focuses on conventional neural
networks, where the output of the optimization process is a single set of parameters computing
a deterministic function. There is an important, though less related, line of work that considers
stochastic neural networks where the output of the training process is a distribution over model
parameters. Under this setting, generalization bounds are derived with PAC-Bayes analysis (e.g.

2

ARE ALL LAYERS CREATED EQUAL?

Neyshabur et al., 2018; Arora et al., 2018; Zhou et al., 2019; Rivasplata et al., 2019), and in some
cases bounds with non-vacuous values can be computed numerically (e.g. Dziugaite and Roy, 2017;
Rivasplata et al., 2019). As will be shown in Section 6, the layer robustness properties identified in
this paper can be used to turn a deterministic model trained with the conventional methods into a
stochastic model.

The rest of the paper is organized as follows. Our experimental framework and notions of
robustness to modifications of layers are introduced in Section 2. Section 3 presents the results
and analysis of layer robustness for a wide range of neural network models. Section 4 presents
experiments with joint robustness. Section 5 shows the generalizability of the phenomenon in
alternative domains and architectures. In Section 6 we discuss connections to other notions of
robustness. Finally, the paper ends on Section 7 with a discussion and summarization of our main
contributions.

2. Setting

We focus on feed forward networks which consist of multiple layers where each unit in a layer
takes inputs from units in the previous layer. Let FD = {fθ : θ ∈ Θ1 × · · · ×ΘD} be the function
space of a (particular) neural network architecture with D (parametric) layers. Each admissible
θ is a list θ = (θ1, . . . , θD) with θd from Θd for all d ∈ [D]. We are interested in analyzing
post-training characteristics of layers used in popular deep networks. Such networks are typically
trained using stochastic gradient descent (SGD) which initialize the parameters θ0 = (θ0

1, . . . , θ
0
D)

by sampling from a pre-defined distribution Pd over Θd. The choice of Pd typically depends on
structural properties such as fan-in, and fan-out of each layer. In our experiments, we take the default
initialization schemes used in open source deep learning libraries. After training for T epochs, the
parameters of the last epoch θT = (θT1 , . . . , θ

T
D) are used as the final trained model.

In a classification neural network, the decision function fθT maps an input to a class from a finite
set of labels. Performance of the trained networks is measured in terms of the agreement between its
predicted labels and the true labels on a newly observed test set. Unless noted otherwise, we use
the term performance to designate the 0-1 classification accuracy. Our study of the layer structure
evaluates the performance along the trajectory θτ throughout the entire sequence of training epochs
τ ∈ [T].

Checkpointing. We save the model parameters at the end of every epoch τ ∈ [T] during training
and call the saved models checkpoints. Checkpoint-T consists of the parameters for the final model.
There is also a special checkpoint-0 containing random weights initialized before the training starts.

A deep network constructs a representation of its inputs by incrementally applying transfor-
mations defined by each layer. Each layer consists of a linear transformation on its inputs, matrix
multiplication, followed by nonlinear activation functions applied to the result of the matrix mul-
tiplication. Notable examples are the sigmoid and the Rectified Linear Unit (ReLU) activations.
As a result, the representation at a particular layer recursively depends on all the layers beneath.
This complex dependency makes it challenging to isolate and inspect each layer independently in
theoretical studies. In this paper, we introduce and use the following two empirical probes to inspect
the individual layers in a trained neural network.

Re-initialization. After training concludes, for each layer d ∈ [D] separately, we re-initialize its
parameters by assigning θTd ← θ0

d while keeping the rest of the parameters intact. We thus obtain D

3

ZHANG, BENGIO AND SINGER

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

layer1

layer2

layer3

layer4

fullmodel
0.2

0.4

0.6

0.8

(a) Test error

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

layer1

layer2

layer3

layer4
0.0
0.1
0.2
0.3
0.4
0.5
0.6

(b) ‖θτd − θ0d‖

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

layer1

layer2

layer3

layer4
0.0
0.1
0.2
0.3
0.4
0.5

(c) ‖θτd − θ0d‖∞

Figure 1: Robustness results for FCN 3× 256 on MNIST. (a) Test error rate: each row corresponds
to one layer in the network. As a reference, the last row corresponds to a full model with parameters
loaded from the corresponding checkpoint. The first column designates robustness of each layer
w.r.t re-randomization and the rest of the columns designate re-initialization robustness at different
checkpoints. The last column shows the performance of the final trained model (i.e. checkpoint-T)
for reference. (b-c) Weight distances: each cell in the heatmaps depicts the normalized 2-norm (b) or
∞-norm (c) distance of trained parameter vectors to their initial value.

different models where each model is of the form (θT1 , . . . , θ
T
d−1, θ

0
d, θ

T
d+1, . . . , θ

T
D). The models are

then evaluated on the test set. The relation of a layer to the effect on performance of re-initializing it
is referred to as the re-initialization robustness of the layer. Here θ0

d denotes the randomly initialized
values loaded from checkpoint-0. More generally, for each epoch τ ∈ [T], we can re-initialize the
d’th layer to its value on epoch τ through the assignment θTd ← θτd , and study the re-initialization
robustness of layer d w.r.t checkpoint-τ .

Re-randomization. As one step further, re-randomization of a layer d refers to assigning random
parameters θ̃d by re-sampling using the same distribution Pd used for the initialization of θ0

d,
namely θTd ← θ̃d, and evaluating (θT1 , . . . , θ

T
d−1, θ̃d, θ

T
d+1, . . . , θ

T
D). Analogously, re-randomization

robustness of a layer d is the relation of that layer to the effect on performance of re-randomizing it.
We emphasize that no re-training or fine-tuning is performed after a network is re-initialized/re-

randomized. When a network exhibits negligible1 decrease in performance after re-initializing or
re-randomizing of a layer, we say that the layer is robust and otherwise the layer is called critical.

3. Robustness of Individual Layers

The datasets we use in our robustness study are standard image classification benchmarks: MNIST,
CIFAR-10, and ImageNet. All networks were trained using SGD with momentum using a piecewise
constant learning rate schedule. See Appendix A for further details.

3.1 Fully Connected Networks

We start by examining the robustness of fully-connected networks (FCNs). A FCN D ×H consists
of D fully connected layers each of output dimension H followed by a ReLU activation function.
The additional final layer is a linear multiclass predictor with one output per class.

1. We do not quantify how much “negligible” is, as we believe there is no universal threshold across all models and tasks.
Our empirical results indicates that there is no or little ambiguity in categorizing layers due to the sharp difference in
performance of robust and critical layers.

4

ARE ALL LAYERS CREATED EQUAL?

We train an FCN 3×256 on MNIST and apply the re-initialization and re-randomization analysis
on the trained model. The results are shown in Fig. 1(a). As expected, due to the intricate dependency
of the classification function on each of the layers, re-randomizing any of the layers completely
disintegrates the representation and classification accuracy drops to the level of random guessing.
For re-initialization, however, while the first layer is very sensitive the rest of the layers are robust to
re-initialization.

A plausible explanation for this could be attributed to that the increase in gradient norms during
back-propagation such that the bottom layers are being updated more aggressively than the top
ones. However, if this were the case, we would expect a smoother transition instead of a sharp
one at the first layer. Furthermore, we measured how distant the weights of each layer are from
their initialization (“checkpoint-0”) using both the 2-norm (divided by square root of the dimension)
and the∞-norm. The results are shown in Fig. 1 parts (b) and (c), respectively. We can see that
robustness to re-initialization is not plainly correlated with either of the distances. This suggests that
there might be something more intricate going on than simple gradient expansion. We informally
summarize the observations as follows,

Over-capacitated deep networks trained with stochastic gradient descent have low-
complexity by a self-restriction of the number of critical layers.

Intuitively, if a subset of parameters can be re-initialized to the random values at checkpoint-0
(which are independent of the training data), then the the complexity of the model can be reduced.
See the discussions in Section 7 for more details.

We apply the same analysis framework to a large number of different FCN architectures to assess
the influence of the network capacity and the task complexity on the layer robustness. In Fig. 2(a),
we compare the average re-initialization robustness for all layers but the first with respect to FCNs
3×H and 5×H of varying hidden dimensions (H) on MNIST. It is clear that the top layers become
more robust as the hidden dimension increases. We believe that it reflects the fact that wider FCNs
have higher capacity. When the capacity is small, all layers are vigil participants in representing the
prediction function. As the capacity increases, it suffices to use the bottom layer while the rest act as
random projections with non-linearities.

Similarly, Fig. 2(b) shows experiments on CIFAR-10, which has the same number of classes
and comparable number of training examples as MNIST yet it poses a more difficult learning task.
Similar traits are observed as the hidden dimensions increase, though not as pronounced as in MNIST.
Informally put, the difficulty of the learning task seems to necessitate more diligence of the layers in
forming accurate predictors.

The empirical results of this section provide some evidence that deep networks trained with SGD
automatically adjust their capacity. When a large network is trained on an easy task, only a few
layers seem to be playing a critical role.

3.2 Large Convolutional Networks

In typical computer vision tasks beyond elementary problems such as MNIST, densely connected
FCNs are significantly outperformed by convolutional neural networks. VGGs (Simonyan and
Zisserman, 2014) and ResNets (He et al., 2016a,b) are two widely used convolutional network
architectures. Fig. 3 and Fig. 4 show the robustness results on CIFAR-10 with the two architectures.
Since the networks are much deeper than the FCNs of the previous section, we transpose the heatmaps

5

ZHANG, BENGIO AND SINGER

16 32 64 128 256 512
hidden dimensions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 FCN 3xH FCN 5xH

A
ve

ra
ge

te
st

er
ro

r

(a) MNIST

16 32 64 128 256 512
hidden dimensions

0.5

0.6

0.7

0.8 FCN 3xH FCN 5xH

(b) CIFAR10

Figure 2: Average re-initialization robustness to checkpoint-0 for all layers but the first for
FCNs. Each bar designates the difference in classification error between a model with one layer
re-initialized (top of bar) and the same model without weight modification (bottom of bar). The
error-bars designate one standard deviation obtained by running five experiments with different
random initializations.

stage1.block1

stage2.block1

stage3.block1

stage3.block2

stage4.block1

stage4.block2

stage5.block1

stage5.block2 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) VGG-11

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage3.block4

stage4.block1

stage4.block2

stage4.block3

stage4.block4

stage5.block1

stage5.block2

stage5.block3

stage5.block4 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) VGG-19
stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage4.block1

stage4.block2

stage5.block1

stage5.block2 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) VGG-13

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) VGG-16

Figure 3: Robustness for VGG networks on CIFAR-10. Heatmaps use the same layout as in Fig. 1
after being transposed to visualize the deeper architecture more effectively.

and now a column designates a layer. For VGGs, more layers are sensitive to re-initialization, yet the
characteristics are similar to the observations from the simple FCNs on MNIST: bottom layers are
evidently more sensitive than the top layers to re-initialization.

The results for ResNets in Fig. 4 are to be considered together with results on ImageNet in Fig. 5.
We found the robustness structure for ResNets to be more interesting for the reasons below.

ResNets re-distribute critical layers. Unlike FCN and VGG networks for which the critical
layers are at the bottom of the network, ResNets sprinkles critical layers throughout the entire
depth. To better understand the patterns, let us briefly recap ResNet’s architecture. In practice,
a ResNet is divided into “stages”. At the bottom, there is a pre-processing stage (stage0) with
vanilla convolutional layers. It is followed by a few (typically 4) residual stages consisting of
multiple residual blocks, and lastly a global average pooling operator followed by a linear classifier

6

ARE ALL LAYERS CREATED EQUAL?

stage0

stage1.resblk1

stage1.resblk2

stage2.resblk1

stage2.resblk2

stage3.resblk1

stage3.resblk2

stage4.resblk1

stage4.resblk2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) ResNet-18

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) ResNet-50

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage3.resblk7

stage3.resblk8

stage3.resblk9

stage3.resblk10

stage3.resblk11

stage3.resblk12

stage3.resblk13

stage3.resblk14

stage3.resblk15

stage3.resblk16

stage3.resblk17

stage3.resblk18

stage3.resblk19

stage3.resblk20

stage3.resblk21

stage3.resblk22

stage3.resblk23

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet-101
stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage2.resblk5

stage2.resblk6

stage2.resblk7

stage2.resblk8

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage3.resblk7

stage3.resblk8

stage3.resblk9

stage3.resblk10

stage3.resblk11

stage3.resblk12

stage3.resblk13

stage3.resblk14

stage3.resblk15

stage3.resblk16

stage3.resblk17

stage3.resblk18

stage3.resblk19

stage3.resblk20

stage3.resblk21

stage3.resblk22

stage3.resblk23

stage3.resblk24

stage3.resblk25

stage3.resblk26

stage3.resblk27

stage3.resblk28

stage3.resblk29

stage3.resblk30

stage3.resblk31

stage3.resblk32

stage3.resblk33

stage3.resblk34

stage3.resblk35

stage3.resblk36

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet-152

Figure 4: Robustness for residual blocks of ResNets trained on CIFAR-10.

(final linear). The image size halves and the number of convolution channels doubles from
each residual stage to the next.2. As a result, while most of the residual blocks have identity skip
connections, the first block of each stage (stage*.resblk1), which is connected to the last block of
the previous stage, has a non-identity skip connection due to different input-output shapes. Fig. 10 in
the Appendix illustrates the two types of residual blocks. In our robustness analysis, we can interpret
each stage of a ResNet as a sub-network, with characteristics of layer robustness within each stage
similar to VGGs or FCNs.

Residual blocks show robustness to re-randomization. Among the layers that are robust to
re-initialization, if the layer is a residual block, it is also robust to re-randomization, which stands
in contrast to the final linear layer. This could be potentially attributed to that the responses for
identity skip connections attain larger values than those of the residual branches. Thus, when summed
together residual branches played a less significant role. It is known from prior research (Veit et al.,
2016) that residual blocks in a ResNet can be removed without substantially hurting accuracy. Our
experiments have a different focus as we study robustness in the light of the interplay between
model capacity and the difficulty of the learning task. In particular, comparing the results on the two
different datasets, especially on smaller ResNets (e.g. ResNet-18), many residual blocks with real
identity skip connection also become sensitive in the more difficult ImageNet task.

2. There are more subtle details which we omit, especially at stage1 that depend on the input size, whether residual
blocks contain a bottleneck, etc.

7

ZHANG, BENGIO AND SINGER

stage0

stage1.resblk1

stage1.resblk2

stage2.resblk1

stage2.resblk2

stage3.resblk1

stage3.resblk2

stage4.resblk1

stage4.resblk2

final_linear
fullmodel

ReRnd

0

1

10

100 0.5

0.6

0.7

0.8

0.9

(a) ResNet-18

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4

0.5

0.6

0.7

0.8

0.9

(b) ResNet-50

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage3.resblk7

stage3.resblk8

stage3.resblk9

stage3.resblk10

stage3.resblk11

stage3.resblk12

stage3.resblk13

stage3.resblk14

stage3.resblk15

stage3.resblk16

stage3.resblk17

stage3.resblk18

stage3.resblk19

stage3.resblk20

stage3.resblk21

stage3.resblk22

stage3.resblk23

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet-101
stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage2.resblk5

stage2.resblk6

stage2.resblk7

stage2.resblk8

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage3.resblk7

stage3.resblk8

stage3.resblk9

stage3.resblk10

stage3.resblk11

stage3.resblk12

stage3.resblk13

stage3.resblk14

stage3.resblk15

stage3.resblk16

stage3.resblk17

stage3.resblk18

stage3.resblk19

stage3.resblk20

stage3.resblk21

stage3.resblk22

stage3.resblk23

stage3.resblk24

stage3.resblk25

stage3.resblk26

stage3.resblk27

stage3.resblk28

stage3.resblk29

stage3.resblk30

stage3.resblk31

stage3.resblk32

stage3.resblk33

stage3.resblk34

stage3.resblk35

stage3.resblk36

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet-152

Figure 5: Robustness analysis for residual blocks of ResNets trained on ImageNet.

 stage0

 stage1.resblk1

*stage1.resblk2

*stage1.resblk3

 stage2.resblk1

*stage2.resblk2

*stage2.resblk3

*stage2.resblk4

*stage2.resblk5

*stage2.resblk6

*stage2.resblk7

*stage2.resblk8

 stage3.resblk1

*stage3.resblk2

*stage3.resblk3

*stage3.resblk4

*stage3.resblk5

*stage3.resblk6

*stage3.resblk7

*stage3.resblk8

*stage3.resblk9

*stage3.resblk10

*stage3.resblk11

*stage3.resblk12

*stage3.resblk13

*stage3.resblk14

*stage3.resblk15

*stage3.resblk16

*stage3.resblk17

*stage3.resblk18

*stage3.resblk19

*stage3.resblk20

*stage3.resblk21

*stage3.resblk22

*stage3.resblk23

*stage3.resblk24

*stage3.resblk25

*stage3.resblk26

*stage3.resblk27

*stage3.resblk28

*stage3.resblk29

*stage3.resblk30

*stage3.resblk31

*stage3.resblk32

*stage3.resblk33

*stage3.resblk34

*stage3.resblk35

*stage3.resblk36

 stage4.resblk1

*stage4.resblk2

*stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) ResNet152: resblk2, 3, . . .

 stage0

 stage1.resblk1

*stage1.resblk2

 stage1.resblk3

 stage2.resblk1

*stage2.resblk2

 stage2.resblk3

*stage2.resblk4

 stage2.resblk5

*stage2.resblk6

 stage2.resblk7

*stage2.resblk8

 stage3.resblk1

*stage3.resblk2

 stage3.resblk3

*stage3.resblk4

 stage3.resblk5

*stage3.resblk6

 stage3.resblk7

*stage3.resblk8

 stage3.resblk9

*stage3.resblk10

 stage3.resblk11

*stage3.resblk12

 stage3.resblk13

*stage3.resblk14

 stage3.resblk15

*stage3.resblk16

 stage3.resblk17

*stage3.resblk18

 stage3.resblk19

*stage3.resblk20

 stage3.resblk21

*stage3.resblk22

 stage3.resblk23

*stage3.resblk24

 stage3.resblk25

*stage3.resblk26

 stage3.resblk27

*stage3.resblk28

 stage3.resblk29

*stage3.resblk30

 stage3.resblk31

*stage3.resblk32

 stage3.resblk33

*stage3.resblk34

 stage3.resblk35

*stage3.resblk36

 stage4.resblk1

*stage4.resblk2

 stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) ResNet152: every second resblk

Figure 6: Joint robustness of ResNet152 on CIFAR-10. Jointly re-initialized/re-randomized group
of layers are indicated with * over the layer name and are also printed in blue for easy identification.

4. Joint Robustness

Empirical results we presented thus far focus on individual layer robustness. We next explore joint
robustness of multiple layers through simultaneous re-initialization or re-randomization.

We divide the layers into two groups and perform robustness experiments with each group. For
ResNets, we put all but the first residual blocks of all stages into one group and jointly re-initialize or
re-randomize all the layers in the group. Fig. 6(a) demonstrates that even though each of these layers
are all individually robust, as a group they are not jointly robust. However, a different grouping
scheme shown in Fig. 6(b) demonstrates that robustness can be significantly improved when jointly
resetting about half of the layers for this ResNet architecture. See Appendix B for more details.

8

ARE ALL LAYERS CREATED EQUAL?

Table 1: Error rates(%) on CIFAR-10 (top) and ImageNet (bottom). Each row reports the
performance of a full model, average individual layer robustness to re-initialization (mean±std),
partially trained models with a subset of the layers frozen to their initial values, and partially trained
model after removing a subset of the layers. Individual layer robustness is measured separately and
averaged across all but the first residual blocks of all stages. Layer-freezing and layer-removal are
jointly applied to the same set of residual blocks.

Arch Full Model Individual Layer Robustness Layers Frozen Layers Removed
(Average) (Jointly) (Jointly)

C
IF

A
R

-1
0 ResNet50 8.40 9.77±1.38 11.74 9.23

ResNet101 8.53 8.87±0.50 9.21 9.23
ResNet152 8.54 8.74±0.39 9.17 9.23

Im
ag

eN
et ResNet50 34.74 38.54±5.36 44.36 41.50

ResNet101 32.78 33.84±2.10 36.03 41.50
ResNet152 31.74 32.42±1.55 35.75 41.50

Note that SGD fits the model with the aforementioned jointly robust structure without explicit
constraints. We next examine if explicit constraints could improve joint robustness. Concretely, we
experiment with two approaches: (i) We freeze layers at their random initialization and refrain from
training all frozen layers; (ii) We remove layers from the network. Both operations are applied to the
groups described above excluding again the first residual block of each stage.

The results are given in Table 1. When we freeze layers, the resulting error is higher than that of
the average individual layer robustness measured in a normally trained model. However, the gap is
much smaller than when directly assessing the joint robustness. Moreover, on CIFAR-10, we find
that similar performance can be achieved even if we entirely remove those layers from the network.
In contrast, for ImageNet layer removal results in a significant drop in performance. In this case,
random projections followed by non-linear activations conducted by frozen layers deem necessary to
maintain accuracy.

5. Other Architectures and Domains

In this section, we study the generalizability of the layer robustness phenomenon by extending the
evaluation to a different domain (language modeling) and different model families (convolution-free
architectures). We find the results corroborate the key observations made earlier in this paper.

5.1 Transformer Based Neural Language Models

We consider a 12-layer decoder-only (Liu et al., 2018) Transformer (Vaswani et al., 2017) based
neural language model, more specifically, the decoder-only version of the T5-Base (Raffel et al.,
2020) model. It has 112,242,480 parameters. We train it on the LM1B (Chelba et al., 2013) dataset,
which is a popular benchmark corpus for language modeling with 30,301,028 training examples

9

ZHANG, BENGIO AND SINGER

0.0 0.2 0.4
embedding
blk00/layernorm0
blk00/attn/key
blk00/attn/out
blk00/attn/query
blk00/attn/value
blk00/layernorm1
blk00/mlp/dense0
blk00/mlp/dense1
blk01/layernorm0
blk01/attn/key
blk01/attn/out
blk01/attn/query
blk01/attn/value
blk01/layernorm1
blk01/mlp/dense0
blk01/mlp/dense1
blk02/layernorm0
blk02/attn/key
blk02/attn/out
blk02/attn/query
blk02/attn/value
blk02/layernorm1
blk02/mlp/dense0
blk02/mlp/dense1
blk03/layernorm0
blk03/attn/key
blk03/attn/out
blk03/attn/query
blk03/attn/value
blk03/layernorm1
blk03/mlp/dense0
blk03/mlp/dense1
blk04/layernorm0
blk04/attn/key
blk04/attn/out
blk04/attn/query
blk04/attn/value
blk04/layernorm1
blk04/mlp/dense0
blk04/mlp/dense1
blk05/layernorm0
blk05/attn/key
blk05/attn/out
blk05/attn/query
blk05/attn/value
blk05/layernorm1
blk05/mlp/dense0
blk05/mlp/dense1
blk06/layernorm0
blk06/attn/key
blk06/attn/out
blk06/attn/query
blk06/attn/value
blk06/layernorm1
blk06/mlp/dense0
blk06/mlp/dense1
blk07/layernorm0
blk07/attn/key
blk07/attn/out
blk07/attn/query
blk07/attn/value
blk07/layernorm1
blk07/mlp/dense0
blk07/mlp/dense1
blk08/layernorm0
blk08/attn/key
blk08/attn/out
blk08/attn/query
blk08/attn/value
blk08/layernorm1
blk08/mlp/dense0
blk08/mlp/dense1
blk09/layernorm0
blk09/attn/key
blk09/attn/out
blk09/attn/query
blk09/attn/value
blk09/layernorm1
blk09/mlp/dense0
blk09/mlp/dense1
blk10/layernorm0
blk10/attn/key
blk10/attn/out
blk10/attn/query
blk10/attn/value
blk10/layernorm1
blk10/mlp/dense0
blk10/mlp/dense1
blk11/layernorm0
blk11/attn/key
blk11/attn/out
blk11/attn/query
blk11/attn/value
blk11/layernorm1
blk11/mlp/dense0
blk11/mlp/dense1
pred

E20 -> Rand

0.0 0.2 0.4

E20 -> E0

0.0 0.2 0.4

E20 -> E1

0.0 0.2 0.4

E20 -> E2

0.0 0.2 0.4

E20 -> E5

0.0 0.2 0.4

E20 -> E10

0.0 0.2 0.4

E20 -> E15

0.0 0.2 0.4

E20 -> E20

Figure 7: Robustness results of Transformer-based neural language model trained on LM1B.
The robustness is measured with average per-token accuracy on the validation set. The i-th row
of each block shows the model performance after re-initializing the i-th layer to the checkpoint
designated on the block title. The first block shows re-randomization results. This model is trained
for 20 epochs, so the last block (E20→ E20) shows the performance of the un-modified full model
as a reference.

(around one billion words). We use the SentencePiece3 tokenizer with a vocabulary size of 30,000.
We train the model with Adam optimizer (Kingma and Ba, 2015) for 20 epochs.

3. https://github.com/google/sentencepiece.

10

https://github.com/google/sentencepiece

ARE ALL LAYERS CREATED EQUAL?

We then measure the robustness of this model on the validation set with the average per-token
accuracy. Figure 7 show the results for re-randomization, and re-initialization to epoch 0, 1, 2, 5,
10, 15 and 20, respectively. The results for re-randomization and re-initialization to epoch-0 look
very similar, except for the embedding and the pred layers. Note the pred layer performs a 30,000
way classification to predict the next token. This is consistent with our earlier observation comparing
CIFAR-10 and ImageNet that the final prediction layer is only robust when the number of classes is
small. In a language model, the embedding layer maps each of the 30,000 input tokens to a dense
embedding vector, and in some architectures it simply shares weights with the pred layer.

The overall trend that higher layers are more robust than lower layers still holds. But we also
see some patterns unique to the transformer architecture. For example, the layer normalization (Ba
et al., 2016) layers are generally not robust. The first dense layer in each of the MLP block is also
sensitive to re-initialization or re-randomization. On the other hand, the second dense layer in each
MLP block, as well as all the components in the attention blocks are generally robust (except for
block00/*).

Another interesting difference comparing to the vision experiments is that many of the unrobust
layers become robust after only one epoch of training. This is likely due the much larger training set
sizes in the text domain.

5.2 Convolution-Free Architectures for Computer Vision

In this section, we provide preliminary studies for two new neural network architectures in computer
vision that achieve the state-of-the-art performance in image classification benchmarks without using
convolution layers. In particular, we consider the attention (Vaswani et al., 2017) based Vision
Transformers (ViTs, Dosovitskiy et al., 2021) and the MLP based MLP-Mixers (Tolstikhin et al.,
2021). We use the publicly released pre-trained checkpoints4 that are trained for ImageNet. Since
two variants of ImageNet datasets (Deng et al., 2009) were used when training those models, in this
subsection, we will spell out the variants as ImageNet-21k — the larger dataset containing 21,000
classes and 14M training images, and ImageNet-1k — the smaller dataset containing 1,000 classes
and 1.2M training images. In particular, ImageNet-1k is the same as the “standard” ImageNet dataset
used in the rest of this paper.

We run robustness evaluation on the ImageNet-1k validation set. We use checkpoints that can
be directly evaluated on ImageNet-1k. In particular, for ViTs, we have access to checkpoints that
are pre-trained on ImageNet-21k and then finetuned on ImageNet-1k. We evaluate two variants:
ViT-B/16 (86,567,656 parameters) and ViT-L/16 (304,326,632 parameters). For MLP-Mixers, we
have access to checkpoints that are directly trained on ImageNet-1k. We also evaluate two variants:
Mixer-B/16 (59,880,472 parameters) and Mixer-L/16 (208,196,168 parameters). Additionally, several
new checkpoints trained with the Sharpness-Aware Minimization (SAM, Foret et al., 2021) became
available recently. We include ViT-B/16-sam, ViT-L/16-sam and Mixer-B/16- in the comparisons
(Mixer-L/16-sam checkpoint is not available). All the SAM optimized models are directly trained on
ImageNet-1k. Since we do not have access to the original training pipeline and earlier checkpoints,
we only perform re-randomization tests on those models.

Figure 8 shows the results for ViTs. The ViT architectures are based on the Transformer
models for text processing, and we observe the layer robustness patterns are similar to the results on
Transformer based language models in Figure 7: the attention related layers and the second dense

4. https://github.com/google-research/vision transformer.

11

https://github.com/google-research/vision_transformer

ZHANG, BENGIO AND SINGER

0.0 0.2 0.4 0.6 0.8
embedding
cls/token
blk00/layernorm0
blk00/attn/key
blk00/attn/out
blk00/attn/query
blk00/attn/value
blk00/layernorm1
blk00/mlp/dense0
blk00/mlp/dense1
blk01/layernorm0
blk01/attn/key
blk01/attn/out
blk01/attn/query
blk01/attn/value
blk01/layernorm1
blk01/mlp/dense0
blk01/mlp/dense1
blk02/layernorm0
blk02/attn/key
blk02/attn/out
blk02/attn/query
blk02/attn/value
blk02/layernorm1
blk02/mlp/dense0
blk02/mlp/dense1
blk03/layernorm0
blk03/attn/key
blk03/attn/out
blk03/attn/query
blk03/attn/value
blk03/layernorm1
blk03/mlp/dense0
blk03/mlp/dense1
blk04/layernorm0
blk04/attn/key
blk04/attn/out
blk04/attn/query
blk04/attn/value
blk04/layernorm1
blk04/mlp/dense0
blk04/mlp/dense1
blk05/layernorm0
blk05/attn/key
blk05/attn/out
blk05/attn/query
blk05/attn/value
blk05/layernorm1
blk05/mlp/dense0
blk05/mlp/dense1
blk06/layernorm0
blk06/attn/key
blk06/attn/out
blk06/attn/query
blk06/attn/value
blk06/layernorm1
blk06/mlp/dense0
blk06/mlp/dense1
blk07/layernorm0
blk07/attn/key
blk07/attn/out
blk07/attn/query
blk07/attn/value
blk07/layernorm1
blk07/mlp/dense0
blk07/mlp/dense1
blk08/layernorm0
blk08/attn/key
blk08/attn/out
blk08/attn/query
blk08/attn/value
blk08/layernorm1
blk08/mlp/dense0
blk08/mlp/dense1
blk09/layernorm0
blk09/attn/key
blk09/attn/out
blk09/attn/query
blk09/attn/value
blk09/layernorm1
blk09/mlp/dense0
blk09/mlp/dense1
blk10/layernorm0
blk10/attn/key
blk10/attn/out
blk10/attn/query
blk10/attn/value
blk10/layernorm1
blk10/mlp/dense0
blk10/mlp/dense1
blk11/layernorm0
blk11/attn/key
blk11/attn/out
blk11/attn/query
blk11/attn/value
blk11/layernorm1
blk11/mlp/dense0
blk11/mlp/dense1
repr/layernorm
pred
none

ViT-B/16

0.0 0.2 0.4 0.6 0.8

ViT-B/16-sam

0.0 0.2 0.4 0.6 0.8

ViT-L/16

0.0 0.2 0.4 0.6 0.8

ViT-L/16-sam

Figure 8: Re-randomization robustness for Vision Transformers (ViTs), measured by vali-
dation accuracy on ImageNet-1k. The first row (none) is the full model performance without
re-randomization.

layer of MLP blocks (mlp/dense1) are generally robust, especially for higher up blocks. We do find
more layers (e.g. mlp/dense0) robust here. Comparing among the variants, we find that the larger
ViT-L/16 model is generally more robust than the smaller ViT-B/16 model for most layers, except for
some layernorm layers the reverse is true. This makes the gap between the robust and non-robust
layers more pronounced in the larger model. Comparing each ViT variant with its SAM-optimized
version, we see that the SAM optimizer generally improves the robustness for ViT-B/16, and for
ViT-L/16 it has an additional effect of making some higher-up layernorm layers even less robust,

12

ARE ALL LAYERS CREATED EQUAL?

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

embedding
blk00/layernorm0
blk00/tkmix/dense0
blk00/tkmix/dense1
blk00/layernorm1
blk00/chmix/dense0
blk00/chmix/dense1
blk01/layernorm0
blk01/tkmix/dense0
blk01/tkmix/dense1
blk01/layernorm1
blk01/chmix/dense0
blk01/chmix/dense1
blk02/layernorm0
blk02/tkmix/dense0
blk02/tkmix/dense1
blk02/layernorm1
blk02/chmix/dense0
blk02/chmix/dense1
blk03/layernorm0
blk03/tkmix/dense0
blk03/tkmix/dense1
blk03/layernorm1
blk03/chmix/dense0
blk03/chmix/dense1
blk04/layernorm0
blk04/tkmix/dense0
blk04/tkmix/dense1
blk04/layernorm1
blk04/chmix/dense0
blk04/chmix/dense1
blk05/layernorm0
blk05/tkmix/dense0
blk05/tkmix/dense1
blk05/layernorm1
blk05/chmix/dense0
blk05/chmix/dense1
blk06/layernorm0
blk06/tkmix/dense0
blk06/tkmix/dense1
blk06/layernorm1
blk06/chmix/dense0
blk06/chmix/dense1
blk07/layernorm0
blk07/tkmix/dense0
blk07/tkmix/dense1
blk07/layernorm1
blk07/chmix/dense0
blk07/chmix/dense1
blk08/layernorm0
blk08/tkmix/dense0
blk08/tkmix/dense1
blk08/layernorm1
blk08/chmix/dense0
blk08/chmix/dense1
blk09/layernorm0
blk09/tkmix/dense0
blk09/tkmix/dense1
blk09/layernorm1
blk09/chmix/dense0
blk09/chmix/dense1
blk10/layernorm0
blk10/tkmix/dense0
blk10/tkmix/dense1
blk10/layernorm1
blk10/chmix/dense0
blk10/chmix/dense1
blk11/layernorm0
blk11/tkmix/dense0
blk11/tkmix/dense1
blk11/layernorm1
blk11/chmix/dense0
blk11/chmix/dense1
repr/layernorm
pred
none

Mixer-B/16

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mixer-B/16-sam

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mixer-L/16

Figure 9: Re-randomization robustness for MLP-Mixers, measured by validation accuracy on
ImageNet-1k. The first row (none) is the full model performance without re-randomization.

further enlarging the gap. Figure 9 shows the results for MLP-Mixers. The overall patterns are
similar to that of the ViTs.

6. Connections to Other Notions of Robustness

Layer robustness to re-initialization and re-randomization can be related to other notions of robustness
in deep learning. For example, flatness refers to robustness to local perturbations of the network’s
parameters close to a converged model, and is extensively discussed in the context of generalization
(Hochreiter and Schmidhuber, 1997; Chaudhari et al., 2017; Keskar et al., 2017; Smith and Le, 2018;

13

ZHANG, BENGIO AND SINGER

Poggio et al., 2018). For a fixed layer, our notion of robustness to re-initialization is restricted to the
training trajectory, which could potentially take the form of a non-local perturbation. Robustness
to re-randomization allows for larger variances of perturbations of the trained parameters. As our
study shows, robustness seems to be layer-dependent, thus analyzing layers individually for specific
network architectures enables us to obtain more refined insights into robustness.

In contrast, adversarial robustness (Szegedy et al., 2013) focuses on robustness to perturbations of
the input. In particular, it was found that deep networks are sensitive to small adversarial perturbations
which yield prediction shifts to arbitrary classes. A large number of defense and attack algorithms
have been proposed in recent years. Here we briefly discuss the connection to adversarial robustness.
Take a standard ResNet with S stages of (B1, . . . , BS) residual blocks in each stage. At test time, we
turn it into a randomized classifier by selecting at random a subset of s ∈ {0, 1, . . . , S} stages, and
replacing at random a residual block from each of the selected stages with one of the r pre-initialized
weights of its layer. We keep r pre-allocated weights for each residual block instead of re-sampling
at random on each evaluation call, primarily to reduce computation during the testing.

From the robustness analysis of previous sections, we expect randomized classifiers to exhibit
only a small drop in average performance. However, at the individual example level, randomization
of the network’s outputs would make it harder for an attacker to generate adversarial examples. We
evaluate the adversarial robustness against a weak FGSM (Goodfellow et al., 2014) attack and a strong
PGD (Madry et al., 2017) attack. The results in Table 2 show that compared to the baseline (identical
model without output randomization), output randomization significantly improves robustness to
weak FGSM attacks. The performances under strong PGD attack drops sharply yet it is still an order
of magnitude better than the baseline. The results relate layer robustness to adversarial robustness, but
it does not imply randomization via robust layers provides strong adversarial robustness, especially
under attacks that are specifically designed with such randomization in mind (Athalye et al., 2018).

To recap, layer robustness can guard a trained model from attack by injecting randomization.
However, robustness per se does not provide sufficient defense against strong attacks. More sophis-
ticated attacks that explicitly deal with non-deterministic classifiers could completely render the
approach unusable.

7. Discussion

Excessive overparameterization of modern neural network architectures renders conventional gener-
alization bounds based on capacity estimation of the entire hypothesis space unusable. Alternative
approaches try to identify nice properties such as bounds on the parameter norms of the models
trained with specific algorithms (e.g. SGD) on well behaved data, and derive tighter generalization
bounds based on those properties. Our experiments provide useful evidence for deriving tighter
generalization bounds via fine grained analysis of layer behaviors.

For example, Chatterji et al. (2020) formulated a notion of module criticality based on our
observation of the dichotomy between critical and robust neural network layers, and derived PAC-
Bayes generalization bounds. We briefly present their theoretical results below.

Definition 1 (Module and Network Criticality (Chatterji et al., 2020)) Given an ε > 0 and net-
work fΘ, we define the module criticality for module i as follows:

µi,ε(fΘ) = min
0≤αi,σi≤1

{
α2
i ‖θFi − θ0

i ‖2Fr

σ2
i

: Eu∼N (0,σ2
i)[LS(fθαi +u,ΘF−i

)] ≤ ε
}
, (1)

14

ARE ALL LAYERS CREATED EQUAL?

Table 2: Accuracy(%) of various model configurations on clean CIFAR-10 test set, under weak
(FGSM), and strong (PGD) adversarial attack. Adversarial attacks are evaluated on a subset of
1000 test examples. Every experiment is repeated 5 times and the average performance is reported.
The hyperparameters r and s in model configurations correspond to the number of random weights
pre-set for each residual block, and the number of stages that are re-randomized during each inference
step. Here ResN(42) designates an architecture with two stages, each stage of four residual blocks.
Similarly, ResN(44) has four stages each with four residual blocks.

Model Configuration Clean FGSM PGD

ResN(42)
baseline 91.05± 0.00 12.75± 0.04 0.33± 0.16
r=4,s=1 89.45± 0.13 69.85± 1.60 6.71± 0.37
r=4,s=2 87.70± 0.25 71.18± 0.49 9.65± 0.27

ResN(44)

baseline 90.08± 0.00 8.45± 0.00 0.00± 0.00
r=4,s=1 89.64± 0.12 62.76± 1.09 2.60± 0.26
r=4,s=2 89.13± 0.13 67.20± 0.63 3.56± 0.48
r=4,s=4 88.24± 0.18 69.09± 1.59 5.60± 0.53

We also define the network criticality as the sum of the module criticality over modules of the network:

µε(fΘ) =
d∑
i=1

µi,ε(fΘ). (2)

Here LS denotes the zero-one training loss. θ0
i , θ

F
i indicate the randomly initialized and final trained

value of the weight matrix of module i. θαi = (1− α)θ0
i + αθFi is a convex combination of the two.

fθαi ,ΘF−i
is the final trained neural network where the weight of its i-th module is replaced with θαi .

Intuitively, a robust layer could satisfy the condition in (1) with near-zero α, therefore has a low
criticality value.

Theorem 2 (Chatterji et al. (2020)) For any data distribution D, number of samples m ∈ N, for
any 0 < δ < 1, for any 0 < σi ≤ 1 and any 0 ≤ αi ≤ 1, with probability 1− δ over the choice of
the training set Sm ∼ D the following generalization bound holds:

EU [LD(fΘα+U)] ≤ EU [LS(fΘα+U)] +

√√√√ 1
4

∑d
i=1 ki log

(
1 +

α2
i ‖θFi −θ0i ‖2Fr
kiσ2

i

)
+ log(mδ) + Õ(1)

m− 1
,

(3)
where ki is the number of parameters in module i. Θα indicate the network with the weights of each
module i replaced with θαii , where α = (αi)

d
i=1.

This PAC-Bayes bound characterize perturbed networks. Corollaries that characterize the original
network and that provides deterministic generalization can be found in Corollary 3.3 and Appendix B
of Chatterji et al. (2020). The existence of robust layers controls complexity terms in the bounds,
providing alternative explanation of the generalization power of large overparameterized neural
networks. It is shown that this provides more faithful ranking of the generalization power of neural
networks than many previous complexity measures (Chatterji et al., 2020, Section 4).

15

ZHANG, BENGIO AND SINGER

To recap the paper, we empirically investigated the functional structure on a layer-by-layer
basis of overparameterized deep models for a wide variety of models for image classification. We
introduced the notions of re-initialization and re-randomization robustness. Using these notions
we provided evidence for the heterogeneous nature of layers, which can be categorized into either
robust or critical. Resetting the robust layers to their initial value has negligible effect on the model’s
performance. Our empirical results give further evidence that mere parameter counting or norm
accounting is too coarse in studying generalization of deep models. Moreover, optimization landscape
based analysis is better performed respecting the network architectures due to the heterogeneous
nature of different layers. Our empirical work gives rise to several theoretical questions. We conclude
with a short list which is by no means comprehensive of potential directions for future research
motivated by our results.

Lyapunov Function for Deep Architectures. Bregman divergences over the entire set of param-
eters constitute the tool of choice in analyzing convergence and regret bounds for convex
and quasi-convex models. Our results indicate that parameters of a network do not form
a monolithic set. Devising novel composite divergences for measuring the progression of
learning process is thus deemed useful.

Formation of robust and critical Layers. As shown, some layers of a deep networks become
robust to reset while other layers deem to be critical. This structural symmetry breaking could
also shed light on the role of initialization for deep learning.

Hybrid Algorithms. Our study underscores the potential of hybrid networks of mixed learned and
random parameters. Random feature maps for deep learning were studied for fully random
representations (Rahimi and Recht, 2008, 2009; Daniely et al., 2016). A potentially high
impact direction is devising learning algorithms for building hybrid learned-random networks.

Acknowledgments

We would like to thank David Grangier, Lechao Xiao, Kunal Talwar, Hanie Sedghi, and Omar
Rivasplata for helpful discussions and feedback.

16

ARE ALL LAYERS CREATED EQUAL?

Appendix A. Details of Experimental Setup

Our empirical study is based on the MNIST, CIFAR-10 and the ILSVRC 2012 ImageNet datasets.
Stochastic Gradient Descent (SGD) with a momentum of 0.9 is used to minimize the multi-class
cross entropy loss. Each model is trained for 100 epochs, using a stage-wise constant learning rate
scheduling with a multiplicative factor of 0.2 on epoch 30, 60 and 90. Batch size of 128 is used,
except for ResNets with more than 50 layers on ImageNet, where batch size of 64 is used due to
device memory constraints.

We mainly study three types of neural network architectures:

• FCNs: the FCNs consist of fully connected layers with equal output dimension and ReLU
activations (except for the last layer, where the output dimension equals the number of classes
and no ReLU is applied). For example, FCN 3× 256 has three layers of fully connected layers
with the output dimension 256, and an extra final (fully connected) classifier layer with the
output dimension 10 (for CIFAR-10 and MNIST).

• VGGs: widely used network architectures from Simonyan and Zisserman (2014), consist of
multiple convolutional layers, followed by multiple fully connected layers and the final linear
classifier layer.

• ResNets: the results from our analysis are similar for ResNets V1 (He et al., 2016a) and V2 (He
et al., 2016b). We report our results with ResNets V2 due to the slightly better performance.
For large image sizes from ImageNet, the stage0 contains a 7 × 7 convolution and a 3 × 3
max pooling (both with stride 2) to reduce the spatial dimension (from 224 to 56). On smaller
image sizes like CIFAR-10, we use a 3× 3 convolution with stride 1 here to avoid reducing
the spatial dimension. Fig. 10 illustrates the two types of residual blocks that are used inside
(with an identity skip connection) and between (with a downsample skip connection) stages.

In the experiments on adversarial robustness in Sec. 6, we use a slightly modified variant by
explicitly having a downsample layer between stages, so that all the residual blocks are with
identity skip connections.

The ResNets used in the main text are without batch normalization. Please see Appendix C for
details and full comparison of the architectures with and without batch normalization.

During training, CIFAR-10 images are padded with 4 pixels of zeros on all sides, then randomly
flipped (horizontally) and cropped. ImageNet images are randomly cropped during training and
center-cropped during testing. Global mean and standard deviation are computed on all the training
pixels and applied to normalize the inputs on each dataset.

Appendix B. Further Details on Joint Robustness

In this appendix, we provide results on joint robustness analysis that were not included in the main
text due to space limit. From Sec. 3.1, we see that on MNIST, for wide enough FCNs, all the layers
above layer1 are robust to re-initialization. So we divide the layers into two groups: {layer1}
and {layer2, layer3, . . .}, and perform the robustness study on the two groups. The results for
FCN 5× 256 are shown in Fig. 11(a). For clarity and ease of comparison, the figure still spells out all
the layers individually, but the values from layer2 to layer6 are simply repeated rows. The values
show that the upper-layer-group is clearly not jointly robust to re-initialization (to checkpoint-0).

17

ZHANG, BENGIO AND SINGER

We also try some alternative grouping schemes: Fig. 11(b) show the results when we group
two in every three layers, which has slightly improved joint robustness. In Fig. 11(c), the grouping
scheme that includes every other layer shows that with a clever grouping scheme, about half of the
layers could be jointly robust.

Results on ResNets are similar. Fig. 12 shows the joint robustness analysis on ResNets trained
on CIFAR-10. The grouping is based on the individual layer robustness results from Fig. 4: all the
residual blocks in stage1 to stage4 are bundled and analyzed jointly. The results are similar to the
FCNs: ResNet-18 is relatively robust, but deeper ResNets are not jointly robust under this grouping.
Two alternative grouping schemes are shown in Fig. 13. By including only layers from stage1 and
stage4, slightly improved robustness could be obtained on ResNet-50. The scheme that groups every
other residual block shows further improvements.

In summary, the individually robust layers are generally not jointly robust. But with some clever
way of picking out a subset of the layers, joint robustness could still be achieved for up to half of the
layers. In principle, one can enumerate all possible grouping schemes to find the best with a trade-off
of the robustness and number of layers included.

input N R +

C N R Cpreact

residual body

skip (identity) connection

(a) Residual block

input N R

C

+

C N R Cpreact

downsample

residual body

(b) Residual block with downsampling

Figure 10: Illustration of residual blocks (from ResNets V2) with and without a downsampling
skip branch. C, N and R stand for convolution, (batch) normalization and ReLU activation,
respectively. Those are basic residual blocks used in ResNet-18 and ResNet-34; for ResNet-50 and
more layers, the bottleneck residual blocks are used, which are similar to the illustrations here except
the residual body is now C→ N→ R→ C→ N→ R→ C with a 4× reduction of the convolution
channels in the middle for a “bottlenecked” residual.

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

 layer1

*layer2

*layer3

*layer4

*layer5

*layer6 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) layer2∼6

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

 layer1

*layer2

*layer3

 layer4

*layer5

*layer6 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) layer2,3,5,6

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

 layer1

*layer2

 layer3

*layer4

 layer5

*layer6
0.2

0.4

0.6

0.8

(c) layer2,4,6

Figure 11: Joint robustness analysis of FCN 5× 256 on MNIST. The heatmap layout is the same
as in Fig. 1, but the layers are divided into two groups (indicated by the * mark on the blue colored
layer names in each figure) and re-randomization and re-initialization are applied to all the layers
in each group jointly. As a result, layers belonging to the same group have identical rows in the
heatmap, but we still show all the layers to make the figures easier to compare with the previous
individual layer robustness results. The subfigures show the results from three different grouping
schemes.

18

ARE ALL LAYERS CREATED EQUAL?

 stage0

 stage1.resblk1

*stage1.resblk2

 stage2.resblk1

*stage2.resblk2

 stage3.resblk1

*stage3.resblk2

 stage4.resblk1

*stage4.resblk2

 final_linear

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) ResNet-18: resblk2

 stage0

 stage1.resblk1

*stage1.resblk2

*stage1.resblk3

 stage2.resblk1

*stage2.resblk2

*stage2.resblk3

*stage2.resblk4

 stage3.resblk1

*stage3.resblk2

*stage3.resblk3

*stage3.resblk4

*stage3.resblk5

*stage3.resblk6

 stage4.resblk1

*stage4.resblk2

*stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) ResNet-50: resblk2, 3, . . .

 stage0

 stage1.resblk1

*stage1.resblk2

*stage1.resblk3

 stage2.resblk1

*stage2.resblk2

*stage2.resblk3

*stage2.resblk4

 stage3.resblk1

*stage3.resblk2

*stage3.resblk3

*stage3.resblk4

*stage3.resblk5

*stage3.resblk6

*stage3.resblk7

*stage3.resblk8

*stage3.resblk9

*stage3.resblk10

*stage3.resblk11

*stage3.resblk12

*stage3.resblk13

*stage3.resblk14

*stage3.resblk15

*stage3.resblk16

*stage3.resblk17

*stage3.resblk18

*stage3.resblk19

*stage3.resblk20

*stage3.resblk21

*stage3.resblk22

*stage3.resblk23

 stage4.resblk1

*stage4.resblk2

*stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet-101: resblk2, 3, . . .

 stage0

 stage1.resblk1

*stage1.resblk2

*stage1.resblk3

 stage2.resblk1

*stage2.resblk2

*stage2.resblk3

*stage2.resblk4

*stage2.resblk5

*stage2.resblk6

*stage2.resblk7

*stage2.resblk8

 stage3.resblk1

*stage3.resblk2

*stage3.resblk3

*stage3.resblk4

*stage3.resblk5

*stage3.resblk6

*stage3.resblk7

*stage3.resblk8

*stage3.resblk9

*stage3.resblk10

*stage3.resblk11

*stage3.resblk12

*stage3.resblk13

*stage3.resblk14

*stage3.resblk15

*stage3.resblk16

*stage3.resblk17

*stage3.resblk18

*stage3.resblk19

*stage3.resblk20

*stage3.resblk21

*stage3.resblk22

*stage3.resblk23

*stage3.resblk24

*stage3.resblk25

*stage3.resblk26

*stage3.resblk27

*stage3.resblk28

*stage3.resblk29

*stage3.resblk30

*stage3.resblk31

*stage3.resblk32

*stage3.resblk33

*stage3.resblk34

*stage3.resblk35

*stage3.resblk36

 stage4.resblk1

*stage4.resblk2

*stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet-152: resblk2, 3, . . .

Figure 12: Joint robustness analysis of ResNets on CIFAR-10, based on the scheme that groups all
but the first residual blocks in all the stages. Grouping is indicated by the * on the (blue colored)
layer names.

Appendix C. Batch Normalization and Weight Decay

The primary goal of this paper is to study the (co-)evolution of the representations at each layer
during training and the robustness of this representation with respect to the rest of the network. We try
to minimize the factors that explicitly encourage changing of the network weights or representations
in the analysis. In particular, unless otherwise specified, weight decay and batch normalization were
not used. This leads to some performance drop in the trained models. Especially for deep residual
networks on ImageNet: even though we could successfully train a residual network with 100+ layers
without batch normalization, the final generalization performance could be quite worse than the
state-of-the-art. Therefore, in this section, we include experiments with networks trained with weight
decay and batch normalization for comparison.

Table 3 shows the final test error rates of models trained with or without weight decay and
batch normalization. Note the original VGG models do not use batch normalization (Simonyan and
Zisserman, 2014), we list +bn variants here for comparison, by applying batch normalization to the
output of each convolutional layer. On CIFAR-10, the performance gap varies from 3% to 5%, but
on ImageNet, the gap could be as large as 10%.

Fig. 14 shows how different training configurations affect the layer robustness analysis patterns
on VGG-16 networks. Fig. 15 and Fig. 16 show similar comparisons for ResNet-50 on CIFAR-10 and

19

ZHANG, BENGIO AND SINGER

 stage0

 stage1.resblk1

 stage1.resblk2

 stage1.resblk3

 stage2.resblk1

*stage2.resblk2

*stage2.resblk3

*stage2.resblk4

 stage3.resblk1

*stage3.resblk2

*stage3.resblk3

*stage3.resblk4

*stage3.resblk5

*stage3.resblk6

 stage4.resblk1

 stage4.resblk2

 stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) ResNet-50: resblk2, 3 . . . of stage2, 3

 stage0

 stage1.resblk1

*stage1.resblk2

 stage1.resblk3

 stage2.resblk1

*stage2.resblk2

 stage2.resblk3

*stage2.resblk4

 stage3.resblk1

*stage3.resblk2

 stage3.resblk3

*stage3.resblk4

 stage3.resblk5

*stage3.resblk6

 stage4.resblk1

*stage4.resblk2

 stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) ResNet-50: every second resblk

 stage0

 stage1.resblk1

*stage1.resblk2

 stage1.resblk3

 stage2.resblk1

*stage2.resblk2

 stage2.resblk3

*stage2.resblk4

 stage3.resblk1

*stage3.resblk2

 stage3.resblk3

*stage3.resblk4

 stage3.resblk5

*stage3.resblk6

 stage3.resblk7

*stage3.resblk8

 stage3.resblk9

*stage3.resblk10

 stage3.resblk11

*stage3.resblk12

 stage3.resblk13

*stage3.resblk14

 stage3.resblk15

*stage3.resblk16

 stage3.resblk17

*stage3.resblk18

 stage3.resblk19

*stage3.resblk20

 stage3.resblk21

*stage3.resblk22

 stage3.resblk23

 stage4.resblk1

*stage4.resblk2

 stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet-101: every second resblk

 stage0

 stage1.resblk1

*stage1.resblk2

 stage1.resblk3

 stage2.resblk1

*stage2.resblk2

 stage2.resblk3

*stage2.resblk4

 stage2.resblk5

*stage2.resblk6

 stage2.resblk7

*stage2.resblk8

 stage3.resblk1

*stage3.resblk2

 stage3.resblk3

*stage3.resblk4

 stage3.resblk5

*stage3.resblk6

 stage3.resblk7

*stage3.resblk8

 stage3.resblk9

*stage3.resblk10

 stage3.resblk11

*stage3.resblk12

 stage3.resblk13

*stage3.resblk14

 stage3.resblk15

*stage3.resblk16

 stage3.resblk17

*stage3.resblk18

 stage3.resblk19

*stage3.resblk20

 stage3.resblk21

*stage3.resblk22

 stage3.resblk23

*stage3.resblk24

 stage3.resblk25

*stage3.resblk26

 stage3.resblk27

*stage3.resblk28

 stage3.resblk29

*stage3.resblk30

 stage3.resblk31

*stage3.resblk32

 stage3.resblk33

*stage3.resblk34

 stage3.resblk35

*stage3.resblk36

 stage4.resblk1

*stage4.resblk2

 stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet-152: every second resblk

Figure 13: Joint robustness analysis of ResNets on CIFAR-10, with alternative grouping schemes.
Grouping is indicated by the * on the (blue colored) layer names.

Table 3: Test performance (classification error rates %) of various models studied in this paper.
The table shows how much of the final performance is affected by training with or without weight
decay (+wd) and batch normalization (+bn).

Architecture N/A +wd +bn +wd+bn

C
IF

A
R

-1
0

ResNet-18 10.4 7.5 6.9 5.5
ResNet-34 10.2 6.9 6.6 5.1
ResNet-50 8.4 9.9 7.6 5.0
ResNet-101 8.5 9.8 6.9 5.3
ResNet-152 8.5 9.7 7.3 4.7
VGG-11 11.8 10.7 9.4 8.2
VGG-13 10.3 8.8 8.4 6.7
VGG-16 11.0 11.4 8.5 6.7
VGG-19 12.1 8.6 6.9

Im
ag

eN
et

ResNet-18 41.1 33.1 33.5 31.5
ResNet-34 39.9 30.6 30.1 27.2
ResNet-50 34.8 31.8 28.2 25.0
ResNet-101 32.9 29.9 26.9 22.9
ResNet-152 31.9 29.1 27.6 22.6

20

ARE ALL LAYERS CREATED EQUAL?

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) VGG-16

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) VGG-16 +wd

Figure 14: Layer robustness analysis with VGG16 on CIFAR-10. The subfigures show how
training with weight decay (+wd) affects the layer robustness patterns.

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) ResNet-50

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) ResNet-50 +wd

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet-50 +bn

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet-50 +wd +bn

Figure 15: Layer robustness analysis with ResNet-50 on CIFAR-10. The subfigures show how
training with weight decay (+wd) and batch normalization (+bn) affects the layer robustness patterns.

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4

0.5

0.6

0.7

0.8

0.9

(a) ResNet-50

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4
0.5
0.6
0.7
0.8
0.9

(b) ResNet-50 +wd

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet-50 +bn

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet-50 +wd +bn

Figure 16: Layer robustness analysis with ResNet-50 on ImageNet. The subfigures show how
training with weight decay (+wd) and batch normalization (+bn) affects the layer robustness patterns.

21

ZHANG, BENGIO AND SINGER

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) Test error

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear

ReRnd

0

1

10

100
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

(b) ‖θτd − θ0d‖

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear

ReRnd

0

1

10

100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(c) ‖θτd − θ0d‖∞

Figure 17: Layer robustness of VGG-16 on CIFAR-10. (a) shows the robustness analysis measured
by the test error rate. (b) shows the normalized `2 distance of the parameters at each layer to the
version realized during the re-randomization and re-initialization analysis. (c) is the same as (b),
except with the `∞ distance.

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) Test error (-wd-bn)

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0

2

4

6

8

(b) ‖θτd − θ0d‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0

1

2

3

4

(c) ‖θτd − θ0d‖∞
stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) Test error (+wd+bn)

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0

5

10

15

20

25

(e) ‖θτd − θ0d‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0

20

40

60

80

100

120

(f) ‖θτd − θ0d‖∞

Figure 18: Layer robustness for ResNet-50 on CIFAR-10. Layouts are the same as in Fig. 17. The
first row (a-c) is for ResNet-50 trained without weight decay and batch normalization. The second
row (d-f) is with weight decay and batch normalization.

ImageNet, respectively. We found that the layer robustness patterns are still quite pronounced under
various training conditions. In Fig. 15(d) and Fig. 16(c,d), we found that re-initialing with checkpoint-
1 is less robust than with checkpoint-0 for many layers. It might be that during early stages, some
aggressive learning is causing changes in the parameters or statistics with large magnitudes, but later
on when most of the training samples are classified correctly, the network gradually re-balances the
layers to a more robust state. Fig. 18(d-f) in the next section show supportive evidence that, in this
case the distance of the parameters between checkpoint-0 and checkpoint-1 is larger than between
checkpoint-0 and the final checkpoint-T. However, on ImageNet this correlation is no longer clear as
in Fig. 19(d-f). See also the discussions in the next section.

Appendix D. Robustness and Distances

In Fig. 1 from Sec. 3.1, we compared the layer robustness patterns to the layer-wise distances of the
parameters to the values at initialization (checkpoint-0). We found that for FCNs on MNIST, there is
no obvious correlation between the “amount of parameter updates received” at each layer and its
robustness to re-initialization for the two distances (the normalized 2 and∞ norms) we measured. In
this appendix, we list results on other models and datasets studied in this paper for comparison.

Fig. 17 shows the layer robustness plot along with the layer-wise distance plots for VGG-16
trained on CIFAR-10. We found that the `∞ distance of the top layers are large, but the model is

22

ARE ALL LAYERS CREATED EQUAL?

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4

0.5

0.6

0.7

0.8

0.9

(a) Test error (-wd-bn)

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0
2
4
6
8
10
12
14
16

(b) ‖θτd − θ0d‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0
1
2
3
4
5
6

(c) ‖θτd − θ0d‖∞
stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) Test error (+wd+bn)

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0

10

20

30

40

50

(e) ‖θτd − θ0d‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0
5
10
15
20
25
30
35
40

(f) ‖θτd − θ0d‖∞

Figure 19: Layer robustness of ResNet-50 on ImageNet. Layouts are the same as in Fig. 17. The
first row (a-c) is for ResNet-50 trained without weight decay and batch normalization. The second
row (d-f) is with weight decay and batch normalization.

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_lin
ear

0.2

0.4

0.6

0.8

1.0

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(a) Test error

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_lin
ear

0.0

0.5

1.0

1.5

2.0

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(b) ‖θτd − θ0d‖
stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_lin
ear

0.0

0.2

0.4

0.6

0.8

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(c) ‖θτd − θ0d‖∞

Figure 20: Alternative visualization of layer robustness analysis for VGG-16 models on CIFAR-
10. This shows the same results as Fig. 17, but shown as curves instead of heatmaps.

robust when we re-initialize those layers. However, the normalized `2 distance seem to be correlated
with the layer robustness patterns: the upper layers that are more robust moved smaller distances
from their initialized values during training.

Similar plots for ResNet-50 on CIFAR-10 and ImageNet are shown in Fig. 18 and Fig. 19,
respectively. In each of the figures, we also show extra results for models trained with weight
decay and batch normalization. For the case without weight decay and batch normalization, we
can see a weak correlation: the layers that are critical have slightly larger distances to their random
initialization values. For the case with weight decay and batch normalization, the situation is less
clear. First of all, in Fig. 18(e-f), we see very large distances in a few layers at checkpoint-1. This
provides a potential explanation to the mysterious pattern that re-initialization to checkpoint-1 is
more sensitive than to checkpoint-0. Similar observations can be found in Fig. 19(e-f) for ImageNet.

Appendix E. Alternative Visualizations

The empirical results on layer robustness are mainly visualized as heatmaps in the main text. The
heatmaps allow uncluttered comparison of the results across layers and training epochs. However, it
is not easy to tell the difference between numerical values that are close to each other from the color
coding. In this section, we provide alternative visualizations that shows the same results with line

23

ZHANG, BENGIO AND SINGER

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0.2

0.4

0.6

0.8

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(a) CIFAR-10 test error

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0

2

4

6

8

10

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(b) ‖θτd − θ0d‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0

1

2

3

4

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(c) ‖θτd − θ0d‖∞

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0.4

0.6

0.8

1.0

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(d) ImageNet test error

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0

5

10

15

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(e) ‖θτd − θ0d‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0

2

4

6

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(f) ‖θτd − θ0d‖∞

Figure 21: Alternative visualization of layer robustness analysis for ResNet-50 on CIFAR-10
(first row) and ImageNet (second row).

plots. In particular, Fig. 20 shows the layer robustness analysis for VGG-16 on CIFAR-10. Fig. 21
shows the results for ResNet-50 on CIFAR-10 and ImageNet, respectively.

References

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
Over-Parameterization. CoRR, arXiv:1811.03962, 2018.

Martin Anthony and Peter L Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, 2009.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. CoRR, arXiv:1802.05296, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In International Conference on Machine
Learning, pages 274–283. PMLR, 2018.

Navid Azizan, Sahin Lale, and Babak Hassibi. Stochastic mirror descent on overparameterized
nonlinear models: Convergence, implicit regularization, and generalization. arXiv preprint
arXiv:1906.03830, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, pages 6240–6249, 2017.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learning
and the bias-variance trade-off. arXiv preprint arXiv:1812.11118, 2018a.

24

ARE ALL LAYERS CREATED EQUAL?

Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect fitting? risk bounds for
classification and regression rules that interpolate. In Advances in Neural Information Processing
Systems, pages 2300–2311, 2018b.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand
kernel learning. arXiv preprint arXiv:1802.01396, 2018c.

Niladri S Chatterji, Behnam Neyshabur, and Hanie Sedghi. The intriguing role of module criticality
in the generalization of deep networks. In International Conference on Learning Representations,
2020.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent
into wide valleys. In ICLR, 2017.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp Koehn.
One billion word benchmark for measuring progress in statistical language modeling. CoRR,
abs/1312.3005, 2013. URL http://arxiv.org/abs/1312.3005.

G Cybenko. Approximation by superposition of sigmoidal functions. Mathematics of Control,
Signals and Systems, 2(4):303–314, 1989.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. In Advances In Neural Information
Processing Systems, pages 2253–2261, 2016.

Olivier Delalleau and Yoshua Bengio. Shallow vs. Deep Sum-Product Networks. In NIPS, pages
666–674, 2011.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition,
volume 31. Springer Science & Business Media, 2013.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. CoRR, arXiv:1811.03804, 2018a.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. CoRR, arXiv:1810.02054, 2018b.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. In UAI, 2017.

25

http://arxiv.org/abs/1312.3005

ZHANG, BENGIO AND SINGER

Ronen Eldan and Ohad Shamir. The Power of Depth for Feedforward Neural Networks. CoRR,
arXiv:1512.03965, 2015.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
2021.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. CoRR, arXiv:1412.6572, 2014.

László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory of
nonparametric regression. Springer Science & Business Media, 2006.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. CoRR, arXiv:1510.00149, 2015.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In ICLR, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630–645. Springer, 2016b.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. CoRR,
arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):
251–257, 1991.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pages
8580–8589, 2018.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
CoRR, arXiv:1710.05468, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In ICLR,
2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

26

ARE ALL LAYERS CREATED EQUAL?

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Jascha Sohl-Dickstein, and Jeffrey
Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
arXiv preprint arXiv:1902.06720, 2019.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geometry,
and complexity of neural networks. CoRR, arXiv:1711.01530, 2017.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. Generating wikipedia by summarizing long sequences. In International Conference on
Learning Representations, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. CoRR, arXiv:1706.06083, 2017.

Hrushikesh Mhaskar and Tomaso A. Poggio. Deep vs. shallow networks : An approximation theory
perspective. CoRR, arXiv:1608.03287, 2016.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in neural information processing systems (NIPS),
pages 2924–2932, 2014.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. In Advances in Neural Information Processing Systems, pages 5947–5956,
2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-Bayesian approach to
Spectrally-Normalized margin bounds for neural networks. In ICLR, 2018.

Quynh Nguyen and Matthias Hein. Optimization Landscape and Expressivity of Deep CNNs. In
International Conference on Machine Learning, pages 3727–3736, 2018.

Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, 8:
143–195, 1999.

Tomaso Poggio, Qianli Liao, Brando Miranda, Andrzej Banburski, Xavier Boix, and Jack Hidary.
Theory iiib: Generalization in deep networks. Technical report, MIT, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pages 1177–1184, 2008.

Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization
with randomization in learning. In Advances in neural information processing systems, pages
1313–1320, 2009.

Omar Rivasplata, Vikram M Tankasali, and Csaba Szepesvari. Pac-bayes with backprop. arXiv
preprint arXiv:1908.07380, 2019.

27

http://jmlr.org/papers/v21/20-074.html

ZHANG, BENGIO AND SINGER

David Rolnick and Max Tegmark. The power of deeper networks for expressing natural functions.
CoRR, arXiv:1705.05502, 2017.

Amir Rosenfeld and John K Tsotsos. Intriguing Properties of Randomly Weighted Networks:
Generalizing While Learning Next to Nothing. CoRR, arXiv:1802.00844, 2018.

Uri Shaham, Alexander Cloninger, and Ronald R Coifman. Provable approximation properties for
deep neural networks. CoRR, arXiv:1509.07385, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
descent. In ICLR, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. CoRR, arXiv:1312.6199, 2013.

Matus Telgarsky. benefits of depth in neural networks. In Vitaly Feldman, Alexander Rakhlin, and
Ohad Shamir, editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of
Machine Learning Research, pages 1517–1539, Columbia University, New York, New York, USA,
23–26 Jun 2016. PMLR.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. In Advances in Neural Information Processing Systems, volume 34,
2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles
of relatively shallow networks. In Advances in Neural Information Processing Systems, pages
550–558, 2016.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Finite sample expressive power of small-width relu
networks. CoRR, arXiv:1810.07770, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In ICLR, 2017.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz. Non-vacuous
generalization bounds at the ImageNet scale: a PAC-Bayesian compression approach. In ICLR,
2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep ReLU networks. CoRR, arXiv:1811.08888, 2018.

28

	Introduction
	Setting
	Robustness of Individual Layers
	Fully Connected Networks
	Large Convolutional Networks

	Joint Robustness
	Other Architectures and Domains
	Transformer Based Neural Language Models
	Convolution-Free Architectures for Computer Vision

	Connections to Other Notions of Robustness
	Discussion
	Details of Experimental Setup
	Further Details on Joint Robustness
	Batch Normalization and Weight Decay
	Robustness and Distances
	Alternative Visualizations

